

A quick overview of LRS

Vincent Lamirand On behalf of Andreas Pautz Professor

0

 École polytechnique fédérale de Lausanne

Online - 30.03.2021

EPFL Laboratory for Reactor physics & Systems behaviour

- Mandate of LRS
 - Education of the next generation of nuclear engineers and scientists
 - Safe and efficient operation of CROCUS
 - Cutting edge **research** and development in the nuclear engineering field.
- Team
 - Under the supervision of Professor Andreas Pautz, a team of 4 scientists, 2 technicians, a secretary, 1 postdoc and 6 PhD students.

EPFL Joint ETH-EPFL MSc program in Nuclear Engineering

Video space

EPFL **The CROCUS reactor**

Reactor type

- LWR with partially submerged core
- Room T (controlled) and atmospheric P
- Forced water flow (160 l.min⁻¹)

Operation

- 100 W (zero-power reactor)
- i.e. maximum 2.5×10⁹ cm⁻².s⁻¹
- Control: B₄C rods and spillway

EPFL The CROCUS reactor

Reactor type

- LWR with partially submerged core
- Room T (controlled) and atmospheric P
- Forced water flow (160 I.min⁻¹)

Operation

- 100 W (zero-power reactor)
- i.e. maximum 2.5×10⁹ cm⁻².s⁻¹
- Control: B₄C rods and spillway

Core

- ø60 cm/100 cm, 2-zone
- Inner: 336 UO₂
 1.806 wt%
 1.837 cm
- Outer: 176 U_{met} 0.947 wt% 2.917 cm

EPFL The LOTUS irradiation platform

Cavity

- 3.6 × 2.4 × 3 (h) m³
- 2.2 m-thick concrete biological shield
- Lateral door and movable lid

Radiation sources

- PuBe (TBq) neutron sources
- SILC ⁶⁰Co irradiator (370 GBq in 2016)

Video space

IAEA International Atomic Energy Agency

École Polytechnique Fédérale de Lausanne (EPFL)

IAEA Collaborating Centre

For

Advanced Reactor Experiments and High-Fidelity Multiphysics Nuclear Simulation Techniques for Open-Source Code Development and Validation

2019 - 2023

EPFL LRS research activities

Reactor experiments

VOID: void fraction COLIBRI: fuel oscillation PETALE: ss nuclear data Zero power reactor noise Hi-Res n. experiments y characterisation

Novel detection materials

Neutron modulation

e.

Irradiation experiments

Instrumentation

Neutron noise stations **Diamond detector** Activation and TL dosimetry Miniature scintillators

Validation and data assimilation GeN-Foam multiphysics solver OFFBEAT: OpenFOAM for fuel beh.

Modelling & code development

LRS research activities

Reactor experiments

VOID: void fraction

e.

COLIBRI: fuel oscillation

PETALE: ss. nuclear data Zero power reactor noise **Hi-Res n. experiments**

γ characterisation

Novel detection materials

Neutron modulation

Irradiation experiments

Instrumentation

Neutron noise stations **Diamond detector** Activation and TL dosimetry Miniature scintillators

Validation and data assimilation GeN-Foam multiphysics solver OFFBEAT: OpenFOAM for fuel beh.

Modelling & code development

EPFL **Diamond detector**

Development in collaboration with CIVIDEC/CERN*

- Sensitivity ~3.10⁻⁵ per thermal neutron
- Linearity of response with reactor power
 - Can accommodate for high count rate ٠
- 6%/94% neutron/gamma detections
 - Detection of fast neutrons

EPFL Miniature neutron scintillators

Co-development with the Detectors Group of the Laboratory for Particle Physics at PSI for high spatial resolution of thermal/fast neutrons

- Development of an in-core mm² neutron scintillator coupled to fibers and SiPMs¹
 - Fully characterized
 - Currently building a 150 detectors array!
- Application of the detectors to a range of reactor physics experiments towards the validation of high-fidelity calculations, e.g.:
 - in-core azimuthal² and angular distributions
 - fuel rod displacement: COLIBRI in static
 - full core mapping: COLIBRI in oscillation phase 2

Video space

First prototype of an in-core mm-scale neutron scintillator

Measured and computed azimuthal gradients in a control rod guide tube and a periphery channel

EPFL COLIBRI: fuel rods displacement

Investigation of power fluctuations induced by fuel vibration

- Experimental program for measuring noise induced by fuel oscillation
- Device designed for selection of up to 18 U_{met} rods, ±2.5 mm radial, 2 Hz

12

Oscillator with core structures, and few pins inserted in the device

¹ V. Lamirand et al., "The COLIBRI experimental programme in the CROCUS reactor: development...," *RRFM/IGORR 2019*, Swemieh (Jordan), 24-28 March 2019; ² V. Lamirand et al., "The COLIBRI experimental program in the CROCUS reactor: characterization of the fuel rods oscillator," *EPJ Web Conf.*, vol. 225, p. 04020, Jan. 2020.

EPFL **COLIBRI: fuel rods displacement**

Investigation of power fluctuations induced by fuel vibration

- Experimental program for measuring noise induced by fuel oscillation
- Device designed for selection of up to 18 U_{met} rods, ±Ž.5 mm radial, 2 Hz
- Oscillation campaigns in 2018^{1,2}, 2019 and 2021
 - within the H2020 project CORTEX
 - Up to 18 rods, ±0.5 to 2 mm, 0.1 to 2 Hz
 - 11, 15 and 18 detectors in pulse and current modes, and instrumentations from three partners (TUD, ISTec and EPFL)
- Static measurements campaign with miniature scintillators in 2019
- Phase 2 currently on-going in CROCUS

powers in CROCUS²

Vincent Lamirand

Présentation des laboratoires / Laboratory for Reactor Physics and Systems pehaviour (LRS)

¹ V. Lamirand et al., "Neutron noise experiments in the AKR-2 and CROCUS reactors for the European project CORTEX," EPJ Web Conf., vol. 225, p. 04023, Jan. 2020, ² V. Lamirand et al., "Analysis of the first COLIBRI fuel rods oscillation campaign in the CROCUS reactor for ...," EPJ Web Conf., vol. 247, p. 21010, Feb. 2021.

EPFL The GeN-Foam multi-physics solver

Video space

EPFL selected as collaborating center of the IAEA for a multiphysics open-source platform for reactor analysis, based on OpenFOAM

- Solvers for neutron transport (diffusion, discrete ordinates, SP)
- Solvers for CFD and core thermal-hydraulics
- Solver for fuel behavior (OFFBEAT)
- Multi-physics solver (GeN-Foam)

Vincent Lamirand

TP4 projects

Examples of past and current proposals

- Development and modelling of a conveyor device for mapping the activity of irradiated metal sheets for the study of heavy reflectors in nuclear power plants
- Characterization of a diamond detector with radioactive sources
- Application of the LRS multi-physics platform to the safety analysis of Generation IV reactors
- Monte-Carlo simulations of the criticality experiments of PETALE

Contact us!

- Andreas Pautz
 - **Pavel Frajtag**
 - Carlo Fiorina
 - Mathieu Hursin
 - Vincent Lamirand

andreas.pautz@epfl.ch Director of LRS pavel.frajtag@epfl.ch carlo.fiorina@epfl.ch mathieu.hursin@epfl.ch vincent.lamirand@epfl.ch

Head of nuclear facilities Code development Validation **Experiments**

Merci

-

8

0

Vincent Lamirand

EPFL Joint ETH-EPFL MSc program in Nuclear Engineering

- Swiss MSc between ETHZ and EPFL
 - Established in 2008, more than 110 graduates
 - Two-year program, 120 ECTS credits
 - In cooperation with the Paul Scherrer Institute
- 1st semester at EPFL, 2nd at ETH, 3rd-4th at PSI
 - Small program: ~10-15 students/y
 - Extensive use of the CROCUS reactor

ETHZ-EPFL MSc in Nuclear Engineering

Focus

- Neutronics
- Thermohydraulics
- Nuclear Material Science
- Nuclear Safety
- Waste Management
- Radiation Protection
- ...and more

Unique world-class facilities

- CROCUS research reactor (EPFL)
- Swiss Light Source synchrotron
- Hot Lab facility (PSI)
- Proton therapy center (PSI)
- Numerous TH experimental facilities (ETHZ, PSI)

Included

infrastructure

Shaft hea

- Three-month industrial internship
- Research project
- Master thesis

Vincent Lamirand