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Abstract

A search for the decay B0 → D+
s D

−
s is conducted using the 3 fb−1 of Run 1 data

collected by the LHCb experiment. The use of new DNN classifiers recently added to
TMVA is investigated in the selection process. A small excess of 2 sigma is measured
in the signal region. The use of Run 2 data was envisaged, but the changes in the
dataflow and the absence of Run 2 MC did not allow a precise efficiency calculation
on the Run 1+Run 2 data. The measured branching fraction using the LHCb Run 1
data is:

B(B0 → D+
s D

−
s ) = [6.64± 2.15 (stat)± 2.62 (syst)± 0.76 (norm) ] · 10−5

This is in agreement with previous limits and compatible with the SM prediction.

1

mailto:marc.huwiler@epfl.ch


Contents

1 Introduction 4

2 Study of rare B meson decays 4

3 Motivations 6

4 The LHCb detector 6

5 Multivariate analysis techniques 8

5.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2 Artificial neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.3 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5.3.1 Cooking with hidden layers . . . . . . . . . . . . . . . . . . . . . . . 11

5.3.2 Upper limit in the number of neurons . . . . . . . . . . . . . . . . . 12

5.3.3 Overtraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.4 Boosted Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Data samples 14

6.1 Signal and sidebands definition . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.2 Normalisation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Selection 17

7.1 Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.2 Offline selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7.2.1 Summary of the offline selection . . . . . . . . . . . . . . . . . . . . 18

8 MVA selection 20

8.1 Combinatorial background MVA . . . . . . . . . . . . . . . . . . . . . . . . 21

8.1.1 Choice of discriminating variables . . . . . . . . . . . . . . . . . . . 21

8.1.2 Results of the first training session . . . . . . . . . . . . . . . . . . . 22

8.1.3 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.2 D∗s discrimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.3 Constructing a new discriminating variable . . . . . . . . . . . . . . . . . . 30

8.3.1 Correlation check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.4 Decorrelation transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8.5 Improvements to the ROC curve . . . . . . . . . . . . . . . . . . . . . . . . 32

8.6 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.7 Choice of the optimal MVA cuts . . . . . . . . . . . . . . . . . . . . . . . . 34

8.7.1 Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.7.2 Figure of merit and final cuts . . . . . . . . . . . . . . . . . . . . . . 36

9 Ds candidate invariant mass cuts 37

10 Estimated yields 38

10.0.1 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.0.2 b-production cross section . . . . . . . . . . . . . . . . . . . . . . . . 39

10.1 Signal and background efficiencies . . . . . . . . . . . . . . . . . . . . . . . 40

10.2 Number of expected signal candidates . . . . . . . . . . . . . . . . . . . . . 41

10.3 Background yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2



10.4 Calculation of the B0 → D−D+
s fraction . . . . . . . . . . . . . . . . . . . . 42

10.5 Calculation of the B0
s → D∗+s D∗−s fraction . . . . . . . . . . . . . . . . . . . 43

11 Fit 43
11.1 Run 1 2011 and 2012 data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
11.2 Signal shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
11.3 Fit to 2011 and 2012 data . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11.3.1 Signal shape tweaking . . . . . . . . . . . . . . . . . . . . . . . . . . 49
11.3.2 Fixing the fraction of B0 → DDs . . . . . . . . . . . . . . . . . . . 50
11.3.3 Fixing the fraction of B0

s → D∗sD
∗
s . . . . . . . . . . . . . . . . . . . 50

11.3.4 Constraining the Bs → DsD
∗
s shape parameters and the fraction of

B0 → DDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
11.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

11.4.1 Fit result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11.4.2 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.4.3 Calculation of the B0 → D+

s D
−
s branching fraction . . . . . . . . . . 53

11.5 Fit to the Run 1 and Run 2 2011, 2012, 2015 and 2016 data . . . . . . . . . 54

12 Discussion 56

13 Conclusion 58

14 Acknowledgments 59

15 Appendix 62
15.1 Integrated luminosity obtained from the tuple variables . . . . . . . . . . . 62
15.2 Detailed summary of the signal efficiencies . . . . . . . . . . . . . . . . . . . 62
15.3 Detailed summary of the background efficiencies . . . . . . . . . . . . . . . 64
15.4 Signal shapes from the other channels . . . . . . . . . . . . . . . . . . . . . 66

3



1 Introduction

The aim of this report is to describe a search for the decay B0 → D+
s D−s , using data

from the LHCb (Large Hadron Collider beauty) experiment. LHCb is one of the four main

experiments around the LHC (Large Hadron Collider) accelerator at CERN. It is dedicated

to the study of b and c flavoured mesons, with as main goal to help understand the

difference between matter and antimatter, and to probe the Standard Model parameters

for potential New Physics. The study of B mesons is of special interest for investigating

the violation of the CP asymmetry, which could explain the differences between matter

and antimatter, as well as the processes that led to the universe as we know it. The

precise study of flavour-violating decay branching fractions provides an insight into the

symmetries of universe, by constraining the Cabibbo-Kobayashi-Maskawa matrix elements.

The present study focuses on the search for the B0 → D+
s D
−
s decay, and aims to measure

its branching fraction.

b
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Figure 1: Leading order Feynman diagram for the B0 → D+
s D
−
s decay.

2 Study of rare B meson decays

The Standard Model of particle physics (SM) is the currently accepted theory describing

the fundamental particles and their interactions. Relying on a quantum field theory, it

was developed during the 20th century and was successful at describing almost all exper-

imental results so far [1], and found experimental confirmation by accurately predicting

new particles, such as the top quark or the Higgs boson. It was also successful at ac-

counting for the violation of the CP symmetry, first observed in the 60s in kaon decays.

The three generations of quarks in the Standard model are necessary to explain the CP

violation. The couplings of the flavour non-conserving weak decays to the different quarks

are described by the Cabibbo-Kobayashi-Maskawa (CKM) matrix [2].

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 ≈
 1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 (1)

with λ = 0.2257+0.0009
−0.0010, A = 0.814+0.021−0.022, ρ = 0.135+0.031−0.016, η = 0.349+0.015

−0.017
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Figure 2: Leading order Feynman diagrams for the B0
s → D+

s D
−
s decay.

and

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =

0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015
−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.000021
−0.000046

0.0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046

 [2]

The CKM matrix contains three mixing angles describing the rotation between the

eigenstates of the weak interaction and the mass eigenstates, and one CP violating pa-

rameter.

The decays of B mesons to open-charm in particular provide a probe for the Cabibbo-

Kobayashi-Maskawa matrix elements. Since the CKM matrix incorporates a CP violating

phase, the precise measurement of its elements could help understanding the CP violation

and in a wider extent contribute to our understanding of the difference between matter

and antimatter [3]. Furthermore, deviations from the SM predictions could represent hints

for new physics [4].

Flavour changing interactions are only driven by the weak charged currents (carried

by the W+ and W− bosons). The strong and electromagnetic interactions as well as

the neutral weak current (carried by the Z0 boson) are flavour conserving. Processes

changing a D type quark (d, s, b) or a U type (u, c, t) one into another quark of the

same type are forbidden at the tree level, and require at least one off diagonal VCKM

element. They are suppressed by the Glashow-Illopoulos-Maiani mechanism. According to

the Cabibbo-Kobayashi-Maskawa matrix, weak interaction vertices involving quarks from
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different generations have a much lower probability, and are called Cabibbo-suppressed.

The B0 → D+
s D
−
s decay involves two flavour violating vertices at leading order (figure

1), and is thus Cabibbo-suppressed. There exists no tree-level diagram. The Feynman

diagrams at leading order for the B0
s → D+

s D
−
s decay are provided in figure 2, where in

addition to the Cabibbo suppressed decay, a tree diagrams and a lower order Penguin

diagram contribute also to the decay. The B0 → D+
s D
−
s has therefore a lower branching

fraction predicted to be smaller than 3.6 · 10−5 at 90% confidence level (PDG), compared

to that of B0
s → D−s D

+
s

(
(4.40± 0.05) · 10−3

)
, which is by at least a factor 100 lower.

3 Motivations

The B0 → D+
s D
−
s decay has not yet been observed experimentally. A limit on the branch-

ing fraction is currently set at 3.6 · 10−5, which is close to a theoretical computation

expecting it at (1.12 ± 0.15) · 10−5 [5]. The LHC Run 1 and Run 2 data could repre-

sent enough statistics to make an observation possible, according to the number of events

obtained for the B0
s → D+

s D
−
s decay in Run 1 alone [6].

In addition, the TMVA (Toolkit for MultiVariate Analysis) library dedicated to ma-

chine learning in the ROOT framework, was lately improved with the addition of a deep

learning module. In particular, a new Deep Neural Network classifier was added, as well

as a method providing access to the state-of-the-art library TensorFlow, through a Keras

backend. The considerable amount of background expected in this analysis provides an

opportunity to test these new classifiers.

4 The LHCb detector

The LHCb detector is a single arm forward spectrometer designed for precision study

of beauty and charm physics at the LHC (Large Hadron Collider) at CERN. Its main

purpose is to record the tracks of decay products of b and c hadrons, to perform precision

measurements of their branching fractions, CP-violating parameters and lifetimes.

Since the b quark is heavy, the b hadrons containing it, formed by the pp collisions,

have a low transverse momentum pT and their trajectory form a low angle with respect

to the beam axis. The LHCb experiment was designed accordingly, featuring a series of

sub-detectors stacked behind each other along the the beam pipe.

A scheme of the full detector is shown in figure 3. A short description of each subde-

tector and its main task is given below:

VELO The VErtex LOcator is the core part of the detector. Made of 42 silicon strip

modules surrounding the beam next to the collision point, it allows to locate the

position of b hadron decay vertices to a precision of 10µm, by tracking their decay

products. The b hadrons travel O(1 cm) in the detector. They are in general not
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Figure 3: Scheme of the LHCb detector, with its sub-detectors.

directly detected, but their decay point is reconstructed, based on the precise track

measurements of their daughters, made possible in the VELO. The modules are

divided in two semicircular halves. Due to the close distance of the VELO modules

to the beam (about 8 mm under running conditions), the VELO detector is held

away from the beam during injection, to avoid damage by the high energy beams.

During beam time, the two halves of the detector are moved towards each other until

the half-circle modules join and surround the beam.

RICH The Ring Imaging CHerekov subdetectors are designed for particle identification,

based on the Cherenkov radiation principle: a particle travelling faster than the speed

of light in a given medium (for instance a dense gas) emits a light cone. The light cone

is reflected by a mirror system into the hybrid photon detectors (HPDs) held further

away from the beam to protect them against radiation. The light cone’s opening

angle is related to the velocity of the particle and can be determined in the RICH

subdetectors. The RICH1 module is located before the bending magnet, and has a

two component radiator gas (silica aerogel for low momentum particle of O(1 GeV)

and C4F10 for particles with momentum of 10− 65 GeV) whereas the RICH2 has a

CF4 radiator gas targeting particles with momenta in the range 15− 100 GeV, and

is located after the bending magnet where supposedly high momentum particles are

left.

Tracking System Formed by the Trigger Tracker (TT) positioned before the bending

magnet, and the Inner and Outer Tracker (IT & OT) positioned after the

bending magnet, the tracking system’s main goal is to reconstruct the trajectories

of the particles. The Trigger Tracker is made of silicon microstrip detectors, with

a resolution down to 0.05 mm. The tracking stations after the magnet have an

innermost part (Inner Tracker) also made of silicon strip detectors, to provide a
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higher resolution close to the beam pipe where the density of particles is higher.

The part further away from the beam (Outer Tracker) is made of straw tubes filled

with a mixture of 70% Ar and 30% CO2. The gas is ionized by the charged particles

and the electrons drift towards the anode wire. Timing provides information on the

position of the hit. The resolution is about 0.2 mm.

Combining information of the silicon tracker and outer tracker before and after the

bending magnet, the curvature of the trajectory can be measured and thus the

momentum of the particle can be determined. Based on this information, mass

hypotheses are tested and the match between the expected ring diameter and the

measurement in the RICH detector are evaluated to set the mass of the particle, and

it can thus be identified.

Calorimeters The Electromagnetic CALorimeter (ECAL) is designed to measure the

energy of electrons, positrons and photons. It consists of a sandwich structure of

alternating metal and scintillating polystyrene layers. In the metal, the particles

produce secondary particles, which will excite the scintillator molecules and produce

UV light that is detected. The number of UV photons produced in the scintillator

is proportional to the energy of the particle that produced the shower. The electro-

magnetic calorimeter is the part of the detector able to detect photons.

The Hadron calorimeter (HCAL) is based on the same principle and design as the

electromagnetic calorimeter. Hadrons excite scintillating molecules which emit light

which is detected and proportional to the energy of the incident particle. It is mainly

used to detect neutrons and neutral mesons. In addition a Scintillating Pad Detector

(SPD) and Pre-Shower Detector (PS) are positioned before the calorimeters, and are

mainly used at the trigger level. The SPD determines whether the incident particle

has a charge or not, while the PS differentiates between charged (e) and neutral (γ)

electromagnetic particles.

Muon System The muon system is composed of five muon stations, made of multi-

wire proportional chambers, containing a mixture of Ar, CO2 and CF4. The muon

information is used for reconstruction and high transverse momentum muons are

used in the low level trigger (L0) already.

5 Multivariate analysis techniques

Several Machine Learning algorithms can be used as Multivariate analysis (MVA) methods,

especially for classification problems. In the field of High Energy Physics (HEP), the

most common task is to discriminate between signal and background. The signal is the

decay of interest, while background contains other physical processes, as well as non-

physical background. The algorithms are designed such that the method ”learns by itself”

patterns and structures inherent to the data to be analysed. Thus, a particularity of

machine learning algorithms, is that they undergo a training phase. In other words, the
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algorithm has internal degrees of freedom that adjust to the data it has to analyse, trying

to extract its particularities.

Classification problems enter the category of supervised learning in opposition to un-

supervised learning, where unlabelled data are provided to the algorithm. In supervised

learning, the algorithm is provided with labelled data, which means the expected output

of the algorithm is provided. For classification problems, each event is given with the class

to which it belongs to. The training then becomes a minimisation problem, where the

internal degrees of freedom of the algorithm are adjusted to minimise an error function.

The error function is commonly based on the difference between the classifier output and

the expected output according to a certain metric.

One risk of this procedure is overtraining (see sections 5.3.2 and 5.3.3). We speak

of overtraining or overfitting, when the algorithm learns too detailed properties of the

training set, that are not generally characteristic of the data it was taken from. In the

extreme case, the algorithm can even learn the full training set, without being able to

generalize (see section 5.3.2).

Overtraining

There exist several techniques to reduce the risk of overtraining, explained in section 5.3.3.

There are also a couple of ways to check for overtraining. In particular, the training data

are split into a training set and a test set. The training of the algorithm is performed

on the training set essentially, and then its performance is evaluated on the test set. If

the algorithm achieved a very low error on the training data, but shows bad classifying

performance on the test set, it means it ”has learnt” features too specific to the training

set, that do not generalise to the test set and the data in general.

Another useful technique to check for overtraining is to superimpose the classifier out-

put distributions for the training set and the test set. Without overtraining, the two

distributions are expected to match, there should be very little difference between the

histograms. The Kolmogorov-Smirnov test (see section 8.1.3) can provide a quantita-

tive measure of the agreement between two distributions. Although not recommended on

binned data, it is frequently used (including in this analysis) as overtraining check.

5.1 Deep Neural Networks

A Neural Network, also called Artificial Neural Network is a collection of processing units

called (artificial) neurons, interconnected together [7]. Their functioning was inspired by

how neurons in the brain are connected together, and send stimuli to each other (see

section 5.2). In most of the architectures (including the ones available in TMVA), the

neurons are organised into sequential layers, where the neurons in one layer only depend

on the outputs of the previous layer. Figure 4 shows a scheme of a simple neural network

architecture. The first layer is called input layer and the last layer output layer. The
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model can contain one or more intermediate layers called hidden layers, in which case it

is called a Deep Neural Network (see section 5.3).

Figure 4: Scheme of a Deep Neural Network (DNN).

Mathematically, a feed-forward multilayer perceptron can be represented as a function

F : Rn → Rm that maps the inputs {xi} with i ∈ [1, n] to the outputs {yk} with k ∈ [1,m]:

{xi} → {yk} = F ({xi}) (2)

The input layer {xi} must have the same dimension as the dataset (the number of input

neurons must be equal to the number of variables chosen from the dataset for training).

The input layer does not really play a role in the learning, it is just a representation of the

data vector, and its output values are simply the values of the variables in the dataset.

The output layer can be of any wished dimension, and depends on the task the network

is aimed to perform. In particular, in case of binary classification, the output layer will

consist of two neurons (one for each class), and in case of multiclass classification featuring

n classes of n neurons. The output neurons of classifier networks usually have a softmax (or

sigmoid) activation function, and give the probability of the event belonging to each class

based on the classifier training. In TMVA, the algorithms are dedicated to classification

(binary or multiclass) or regression.

5.2 Artificial neuron

An artificial neuron is a logical unit the output of which is given by a function of its inputs

(see scheme 5). Each neuron of a given layer takes as inputs the outputs of every neuron

in the previous layer. A given neuron contains a set of weights {ωi} for each input. Each

input (xi) is multiplied by its weight (ωi) before being added up together. Eventually, a

bias b is added to the sum. The neuron also contains an activation function α, which is

responsible for the neuron’s response. The output is given by the activation function α

evaluated for the sum of the inputs multiplied by their respective weight and the bias:
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youtput = α
(
~ω · ~x+ b

)
(3)

The activation function significantly affects the behaviour of the neural network. Espe-

cially, if α is linear, the neural network will only be able to perform linear transformations

of the input space. The breakthrough neural networks brought about is their ability to

model complex and non-linear structures present in data. This is where the activation

function plays a crucial role.

Figure 5: Scheme of an artificial neuron.

When connected together into a network, the neurons receive stimuli from the outputs

of the previous neurons. The output of the neuron depends on the stimuli it received from

its inputs, how each input is weighted, as well as on the activation function. It produces

an output response, which can in turn acts as stimuli to other neurons. This behaviour is

inspired by the functioning of the brain, and explains the name given to the ”processing

units”.

5.3 Deep learning

With the increasing computing power, the training of larger and larger neural networks

became possible, and gave rise to the field known as deep learning. Deep learning is,

however, not restricted to neural networks, but englobes a larger scope of algorithms

featuring non-linear processing units arranged in a large number of layers [8]. The layers

are usually feed forward, which means that they are connected such that the inputs of

each layer are the outputs of the previous one. Each layer is supposed to contain a

representation of the data of a different level of abstraction. The higher (the further away

from the data) the more abstract the representation is.

5.3.1 Cooking with hidden layers

The number of hidden layers and their number of neurons are generally not established, and

depend on the problem to be solved. It is mathematically proven [7] that a network with

one single hidden layer of infinite dimension can fit any continuous function F . However,

adding several hidden layers of reasonable size can show similar performance, with fewer

neurons. There is no general rule on how to design the network architecture, neither

clear limits on the number of neurons per layer and the layers themselves. There are

however some considerations based on rigourous proofs, that can help avoiding inefficient

architectures.
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Number of neurons in the layer

It can be shown [9] that some classification tasks need at least one layer larger than the

input layer to be able to learn an accurate representation of the data. This is the case

when one class is surrounded by another class in the hyperspace of the dataset. Each

layer is a homeomorphism; or its weight matrix has a determinant of 0, in which case

the data are collapsed along one axis and the classes become entangled. In case it is a

homeomorphism, the effect of the layer is to distort the feature space until a hyperplane

can separate the classes: it maps each point of the input into the output space, in a

continuous way. The two classes, if one surrounded by the other at the input of the layer,

thus cannot be disentangled in the output unless one or more additional dimensions are

added to the output space (see [9] for more details).

5.3.2 Upper limit in the number of neurons

A naive and effective way to improve the performance of a neural network, is to build it

deeper (more hidden layers) and with more neurons per hidden layer. It gives the net the

ability to learn more detailed patterns in data, and to model more accurately the structure

present in the training sample.

One of the major problems of deep learning is overtraining or overfitting. In short, it

means that the model has as many parameters as to be able to learn the dataset itself,

instead of its inherent structure. This becomes a major problem when trying to improve

the performance by increasing the number of neurons in the hidden layers or the number

of layers itself. It has been shown that a two layer neural network with p = 2n + d

parameters can fit perfectly any dataset of size n · d (n entries in d dimensions) [10]. Its

hidden layers learn the training set and achieve zero error on it, but on the testing set the

classifier accuracy is bad. With a larger number of layers k, the full overtraining happens

already with O(n/k) neurons per layer. To push the demonstration further, [10] show that

even when replacing the labels by random ones during training, the network achieves zero

training error. Of course when testing on the test set the error is catastrophic.

It is essential to bear in mind this limit, especially in high energy physics where the training

sets can become very small after the PID selection.

5.3.3 Overtraining

There exist several regularization techniques to reduce overtraining. One of the most

effective is called Dropout, and consists in setting randomly the output of the neurons to

zero during the training. Each layer’s neurons are given a dropout probability, which is

the probability for the neuron’s output to be set to zero. This forces the network to learn

the representation in a more robust way, since it cannot rely on single neuron connections

to model certain features. Usually, a dropout probability between 0 and 0.5 is suggested,

but this value needs to be tuned according to the problem.
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5.4 Boosted Decision Trees

A Boosted Decision Tree (BDT) classifier is a series of single decision trees derived from the

same training set. Yet alone, a series of decision trees is called a Random Forest, where

the output of the classifier is an average of each single tree’s decisions. Instantiating

multiple trees conveys the classifier a better stability against fluctuations in the training

set. Boosting is a technique that consists in reweighting the misclassified events, to give

them more importance for the next instantiated tree. The main difference it brings about

compared to Random Forests is that the classifier gains also in accuracy by reducing

misclassification. Boosting is a very powerful technique that made BDTs become of the

best classifiers for several years. Their simpler functioning than neural networks and their

shorter training time make them often the most chosen classifier. The boosted decision

tree classifier will serve as a benchmark in this part of the work, and will finally be used

as classifier because it showed better performance on the small MC datasets available.

For the used BDT algorithms, AdaBoost (adaptative boost) algorithm was used. It

consists in multiplying the weights of the previous tree for misclassified events by a boost

weight α, given by equation 4. The events are renormalized, in order to keep the sum of

weights constant.

α =
1− ε
ε

(4)

where ε is the error of the misclassification rate of the previous tree.

The classifier response of a Boosted classifier is given by:

y(~x) =
1

N
·
N∑
i

ln(αi) · hi(~x) (5)

A decision tree is made of several nodes, which are the points in the tree where a

decision splits the dataset in two. A leaf is the end node of a series of decisions, and is

categorized into signal or background. The classification result of a BDT can be seen as

a split of the phase space in hypercubes of signal and background.

Several parameters can affect the performance of a BDT. The most significant ones are

the minimal node size MinNodeSize and the maximal depth MaxDepth. MaxDepth is the

maximal number of successive decisions allowed in the tree. Since boosting works best on

weak classifiers, it is recommended to keep the depth small (about 2 or 3) for BDTs. The

minimal node size will be the minimal percentage of the training set that is required in

a node. Once the MinNodeSize is attained, no further decision is allowed on the branch

of the tree. A smaller minimal node size will allow more detailed feature modelling by

the MVA, but is also subject to overtraining. Similarly, a too large number of successive

decisions (high depth) will also favour overtraining. These parameters will be studied to

determine their optimal values as part of this analysis.
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6 Data samples

The selection is initially realised on the data collected during 2011 and 2012 in ”Run 1” of

the LHC. All the selection efficiencies are obtained from Monte-Carlo simulations of both

years when available, or using the available year. A consistency check is made on samples

where simulations for both years were available (see section 10.1). The MVA methods are

trained using normalisation channel (see 6.2) MC samples from 2011 and 2012 simulation

as well as Run 1 wrong-sign data.

Eventually, 2015 and 2016 data are added to enhance the statistics. Since there are

currently no Monte-Carlo simulations available for Run 2 regarding signal as well as any of

the backgrounds, the efficiencies computed using Run 1 are used (2012 which is assumed

to be closer to Run 2). Special care was taken on the Particle Identification (PID) require-

ments (see section 7.2). All PID requirements in the strippings 21r1, 21, 24r0p1 and 28

were compared and the strongest requirement among all years is applied to all data in the

offline selection. For the rest of the decay reconstruction, the requirements were left as

they are in the respective strippings. The trigger underwent significant changes between

Run 1 and Run 2. Further studies of the trigger efficiency would require Run 2 MC. For

this report we make no assumption regarding the Run 2 trigger efficiency.

The data files from all years are taken from the B02DDBeauty2CharmLine in the

Bhadron or BhadronCompleteEvent streams. A summary of their stripping version and

lines are provided in the table 1.

Year Data type Stream Stripping version

2011 normal/WS Bhadron 21r1
2012 normal/WS Bhadron 21
2015 normal BhadronCompleteEvent 24r0p1
2015 WS Bhadron 24r0p1
2015 normal BhadronCompleteEvent 28
2015 WS Bhadron 28

Table 1: Data samples analysed. All samples were taken from the
B02DDBeauty2CharmLine.

The MC files are also taken from the B02DDBeauty2CharmLine in the Bhadron

stream. The stripping versions vary between 20, 20r1, 21 and 21r1, depending on the

decay. The full list of the different MC files used for signal as well as for background is

shown in table 2.

6.1 Signal and sidebands definition

The analysis was performed blinded during the whole selection process, until the fit. First,

both the invariant mass region of the B0 and the B0
s were blinded, using a mass window

14
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around the mass values found in the PDG. The width of the blinded region is taken for

both the B0
s and the B0 candidate at ±5σ from a previous analysis [6]. The value σ taken

is 7.9 MeV and the mass values are taken from the 2014 edition of the PDG. The different

regions in the B invariant mass are shown in table 3. In the final phase of the selection

process, the B0
s mass window was dropped and only the B0 stayed blinded until the final

selection was set and applied.

Region range [MeV]

Lower sideband mB < 5240.08
B0 mass window |mB − 5279.58| < 39.5
Intermediate sideband 5319.08 < mB < 5327.27
B0
s mass window |mB − 5366.77| < 39.5

Upper sideband mB > 5406.27

Table 3: B candidate invariant mass division and blindings. A blinding of ±5σ from the
B0 and B0

s PDG masses was applied, taking σ = 7.5 MeV from the Bs peak width in
another analysis.

6.2 Normalisation mode

In this analysis we use the B0
s → D+

s D
−
s decay as a normalisation channel, where we

assume identical selection efficiencies for the B0
s and B0 modes. The branching fraction of

the signal decay can be determined as a ratio with respect to the normalisation channel.

We reconstruct both the signal and normalisation channel in the same final states, allowing

direct comparison between the two modes. The same final state particles ensure the same

efficiencies, provided no requirement strongly correlated to properties that differ between

the decay modes is made. The branching fraction of both decays are shown below, as well

as the b quark hadronisation fractions.

f(b̄→ B0) 0.404± 0.006
f(b̄→ B0

s ) 0.103± 0.013
B(B0 → D+

s D
−
s ) 3.6 · 10−5 at 90%

B(B0
s → D+

s D
−
s ) (4.4± 0.5) · 10−3

Table 4: Branching fractions and b-quark hadronisation fractions for the B0
s and B0 can-

didates. The values are taken from the PDG.

The MVA methods are also trained and tested using MC from the B0
s → D+

s D
−
s decay,

since no MC was available for the B0 → D+
s D
−
s decay.
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Name Decay

B2DsDs1 : B0 → (D+
s → K+K−π+)(D−s → K−K+π−)

B2DsDs2 : B0 → (D+
s → K+K−π+)(D−s → π−π+π−) & CC

B2DsDs3 : B0 → (D+
s → K+K−π+)(D−s → K−π+π−) & CC

B2DsDs4 : B0 → (D+
s → π+π−π+)(D−s → π−π+π−)

Table 5: B meson decay channels, with their names used in this document

7 Selection

The event selection consists of three distinct parts. The first selection is made by the

stripping, where events are categorized into streams and stripping lines, containing a

certain type of events. In this case, the stripping line was B02DDBeauty2CharmLine

and the stream was Bhadron for the 2011 and 2012 data as well as all the WS data, and

BhadronCompleteEvent for the 2015 and 2016 data.

The second step, called preselection, happens during the gathering of the data into

tuples, and is mainly aimed at reducing their size. Besides choosing the variables to be

present in the tuple, some selections were applied. These selections are covered in section

7.1.

The last step, which is the core part of this analysis is the offline selection. The offline

selection consists here in two more parts. A ”classic” selection, where Particle Identity

(PID) requirements, background vetoes and striking reconstruction quality requirements

are applied under the form of cuts (see section 7.2). A second selection is made using

MVA (Multivariate Analysis) methods, mainly based on reconstruction quality and vertex

separation variables, as well as kinematical variables uncorrelated with the invariant mass

of the signal (detailed in section 8). A first method is trained to discriminate against

combinatorial background, and another more specific method tackles D∗s background. In

the first steps, the offline selection was not applied and the data were directly fed into the

MVA after the preselection. However, the enormous combinatoric yield remaining after

stripping was too large to train and test on. Instead, an offline selection similar to that of

the previous analysis [6] was applied prior to MVA training.

In this analysis, the decay candidates are taken from the four different final states (or

channels) listed in table 5 and referred to with the names in the first column for the rest

of the document. In the whole document, charge conjugated final states are included also

when referring to a decay.

7.1 Preselection

In the preselection, no strong requirements were made on the B and D candidates. This

was done on purpose, in order to make as much information available to the MVA as

possible. In particular, track quality variables were planned to be used in the MVA
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selections, and thus the decision was taken to not limit the sample by applying a cut at

this stage. A PID selection on the final state particles is made, based on the stripping

identifications. In addition, a loose Ds candidate mass window of ±100 MeV from the

PDG value is applied.

7.2 Offline selection

In order to select further and to bring down the number of events in the tuples, an

offline selection was performed. The offline selection consists in Particle IDentity (PID)

requirements, as well as fit quality and vertex separation requirements on the B and D

candidates.

To categorise the decay candidates into the four channels listed in table 5, each Ds

candidate undergoes a PID selection. The Ds candidates are divided into 3 final states:

1. K+K−π+, 2. K+π−π+ and 3. π+π−π+. The criteria are explained in the following

sections and summarized in section 7.2.1. The appropriate combinations of Ds candidates

from these three categories are formed to make the decay tuples of table 5.

7.2.1 Summary of the offline selection

All decay candidates are required to satisfy:

− Impact parameter χ2 of the B candidate χ2
IP (B) < 20

− The vertex fit per degree of freedom for the B candidate χ2/nd.o.f < 8

− The difference in χ2 when including or excluding the D candidates in the B vertex

is required to satisfy ∆χ2
vx > 100

− The final products are required to have:

For K candidates : DLLKπ > −5

For π candidates : DLLKπ < 10

− Trigger: TOS is required on the HLT2 Topo 2, 3 or 4 body trigger

− No additional requirement on the B lifetime is made to the one in the stripping,

which is τ > 0.2 ps

In addition, each final state has its own additional requirements:

1. Ds → KKπ

• The π is required to have ProbNNpi > 0.01
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• D∗+ veto: the invariant mass difference between the D+
s candidate and the

kaon pair satisfies : m(K+K−π+)−m(K+K−) > 150 MeV

(a) D+
s → φπ+

• The K are required to have ProbNNk > 0.01

• The invariant mass of the φ candidate satisfies : m(K+K−) < 1040 MeV

− The D candidate is required to decay at zD − zB > −1.0 mm

(b) D+
s → (K̄∗0 → Kπ) K

• Fail (a)

• The K are required to have ProbNNk > 0.05

• The invariant mass of the K̄∗ candidate satisfies : |mK−π+ − 892| <
100 MeV

• D+ veto: either |m(π+K−π+) − 1869| > 25 MeV with the K+ mass

swapped to π+ or (log(ProbNNk/ProbNNpi) > 0.35 and p < 80 GeV

for the K+)

− The D candidate is required to decay downstream from the B: zD − zB >

0 mm

− The χ2 vertex separation between the D and B satisfies χ2
FD(D −B) > 2

(c) Other D+
s → K+K−π+

• Fail (a) and (b)

• The K are required to have ProbNNk > 0.12

• Same D+ veto as for (b) : either |m(π+K−π+) − 1869| > 25 MeV with

the K+ mass swapped to π+ or (log(ProbNNk/ProbNNpi) > 0.35 and

p < 80 GeV for the K+)

− The D candidate is required to decay downstream from the B: zD − zB >

0 mm

− The χ2 vertex separation between the D and B satisfies χ2
FD(D −B) > 2

2. D+
s → K+π−π+

• Fail (1) with the π− mass swapped to K−

• The K is required to have ProbNNk > 0.05

• The π are required to have ProbNNpi > 0.01

• A D+ → π+K−π+ veto is applied :

either the D+
s invariant mass satisfies |m(π+K−π+) − 1869| > 25 MeV with

the K+ mass swapped to π+ and the π− mass swapped to K−

or the K+ is required to have log(ProbNNk/ProbNNpi) > 0.35 and pK+ <

80 GeV and the π+ is required to have log(ProbNNpi/ProbNNk) > 0.35 and

pπ− < 80 GeV
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• A D∗+ veto is applied :

The D+
s invariant mass satisfies m(K+K−π+) −m(K+K−) > 150 MeV with

the π− mass swapped to K−

− The D candidate is required to decay downstream from the B: zD−zB > 0 mm

− The χ2 vertex separation between the D and B satisfies χ2
FD(D −B) > 2

3. D+
s → π+π−π+

• Fail (1) with the π− mass swapped to K− and one of the π+ masses swapped

to K+

• Fail (2) with one of the π+ masses swapped to K+

• The π are required to have ProbNNpi > 0.01

• A D∗+ → (D0 → π+π−)π+ is applied:

The invariant D+
s mass satisfies m(π+π−π+) −m(π+π−) > 150 MeV for both

π+ taking part in a D0 candidate.

• A D∗+ → (D0 → π+K−)π+ veto is applied:

The invariant mass difference between theD+
s satisfiesm(π+K−π+)−m(π+K−) >

150 MeV for both π+ taking part in a D0 candidate with the π− swapped to

K−.

− The D candidate is required to decay downstream from the B: zD−zB > 0 mm

− The χ2 vertex separation between the D and B satisfies χ2
FD(D −B) > 6

First, the selection was performed with only the PID requirements, marked with a

(•) in 7.2.1, and the MVA methods were applied directly after. It turned out that the

requirements were not strong enough and a huge amount of background persisted in the

B0 mass region. Thus, the additional fit quality and flight distance criteria on the B

and D candidates were added, preceded by a (−) in 7.2.1. In addition, the Delta-log

likelihood (DLL) were sharpened to match the strongest stripping requirement among the

2011, 2012, 2015 and 2016 lines.

8 MVA selection

A large amount of background remains in the whole B candidate invariant mass range

after the offline selection so far, as shown in figure 6. MVA methods were designed to

discriminate against combinatorial background, in order to bring down the combinatorial

background yield. The first series of trainings involved a separate method for each chan-

nel (B2DsDs1, B2DsDs2, B2DsDs3, B2DsDs4), and featured three different methods to be

compared: the new CPU accelerated DNN (DNN CPU) method added to TMVA in sum-

mer 2016 and benchmarked during summer 2017, a TMVA deep neural network method

20



featuring a TensorFlow backend (PyKeras), and a BDT as benchmark. The results of the

first training session are briefly presented in section 8.1.2.

A way to compare the classifier performance is the ROC (Receiver Operating Charac-

teristic) curve, which is the background rejection plotted as function of the signal efficiency.

The ROC curves of the first trainings on the B2DsDs1 channel are shown in figure 8. It

was used as benchmark to choose the classifier with the best separating power. The area

under the ROC curve (AUC) represents a numerical benchmark for the classifier, and was

used later, for the hyperparameter optimisation (section 8.1.3).
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Figure 6: Background left in the B candidate invariant mass after the offline selection
presented in 7.2.1 was applied.

After the combinatorial (WS) discriminating MVA, a series of MVAs was launched

to discriminate against the sidebands, but with low additional discriminating power and

poor performance. A training against background taken from the lower sideband only was

carried out, without a clear increase in performance. The results of these trainings are

not shown here. Finally, the second MVA method was trained against a B0
s → D∗sDs MC

sample as background. The tuning is described in section 8.2. Since the MC sample for

the D∗s was produced with the Ds candidates decaying to KKπ, a significant number of

events persisted only in the B2DsDs1 channel after the offline selection. Thus, a single

MVA for all channels was trained. The final choice of WS MVA used to discriminate

against combinatorial background was also featuring a single method, trained on a mix

of signal taken from the four channels. It was done in order to simplify the analysis, and

because the input variables chosen, described in section 8.1.1 are independent of the final

state (namely by taking min and max of the variables among the final products).

8.1 Combinatorial background MVA

8.1.1 Choice of discriminating variables

As input to the MVA methods a set of kinematical variables, as well as reconstruction

quality indicators was chosen. The full list is shown in table 6. Special care was taken not

to use any mass-correlated variable, since the MVA method is trained on MC data of the
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B0
s → D+

s D
−
s normalisation mode decay. The PID related variables were also left out, as

the PID selection is done extensively in the offline selection (section 7.2). The variables

shown in table 6 were chosen on their separation power,

Vsep =

∫ +∞

−∞

1

2

(
s(x)− b(x)

s(x) + b(x)

)2

· dx (6)

where s and b are the signal respectively background densities.

The reason for using the separation between signal and background is that it is method-

independent. Indeed, the initial goal was to use the DNN method and to keep the BDT

method as a benchmark. More specific variable ranking to the BDT method will be shown

in section 8.2. A table of the 20 most separating variables is also shown in Table 7, and

the signal and background distributions are shown in figure 7. For the Ds candidates,

the min and max value between the two was used, in order to prevent the MVA method

from learning decay specific features to one particular channel. This is specially useful

for the B2DsDs2 and B2DsDs3 channels, with different final states for the Ds candidates.

For the final state particles, also the max and min values among the six candidates were

taken as inputs to the MVA methods. Again, it reinforces the robustness of the method

against learning decay specific features, and also reduces the number of variables for the

final state particles.
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Figure 7: Signal drawn from 2011 and 2012 MC superimposed to background taken from
2011 and 2012 WS data for the 2 most separating variables. The full list of histograms is
not shown in the document but was used to check the quality of the MVA.

8.1.2 Results of the first training session

A series of DNN classifiers was launched and trained on of each of the channels (B2DsDs1,

B2DsDs2, B2DsDs3 and B2DsDs4) against the corresponding wrong-sign (WS) channel

from data, to discriminate between signal and combinatorial background. A BDT classifier

with the default options was added as a benchmark. First, an architecture of 3 layers with

128 neurons each was chosen. Since the performance was not at the level of the benchmark

(BDT classifier), the number of layers was increased to 5. The performance was still not
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Variable LOKI variable name

B candidate
Momentum P
Transverse momentum PT
Flight distance of the B candidate FD OWNPV
Vertex χ2 separation between PV and SV FDCHI2 OWNPV
Cosine of the angle between momentum and track cos(θ(~p, ~x)) DIRA OWNPV
χ2 difference when including or excluding the B in the PV OWNPV CHI2
χ2 difference when including or excluding the B in the SV ENDVERTEX CHI2
Number of degrees of freedom of the PV fit OWNPV NDOF
DecayTreeFitter χ2/nd.o.f DTF CHI2NDOF

D candidates
Momentum P
Transverse momentum PT
Flight distance of the D candidate (w.r.t. SV) FD ORIVX
Flight distance of the D w.r.t. the PV FD OWNPV
cos(θ(~p, ~x)) w.r.t. SV DIRA ORIVX
cos(θ(~p, ~x)) w.r.t. PV DIRA OWNPV
Decay vertex χ2 separation w.r.t. SV FDCHI2 ORIVX
Decay vertex χ2 separation w.r.t. PV FDCHI2 OWNPV
χ2 difference when including or excluding the D in the SV ORIVX CHI2
χ2 difference when including or excluding the D in the PV OWNPV CHI2
Decay vertex χ2 ENDVERTEX CHI2
Number of degrees of freedom of the PV fit OWNPV NDOF
Impact parameter (IP) w.r.t. PV IP OWNPV
IP χ2 w.r.t. PV IPCHI2 OWNPV

Final products
Momentum P
Transverse momentum PT
Origin vertex χ2 ORIVX CHI2
PV χ2 OWNPV CHI2
Number of degrees of freedom of the PV fit OWNPV NDOF
Impact parameter (IP) w.r.t. PV IP OWNPV
IP χ2 w.r.t. PV IPCHI2 OWNPV
Track fit χ2 per degree of freedom TRACK CHI2NDOF
Track match χ2 TRACK MatchCHI2
Track ghost probability TRACK GhostProb
Track momentum fit χ2 TRACK PCHI2
Track in calorimeter (boolean) hasCalo

Table 6: Input variables to the wrong-sign discriminating MVA method. For the D
candidates and the final products, the min and the max of the variables among the
particles was taken. GD stands for Grand Daughters and refers to the final state particles,
whereas DS refers to the Ds candidates.
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LOKI variable name separation power

GD MIN IPCHI2 OWNPV 0.143738
GD MAX TRACK GhostProb 0.125618
GD MIN hasCalo 0.123947
GD MIN TRACK GhostProb 0.111433
DS MIN FDCHI2 ORIVX 0.111251
lab0 ENDVERTEX CHI2 0.0844772
GD MIN P 0.0795826
DS MAX ORIVX CHI2 0.0792568
lab0 FDCHI2 OWNPV 0.0740933
DS MAX IPCHI2 OWNPV 0.0708693
GD MAX TRACK CHI2NDOF 0.0703473
DS MAX P 0.0668567
DS MAX FDCHI2 OWNPV 0.0646456
GD MIN PT 0.0641255
GD MAX P 0.0614862
DS MAX FDCHI2 ORIVX 0.0580403
DS MIN FDCHI2 OWNPV 0.0574959
GD MIN TRACK PCHI2 0.0540742
DS MIN IPCHI2 OWNPV 0.053397
GD MIN OWNPV NDOF 0.0483562

Table 7: Ranking of the 20 most discriminating variables between MC signal and WS data
taken from Run 1.
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close to the BDT classifier. Thus, an architecture of 3 hidden layers with 500 neurons

per layer was tested. Increasing the number of neurons per layer can help better model

the features in the data, if they are rather complex, as discussed in 5.3.1. This model

however lead to a huge training time and to errors happening due to the large number of

parameters. In the end an architecture of 500 neurons in the first hidden layer and 2 more

hidden layers with 128 neurons each was built, and the results on the B2DsDs1 channel

are shown in figure 8. On the other channels, similar results were obtained and the order

of the classifiers was the same for all.
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Figure 8: Training result of the TMVA DNN, PyKeras with TensorFlow backend and
BDT classifiers, trained on signal MC against wrong-sign data in the B2DsDs1 channel.

The final DNN training was performed with the following classifiers:

• Boosted Decision Tree (BDT)

– Minimal node size: 2.5%

– Maximal tree depth: 3

– Number of trees: 850

– Number of cuts: 20

– Boost type: AdaBoost

• CPU accelerated Deep Neural Network (DNN CPU)

– Number of layers: 3

– Number of neurons per layer: 500, 128, 128

– Batch size: 256

– Learning rate: 0.1

• TensorFlow backend Deep Neural Network (PyKeras)

– Number of layers: 3

– Number of neurons per layer: 500, 128, 128
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– Batch size: 256

– Learning rate: 0.1

The poor performance of the DNN classifiers can be explained by the low statistics in

the tuples. Indeed, it was not possible to train with more than a few thousand events,

and a deep architecture with a high number of neurons per layer is likely to overtrain

as discussed in 5.3.2. For instance, if the test set contains 5000 events and 60 variables

are chosen as input to the classifier, the lower limit in the number of parameters where a

2 layers network with relu (rectified-linear) activation function can completely learn the

training set is given by p = 2 · n + d = 2 · 5000 + 60 = 10060. Now, let us consider a

network with two hidden layers, each having x neurons. With a dense architecture, each

neuron from a layer is connected to every neuron in the next layer. The first hidden

layer has x neurons with each 60 inputs and one bias. Thus the first layer has 61x

parameters. The second hidden layer will have x inputs, with each x + 1 parameters, so

x · (x + 1) parameters. Finally, the output layer, consisting of 2 neurons has x inputs

and one bias for each neuron, so 2 · (x+ 1). The total number of parameters is given by:

p = 61x + x(x + 1) + 2 · (x + 1) = x2 + 64x + 2. The maximal number of neurons in the

layer to fully overtrain is given by x = 73. This is for a 2 layer network. Increasing the

number of layers makes the maximal number of neurons per layer decrease further.

Since the DNN classifiers did not outperform the BDT used as benchmark, the decision

was taken to abandon this classifier. The choice was also motivated by the fact that there

was no operating version of the DNN method available on Lxplus, and that all the data

had to be processed on the laptop computer, downstreaming huge amounts of data. In

addition, the training time is much longer for a DNN than for a BDT classifier.

8.1.3 Hyperparameter tuning

For the final choice of MVA, the BDT classifier was chosen, since the DNN classifiers did

not outperform the benchmark. A hyperparameter tuning on the BDT was carried out,

by testing two of the most performance affecting parameters over the ranges suggested in

[7]. The testing was performed using a mix of signal from the four channels, according to

their respective proportions. The background was taken randomly from the corresponding

wrong-sign channels. The results are shown in figures 9, 10a and 10b. These figures are

not straightforward to interpret1: the Kolmogorov-Smirnov test values shown in figures

10a and 10b show that the test gives 0 for any tree depth greater than 2−3. It means that

for decision trees with a depth of 3 or more, we loose any measure for overtraining (except

visually interpreting the classifier output distributions). Thus, a maximal tree depth of

3 was chosen for the WS BDT. Since boosting works best on weak classifiers, it makes

1A Kolmogorov-Smirnov test should not be performed on binned data, unless the variations to be
modelled are larger than the binning. If the bins are larger than the distributions to be modelled, the
test result stays less accurate than on unbinned data. So a result of zero can partly be explained by the
binning, which degrades the test result. In addition, small numbers are rounded to zero.
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sense to limit the tree depth. Too deep decision trees might lead to ineffective boosting,

by often wrongly identifying events due to a too large number of consecutive decisions.
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Figure 9: ROC integral values on the test set as function of the MinNodeSize and Depth
of the decision trees for the WS BDT classifier.

For the minimal node size, the figure 9 does not provide sufficient information to decide

the value. Thus a more detailed study was performed only testing MinNodeSize values

between 0.2 and 10% for a fixed maximal tree depth of 3. The results are shown in figures

11 and 12a and 12b. The values are still subject to important statistical fluctuations, but

the curve in 11 shows a decreasing trend, starting from about 2.5%. Finally, a value of

2% was chosen for minimal node size of the WS BDT.

8.2 D∗s discrimination

During a series of rather unsuccessful training attempts of signal MC against sidebands

data as background, a significant amount of background in the lower sideband persisted.

It is mostly due to the B0
s → D∗sDs decay, where the Ds candidate is genuine, but the

photon is not reconstructed. Thus, a MVA method was trained especially against this

source of background. The tricky part here is that the identified final products are exactly

the same as for B0 → D+
s D
−
s , and the energy lost through the missing photon makes the

invariant mass of the reconstructed B candidate peak into the B0 mass region.

The input variables choice is similar to the one for the WS BDT shown in table 6.

The variables hasCalo, as well as FD OWNPV , FD ORIV X, FDCHI2 OWNPV and

FDCHI2 ORIV X for all candidates were removed. The ROC curves of the trainings

with this initial set of variables do barely show better performance than random guessing

(the black line in figure 15 is almost diagonal from point (0, 1) to point (1, 0), which

corresponds to a ROC curve for random guessing).
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(a) Kolmogorov-Smirnov test value on signal as function of the
MinNodeSize and Depth of the decision trees. The Kolmogorov-
Smirnov test is applied between the classifier output distributions of
the signal training set and test set for the WS BDT.
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(b) Kolmogorov-Smirnov test value on background as function of the
MinNodeSize and Depth of the decision trees. The Kolmogorov-
Smirnov test is applied between the classifier output distributions of
the background training set and test set for the WS BDT.

Here, the low statistics left in the training samples make it impossible to use a DNN

classifier. In order to respect approximately the 50% testing sample size, no more than

2000 events could be used for training. According to the discussion in 8.1.2 and 5.3.2, it

was impossible to construct an effective DNN architecture for such a low number of events.

Thus, a BDT was used, without even comparing with a DNN. The Boosted decision tree

was built with the following parameters (when ranges are indicated, the value was tested

over the range and the most optimal value was chosen):
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Figure 11: ROC curve integral values as function of the MinNodeSize value of the WS
BDT over a larger range. Although subject to large statistical fluctuations, a decreasing
trend can be observed for increasing node size.
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Figure 12: Kolmogorov-Smirnov test value on signal (12a) and on background (12b) as
function of the MinNodeSize for a maximal tree depth of 3. The Kolmogorov-Smirnov
is applied between the classifier output distributions of the signal training set and test
set for the WS BDT. The test values fluctuate and an increasing trend is only observable
from about 8% for signal and at about 3% for background.
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Figure 13: Background left in the B candidate invariant mass after the WS BDT is applied
with the optimal cut value suggested by the Punzi F.o.M. (see equation 13).

• Boosted Decision Tree (BDT)
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– Minimal node size: 0.5− 10%

– Maximal tree depth: 0− 10

– Number of trees: 1000

– Number of cuts: 20

– Boost type: AdaBoost

– Decorrelation pretransformation

8.3 Constructing a new discriminating variable

An additional variable was constructed, with the aim of providing a sense for the missing

energy of the photon. The variable used is the difference between the corrected mass mcorr

as presented in equation 1 of [11] and the reconstructed mass m (see equations 7 and 8).

∆m = mcorr −m (7)

mcorr =
√
m2 + |p′Tmissing|2 + |p′Tmissing| (8)

where p′Tmissing is the missing transverse momentum to the beam of the decay and m is

the mass of the B0 candidate as reconstructed by the DecayTreeFitter.

This formula is used to account for massless missing final particles in the decay. The

missing transverse momentum p′Tmissing is obtained by projecting the momenta of the two

Ds candidates on the flight direction of the B candidate, and taking the magnitude of the

transverse vector.

Though being an estimate, formula 8 is described to well model the mass of the B

candidate if any daughter is missing, according to [11]. Moreover, it is supposed to produce

a narrow mass distribution, shifted towards a higher mean, if there were effectively missing

daughters, and to slightly broaden the distribution with only a slight shift if the decay

reconstruction already accounted for all daughters.

8.3.1 Correlation check

Before using the new variable ∆m defined in equation 7, correlation tests were made

on both the signal (B0
s → D+

s D
−
s ) and background (B0

s → D∗sDs) samples, against the

reconstructed mass. Indeed, it is essential not to have any variable correlated with the

mass in the dataset, since the MC from the normalisation channel is used as training

sample. The results, shown in plots 14a and 14b, do not show any correlation. Thus, the

variable adds new information that is truly independent of the reconstructed mass, and

is likely to account for the missing energy. The mass correction was also performed on

the B0
s → D∗sD

∗
s sample, and the results shown in figure 14c, since this sample was also
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envisaged as training sample. The performance improvement is shown in the ROC curve

in figure 15.
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(a) Correlation between ∆m and m for the
B → DsDs decay.
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(b) Correlation between ∆m and m for the
B → D∗

sDs decay.
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(c) Correlation between ∆m and m for the
B → D∗

sD
∗
s decay.

Figure 14: Correlation check between the new variable ∆m and the mass.

8.4 Decorrelation transformation

In addition to the mass difference ∆m between mcorr and m, some further tuning had

to be done. BDTs are known to perform worse in presence of correlated variables. A

decorrelation transformation was thus inserted in front of the BDT.

The decorrelation transformation is a linear transformation performed on the input

variables. If ~x is an event, the covariance matrix is given by:

Cij = cov(xi, xj) (9)

The decorrelation transformation such as implemented in TMVA consists in multiplying

the input events ~x by the inverse of the square root C ′ of the correlation matrix C:
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~x→ (C ′)−1~x (10)

where C ′ is the square root of the covariance matrix C.

The square root matrix C ′ is obtained by diagonalisation, where the square root of the

diagonal matrix
√
D is the diagonal matrix of square roots of the eigen-values of D.

D =STCS

C ′ =S
√
DST

(11)

8.5 Improvements to the ROC curve

The training performance shows a dramatic improvement with the additional decorrela-

tion. Figure 15 shows the ROC curve for two BDT classifiers with the same input variables

(including ∆m) and the same hyperparameters, but one was preceded by a decorrelation

transformation on the variables (in red).
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Figure 15: ROC curves for the D∗s BDT without the difference with the corrected mass
mcorr, with the difference as input variable, and with the difference and an additional
decorrelation transformation. The decorrelation transformation brings about a huge im-
provement.

The BDT specific variable ranking also changed with the additional decorrelation trans-

formation. A comparison is shown in table 8. The new ranking seems sensible: the

momenta of the candidates are now the most discriminating variables.

8.6 Hyperparameter Tuning

Finally a hyperparameter tuning was also performed, looping on the MinNodeSize and

Depth of the trees. Here, the Kolmogorov-Smirnov tests yield zero in all tested cases. The

superposition of the classifier output distributions for both testing and training events on
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Rank Variable Variable Importance Rank Variable Variable Importance
1 lab0 DeltaM 3.26E-02 1 DS MIN P 4.284e-02
2 GD MIN PT 3.15E-02 2 lab0 P 4.104e-02
3 lab0 DTF CHI2NDOF 3.05E-02 3 DS MAX P 3.833e-02
4 GD MIN TRACK GhostProb 2.91E-02 4 lab0 PT 2.917e-02
5 GD MIN TRACK MatchCHI2 2.88E-02 5 GD MAX P 2.860e-02
6 DS MAX ENDVERTEX CHI2 2.82E-02 6 DS MIN PT 2.802e-02
7 lab0 ENDVERTEX CHI2 2.81E-02 7 DS MAX DIRA OWNPV 2.620e-02
8 GD MIN OWNPV NDOF 2.79E-02 8 DS MAX PT 2.542e-02
9 GD MIN TRACK CHI2NDOF 2.64E-02 9 DS MAX IPCHI2 OWNPV 2.526e-02
10 GD MAX TRACK PCHI2 2.58E-02 10 DS MIN IP OWNPV 2.314e-02
11 GD MAX PT 2.58E-02 11 GD MAX TRACK PCHI2 2.266e-02
12 GD MAX TRACK MatchCHI2 2.53E-02 12 GD MIN OWNPV CHI2 2.247e-02
13 GD MIN TRACK PCHI2 2.49E-02 13 lab0 DeltaM 2.212e-02
14 DS MAX PT 2.48E-02 14 GD MIN P 2.175e-02
15 DS MIN ENDVERTEX CHI2 2.47E-02 15 GD MIN TRACK CHI2NDOF 2.167e-02
16 lab0 OWNPV NDOF 2.46E-02 16 DS MAX ORIVX CHI2 2.158e-02
17 GD MAX OWNPV NDOF 2.45E-02 17 DS MAX ENDVERTEX CHI2 2.141e-02
18 GD MAX TRACK GhostProb 2.43E-02 18 GD MIN IP OWNPV 2.107e-02
19 GD MAX TRACK CHI2NDOF 2.42E-02 19 GD MAX TRACK GhostProb 2.083e-02
20 GD MIN IP OWNPV 2.41E-02 20 DS MIN ENDVERTEX CHI2 2.075e-02
21 DS MIN P 2.34E-02 21 DS MIN IPCHI2 OWNPV 2.061e-02
22 GD MAX P 2.34E-02 22 GD MIN PT 2.044e-02
23 DS MIN PT 2.31E-02 23 GD MIN TRACK MatchCHI2 2.019e-02
24 GD MIN P 2.30E-02 24 GD MAX PT 1.942e-02
25 DS MAX DIRA OWNPV 2.29E-02 25 GD MAX TRACK CHI2NDOF 1.917e-02
26 lab0 PT 2.24E-02 26 GD MAX TRACK MatchCHI2 1.894e-02
27 lab0 P 2.24E-02 27 GD MIN TRACK GhostProb 1.876e-02
28 DS MIN DIRA OWNPV 2.17E-02 28 lab0 DIRA OWNPV 1.845e-02
29 DS MAX P 2.16E-02 29 GD MIN IPCHI2 OWNPV 1.816e-02
30 DS MAX OWNPV NDOF 2.15E-02 30 GD MAX ORIVX CHI2 1.810e-02
31 DS MIN OWNPV NDOF 2.11E-02 31 GD MIN ORIVX CHI2 1.729e-02
32 DS MAX IP OWNPV 1.77E-02 32 DS MIN OWNPV CHI2 1.714e-02
33 GD MAX IPCHI2 OWNPV 1.67E-02 33 GD MIN TRACK PCHI2 1.689e-02
34 GD MIN OWNPV CHI2 1.65E-02 34 GD MAX IPCHI2 OWNPV 1.617e-02
35 GD MAX OWNPV CHI2 1.62E-02 35 GD MAX OWNPV CHI2 1.610e-02
36 DS MIN IP OWNPV 1.61E-02 36 lab0 DTF CHI2NDOF 1.597e-02
37 GD MAX IP OWNPV 1.59E-02 37 DS MIN ORIVX CHI2 1.510e-02
38 DS MAX OWNPV CHI2 1.59E-02 38 DS MAX IP OWNPV 1.502e-02
39 lab0 OWNPV CHI2 1.44E-02 39 GD MAX IP OWNPV 1.478e-02
40 GD MIN IPCHI2 OWNPV 1.44E-02 40 GD MIN OWNPV NDOF 1.468e-02
41 DS MIN IPCHI2 OWNPV 1.43E-02 41 GD MAX OWNPV NDOF 1.429e-02
42 DS MIN OWNPV CHI2 1.42E-02 42 lab0 ENDVERTEX CHI2 1.420e-02
43 DS MAX IPCHI2 OWNPV 1.32E-02 43 DS MAX OWNPV CHI2 1.397e-02
44 lab0 DIRA OWNPV 1.19E-02 44 DS MIN DIRA ORIVX 1.348e-02
45 DS MIN DIRA ORIVX 1.11E-02 45 lab0 OWNPV CHI2 1.311e-02
46 DS MAX DIRA ORIVX 8.54E-03 46 DS MAX DIRA ORIVX 1.298e-02
47 DS MAX ORIVX CHI2 0.00E+00 47 DS MIN OWNPV NDOF 1.210e-02
48 DS MIN ORIVX CHI2 0.00E+00 48 DS MIN DIRA OWNPV 1.149e-02
49 GD MAX ORIVX CHI2 0.00E+00 49 DS MAX OWNPV NDOF 9.740e-03
50 GD MIN ORIVX CHI2 0.00E+00 50 lab0 OWNPV NDOF 8.933e-03

Table 8: Comparison of the BDT specific variable ranking before and after the decorrela-
tion pretransofrmation.
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signal and background are shown in figures 17a, 17b, 17c and 17d, where the four most ex-

treme MinNodeSize and Depth parameter combinations were chosen. The distributions

in 17b show an utterly overtrained classifier. Thus the combination of small minimal node

size together with deep trees is definitely to ban here. Provided the small performance

difference the Depth brings about, compared to the huge difference in classifier responses

on training and testing set, a tree with a MinNodeSize of 0.5% and a Depth of 2 was

chosen. Given the small difference between the two signal and background categories, a

small minimal node size makes sense. Deep trees however are not a sensitive choice, espe-

cially since boosting is most effective on weak classifiers. This is the main reason behind

the choice of limiting the tree depth to 2. The boosting is thus not weakened by too deep

trees.

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

12

14

BDT min. node size [%]

B
D

T
m

a
x
.
d
e
p
th

0.5

0.55

0.6

0.65

0.7

Figure 16: ROC integral values on the test set as function of the MinNodeSize and
Depth of the decision trees.

To back up the choice, a study over a larger range of MinNodeSize values was per-

formed, making them vary between 0.1% and 50% (almost the largest possible range).

The Depth was fixed to 2. The figure 18 shows large statistical fluctuation in ROC inte-

gral values, but an overall decreasing trend. This means the small MinNodeSize value

of 0.5% is justified. The statistical fluctuations are probably due to the small number of

training/testing events (about 2000/1700) that are available in the D∗sDs MC sample.

8.7 Choice of the optimal MVA cuts

8.7.1 Figure of Merit

The choice of the optimal cut is based on a figure of merit (F.o.M.) which is maximised.

The figure of merit can be seen as a measure of the discrimination capability of a cut

between signal and background. In this analysis, two figures of merit are used.
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The first one, shown in figure 20a, is the significance defined as:

FoMsignificance =
S√
S +B

(12)

where S is the signal yield in the given mass window, and B is the background yield in

the same mass range. It is the most used F.o.M. for optimising cuts. It has the advantage

to give the expected significance of the observation, if the hypotheses used in the signal

(and background) estimation are correct.

For rare decays, another Figure of Merit (equation 13), also called Punzi F.o.M. can be
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Figure 18: ROC curve integral values as function of the MinNodeSize value of the
BDTD MVA. Although subject to large statistical fluctuations, a decreasing trend can be
observed for increasing node size.

used, which is derived in [12].

FoMPunzi =
ε(S)

σ
2 +
√
B

(13)

where ε(s) is the signal efficiency and σ the significance of the discovery aimed (chosen to

be 3 here).

The latter figure of merit was not currently available in TMVA, so the code was modified

accordingly and ROOT recompiled in order to be able to use this figure as well. In figures

19a and 19b, both figures of merit are shown for the WS BDT. The number of background

events is calculated for the B0
s peak, since the combinatorial background (which the WS

BDT was designed to discriminate) is the main source of background in the B0
s mass

region. The fluctuations in the Punzi F.o.M are due to the small values obtained and the

discreteness of the cuts. For the final cut, the precision of the cut discretization was set

to avoid this effect.

8.7.2 Figure of merit and final cuts

To choose the optimal MVA cuts, a Figure of Merit (F.o.M.) is computed in two dimen-

sions. Since a cut is applied on both MVA responses, the optimisation needs to be made in

two dimensions. On the x and y axes are the responses of the combinatorial, respectively

D∗s BDTs, and the z axis shows the value of the F.o.M. (on a colour scale). The two

F.o.M. (significance and Punzi) described in 8.7.1 were chosen, and shown in figures 20a

and 20b for the classifiers trained with the parameters described in sections 8.1 and 8.2.
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Figure 19: Figures of merit used to optimise the cuts. These F.o.M were obtained for the
Bs peak with combinatorial background.

(a) Significance F.o.M. as function of the WS
BDT and D∗

s BDT classifier responses.
(b) Punzi F.o.M. as function of the WS BDT
and D∗

s BDT classifier responses.

Figure 20: Final figure of merit in 2D used to optimise the cuts. The WS BDT is on the
x axis and the D∗s is on the y axis.

Both F.o.M. suggest to cut on the WS BDT at a value of 0.08 and on the D∗s at a value

of −0.05.

9 Ds candidate invariant mass cuts

After both WS and D∗s MVAs are applied, a significant amount of background persists

in the D candidates invariant mass (since the mass window cuts were loosened in the

stripping to about 100 MeV from the Ds mass in the PDG). Thus, a tighter cut is applied,

after the peaks were fit with a double crystal ball added to a constant polynomial. The

fit results are shown in figure 21 and in table 9.
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Figure 21: A double crystal-ball is fit to the sum of both Ds candidate invariant mass
distributions. The background is modelled by a constant polynomial. The results are
shown in table 9 and finally, a window of ±20 MeV was applied around the mass value
from the PDG.

Parameter Value [MeV]

µ 1.97± 0.55 · 103

σl 5.65± 0.13
σr 1.13± 0.92

Table 9: Results of the double crystal-ball fit to both Ds candidates mass distribution.

Given the fit results, a mass window of ±20 MeV was kept around the mass value

from the PDG. Since the mean obtained from the fit is very close to the PDG value of

1968.3 MeV, and all other cuts in this analysis were made around the values from the

PDG, the choice is justifiable.

10 Estimated yields

In this section, a calculation of the expected signal and background yields after all selection

is performed for the Run 1 data. The calculation is based on the efficiencies in section

10.1, and the branching fractions from the 2014 edition PDG. It will provide an estimate

of the amount of signal and background in the invariant mass distribution after the full

selection. In addition, the signal yield after the PID selection is needed in order to decide

the MVA cuts (see section 8.7). The signal yield as well as the different background yields

after the whole selection can also be useful to fix the yields of the different components in

the fit (described in section 11). The obtained predicted yields are summarized in table

16.

The expected number of events after the whole selection is given by equation 14:
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N =L · σbb̄ · f(b̄→ B0
(s)) · 2 · B(B0

(s) → final products) · ε (14)

where B0
(s) stands for B0 or B0

s , depending on which B-meson produced the final particles.

L is the integrated luminosity, σbb̄ the b-quark production cross-section, f(b̄→ B0
(s)) the b̄

to B0 or B0
s hadronisation fraction, B(B0

(s) → final products) the branching fraction for

the B0 or B0
s decay to the given final products and ε is the overall efficiency.

10.0.1 Luminosity

The integrated luminosity values for the years 2011, 2012, 2015 and 2016 were acquired us-

ing the IntegratedLuminosity and IntegratedLuminosityErr variables from the LumiTuple

in the data files. The values obtained are summarized in table 102:

Year Integrated luminosity [pb−1] Uncertainty [pb−1]

2011 978 ±11
2012 1990 ±16
2015 281 ±7
2016 1641 ±45

Table 10: Integrated luminosity per year.

For 2016, the luminosity uncertainty calibration was not presently available, thus the

worst relative uncertainty among the magnet polarities of the previous years was used and

extrapolated to the 2016 luminosity. (For instance, it was the 2015 Mag Down, which

value is 6.26/160.49 = 0.039. The 2016 uncertainties are computed as ε2016 = L2016 · 0.039

for both magnet polarities.)

10.0.2 b-production cross section

The bb̄ production cross sections for Run 1 at centre of mass energy of
√
s = 7 TeV (2011)

and Run 2 are taken from [13], and for Run 1 at
√
s = 8 TeV (2012) from [14]. The values

in 4π are summarized in table 11:

Year σbb̄ [µb]

2011 295
2012 298
2015 600
2016 600

Table 11: b-quark production cross section per year in 4π.

2A more detailed summary with the separate magnet polarities is given in appendix 15.1
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10.1 Signal and background efficiencies

Signal efficiencies

The signal efficiencies are computed, based on the available normalisation channel MC

samples. The total efficiency is the product of the individual efficiencies of the different

selection processes:

εtotal = εGen · εStripping · εOffline · εMVAs · εDs MW (15)

where εGen is the generator level acceptance, εStripping the stripping efficiency, εOffline the

efficiency of the offline selection and εMVAs the efficiency of the MVA methods. Since the

Ds mass windows were applied after all other selections, an additional εDs MW comes into

account.

The efficiencies obtained for each decay channel are listed in table 12 together with

the MC sample they were obtained with. A detailed table with all separate efficiencies is

shown in appendix 15.2.

channel simulation condition εtotal
B2DsDs1 2011 Pythia8 Sim08a (8.22± 0.10) · 10−4

2011 Pythia6 Sim08a (6.10± 0.08) · 10−4

2012 Pythia8 Sim08a (7.29± 0.11) · 10−4

2012 Pythia6 Sim08a (5.26± 0.09) · 10−4

B2DsDs2 2012 Pythia8 Sim08a (2.62± 0.06) · 10−4

2012 Pythia6 Sim08a (2.13± 0.05) · 10−4

B2DsDs3 2012 Pythia8 Sim08a (3.06± 0.07) · 10−4

2012 Pythia6 Sim08a (2.35± 0.06) · 10−4

B2DsDs4 2012 Pythia8 Sim08a (4.09± 0.07) · 10−4

2012 Pythia6 Sim08a (3.19± 0.06) · 10−4

Table 12: Signal efficiencies calculated from the normalisation channel MC samples. A
more detailed list with the separate efficiencies can be found in appendix 15.2.

Background efficiencies

For the different backgrounds, the efficiencies were determined in the same way, taking the

available MC samples, and multiplying the efficiencies obtained at each step. A summary

is provided in table 13, and a detailed table can be found in appendix 15.3.
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decay simulation condition εtotal
B0 → DDs 2011 Pythia8 Sim08h (3.14± 0.36) · 10−6

2012 Pythia8 Sim08h (3.17± 0.27) · 10−6

2012 Pythia8 Sim08a (2.55± 0.41) · 10−6

2012 Pythia6 Sim08a (2.42± 0.39) · 10−6

B0
s → D∗sDs 2012 Pythia8 Sim08a (3.34± 0.09) · 10−4

B0
s → D∗sD

∗
s 2012 Pythia8 Sim08a (9.99± 0.41) · 10−5

Table 13: Background efficiencies calculated from the MC samples. All efficiencies are
taken from the B2DsDs1 channel, since the other channels do not contain a sufficient
amount of events after the offline selection. A more detailed list with the separate effi-
ciencies can be found in appendix 15.3.

10.2 Number of expected signal candidates

For the calculation of the expected signal yield (B0 candidates in the invariant mass

distribution), the branching fraction (B0 → final products) is following:

B(B0 → D+
s D
−
s ) ·

(
B(D+

s → K+K−π+) · B(D−s → K−K+π−) +(
B(D+

s → K+K−π+) · B(D−s → π−π+π−) + B(D−s → K−K+π−) · B(D+
s → π+π−π+)

)
+(

B(D+
s → K+K−π+) · B(D−s → K−π+π−) + B(D−s → K−K+π−) · B(D+

s → K+π−π+) +

B(D+
s → π+π−π+) · B(D−s → π−π+π−)

)
(16)

The obtained yields in each channel for Run 1 are shown in table 14. The selection

efficiencies are taken from section 10.1, and the most recent sample was taken (with

Pythia8). For 2011, the B2DsDs1 efficiency is obtained from the 2011 MC sample since it

was available for this channel, and for the other channels, the 2012 efficiencies were taken.

For Run 2, the same calculation was performed, with the efficiencies obtained with the

2012 MC samples used in the formula. Thus, the values are purely indicative and cannot

be used for setting a limit or determining a branching fraction. For the normalisation

mode, the same calculation was performed, and shown in table 15.

Channel Run 1 expected yield Run 2 expected yield Run 1 + 2 expected yield

B2DsDs1 57.86± 5.20 72.69± 5.90 130.55± 7.86
B2DsDs2 7.97± 0.84 10.43± 1.10 18.40± 1.38
B2DsDs3 5.64± 0.64 7.38± 0.89 13.02± 1.09
B2DsDs4 1.25± 0.12 1.63± 0.15 2.88± 0.20

Total 72.72± 5.56 92.13± 6.06 164.85± 8.06

Table 14: Expected signal yield per channel for Run 1, Run 2 and the total of both.
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Channel Run 1 expected yield Run 2 expected yield Run 1 + 2 expected yield

B2DsDs1 1803.05± 276.94 2265.04± 424.97 4068.10± 507.24
B2DsDs2 248.37± 40.88 325.06± 64.79 573.43± 76.61
B2DsDs3 175.70± 29.83 229.95± 47.58 405.65± 56.16
B2DsDs4 77.73± 12.50 101.73± 19.71 179.46± 23.34

Total 2304.85± 281.80 2921.78± 432.96 5226.63± 516.59

Table 15: Expected normalisation mode yield per channel for Run 1, Run 2 and the total
of both.

10.3 Background yields

A calculation of the expected number of B0
s → D−D+

s is also performed, since this back-

ground is peaking under the B0
s peak, with a tail going until the B0 mass region. The

2012 stripping and MC are used to compute the efficiency, and a crosscheck is made with

the 2011 MC and stripping. Since there is no 2015 or 2016 MC available, the efficiency

of 2012 is used for all years. The expected yields of B0
s → DsD

∗
s and B0

s → D∗+s D∗−s are

also determined, to obtain a relative ratio between them. Finally, the expected number of

B0
s → D−s K

+K−π+ is computed, mainly to show that it is negligible compared to the B0
s

peak.

The generator level acceptance, as well as the stripping, offline selection, MVA and

Ds mass window cuts efficiencies are listed in the tables of appendix 15.2 and 15.3. The

generator level acceptances are taken from [15] and [16]. The expected yields are given in

table 16.

Decay Run 1 expected yield Run 2 expected yield Run 1 + 2 expected yield

B0 → D−D+
s 80.73± 11.63 106.01± 23.94 186.73± 26.61

B0
s → D−s K

+K−π+ 1.94± 1.65 2.54± 2.90 4.49± 3.33
B0
s → DsD

∗
s 2173.22± 349.80 2844.23± 704.58 5017.46± 768.63

B0
s → D∗+s D∗−s 634.03± 105.30 829.79± 210.51 1463.82± 235.37

Table 16: Expected yields for each background component. The yields are determined
upon the MC efficiencies obtained in 10.1, and are only available in the B2DsDs1 channel.
The efficiencies of the other channels could not be determined due to an insufficient or
absent number of candidates after the selection, and are assumed to be 0. Note: for the
B0
s → D−s K

+K−π+ decay, no MC generator level efficiency was available, so the estimate
is based on a generator level efficiency of 0.1± 0.1 which explains the huge uncertainty.

10.4 Calculation of the B0 → D−D+
s fraction

To constrain the yield of the B0 → D−D+
s decay with respect to the B0

s → D+
s D
−
s one,

the ratio between the two is computed. The calculation is performed as follows:

The ratio between B0 → D+D−s and B0
s → D+

s D
−
s expected in the B2DsDs1 channel is
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computed according to the respective branching fractions and hadronisation fractions:

r =
f(b̄→ B0) · B(B0 → D−D+

s ) · B(D+
s → K+K−π+) · B(D− → π−K+π−) · εDDs

f(b̄→ B0
s) · B(B0

s → D+
s D
−
s ) · B(D+

s → K+K−π+) · B(D−s → K−K+π−) · εBs→DsDs

= 0.037± 0.08 (17)

Now, to extrapolate this ratio obtained for the B2DsDs1 channel to all four channels,

some considerations are made. The B0 → D−D+
s pollution mainly occurs through π+

that are misidentified as K+ (or π− as K−) and enter the B2DsDs1 channel to form

a K+K−π+ K−K+π− pair. Both of the Ds candidates can thus be a misidentified D

candidate. For the B2DsDs2 and B2DsDs3 channels which contain only one Ds decaying

to KKπ, the probability to contain a misidentified D candidate is halved. Indeed, a D

decaying to π−K+π− to be identified as π−π+π− or K−π+π− would need at least one K

misidentified as a π which would mean the reconstructed mass is lower than the one of

B0. These cases are excluded by the mass windows applied to the Ds candidates. For the

B2DsDs4 channel, no Ds is likely to be a misidentified D candidate. Thus the correction

to the ratio obtained reads:

fDDs/BsDsDs =

(
N1

N
+

1

2
· N2

N
+

1

2
· N3

N

)
· r (18)

where Ni
N is the fraction of candidates in each channel and N = N1 +N2 +N3 +N4.

10.5 Calculation of the B0
s → D∗+s D∗−s fraction

The fraction of the B0
s → D∗+s D∗−s background is also fixed but to a fraction of the

B0
s → DsD

∗
s yield. Here the calculation is a bit more straightforward, since the probability

of the B0
s decaying to a D∗s or to Ds is independent of the final state. The fraction is thus

obtained by the ratio:

r =
B(B0

s → D∗+D∗−s ) · B(D∗s → Dsγ) · εDs∗Ds∗
B(B0

s → D∗sDs) · εBs→Ds∗Ds
= 0.30± 0.07 (19)

11 Fit

11.1 Run 1 2011 and 2012 data

The fit applied to the B candidate invariant mass is a rather complex shape, made of

several components for each background. A description of the backgrounds modelled as

well as the shape used is provided in this section. The individual components are fit to

the MC and wrong-sign D+
s D

+
s samples to get the shape, and once fixed are combined to

build the full fit. The signal shapes were produced from the four channels, but for the

background, the majority of generated MC backgrounds were produced in the B2DsDs1

channel (with the D+
s decaying to K+K−π+). The shapes were thus taken from this

mode. This is justifiable, since the B2DsDs1 channel has the highest branching fraction.
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For the signal shape where MC was avilable in all four modes, the B2DsDs1 channel is

used in the final fit as for the backgrounds for consistency reasons. Some minor corrections

(mass shift and width constraints) are applied to the shapes during the fit to data.

11.2 Signal shapes

The signal shape for the B0 → D+
s D
−
s is taken from the MC samples for the B0

s → D+
s D
−
s

from 2011 and 2012 generated with Pythia 8 and Sim08a. A sum of two crystal-ball

functions is fit to the B invariant mass for the four channels. The resulting shapes are

shown in figure 22a and the parameters for each mode are summarized in figure 22b. The

residuals, as well as the pulls are also shown.
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(a) Fit shape for the signal and normalisa-
tion mode in the B2DsDs1 channel taken
from the B0

s → D+
s D

−
s 2012 and 2011 MC

samples produced with Pythia 8 and Sim08a.

Parameter value uncertainty

µ 5368.2 ±0.1
σl 10.7 ±0.1
nl 3.1 ±0.6
al 2.4 ±0.1
σr 16.3 ±0.3
nr 15 ±3
ar −2.4 ±0.2

(b) Fit parameters for the B0
s → D+

s D
−
s de-

cay in the B2DsDs1 channel.

Figure 22

B0 → DDs

For the B0 → DDs background, a crystal-ball shape is used, and obtained from the MC

samples in the B2DsDs1 channel. To enhance the statistics, the 2012 and 2011 samples

produced with Pythia 8 and Sim08h were taken to obtain the shape. Figure 23a shows

the fit result. The fit parameters are given in figure 23b.
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(a) Fit shape of the B0 → DDs decay taken
on the 2012 and 2011 MC samples produced
with Pythia 8 and Sim08h.

Parameter value uncertainty

µ 5338 ±2
σ 28 ±1
n 2 ±2
a −1.3 ±0.4

(b) Fit parameters for the B0 → DDs shape.

Figure 23

Λb → ΛcDs

The Λb → ΛcDs is also modelled by a crystal ball shape, and obtained from the B2DsDs1

channel. A non negligible amount of data was to be observed in the B2DsDs3 channel as

well but not enough to produce a good shape. The fit was made on 2012 and 2011 MC

samples generated with Pythia 8 and Sim09b. The shape is shown in figure 24a and the

fit parameters are shown in figure 24b, and are fixed in the full fit.
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(a) Fit shape of the Λb → ΛcDs decay taken
on the 2012 and 2011 MC samples produced
with Pythia 8 and Sim09b.

Parameter value uncertainty

µ 5422 ±11
σ 25 ±7
n 113 ±129
a 0.23 ±0.08

(b) Fit parameters for the Λb → ΛcDs shape.

Figure 24

B0
s → DsD

∗
s

The B0
s → DsD

∗
s background shape was inspired by [17] and is made of three gaussian

distributions with different means and standard deviations. Their mean, standard devia-

tion and the ratios between each other are determined on the available MC sample from

2012 with Pythia 8 and Sim08a. The shape obtained is presented in figure 25a and the fit

parameters are shown in figure 25b.
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(a) Shape of the B0
s → DsD

∗
s background,

taken from a fit to the MC sample from 2012
with Pythia 8 and Sim08a. The shape is
a sum of three gaussian distributions with
different mean and standard deviation.

Parameter value uncertainty

µ1 5186 ±4
σ1 50e ±1
r1 0.68 ±0.06
µ2 5223 ±6
σ2 20 ±8
r2 0.19e ±0.09
µ3 5269 ±4
σ3 14 ±2

(b) Fit parameters for the B0
s → DsD

∗
s

shape.

Figure 25

B0
s → D∗sD

∗
s

For the B0
s → D∗sD

∗
s background, the shape was made with a gaussian. The shape was

also obtained using the MC sample from 2012, generated with Pythia 8 and Sim08a. The

results regarding the fit shape are shown in figure 26a and the parameters are given in

figure 26c. Part of the events are located outside the mass range.
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(a) Shape of the B0
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sD
∗
s background,

taken from a fit to the MC sample from 2012
with Pythia 8 and Sim08a. The shape is a
gaussian distribution.

Parameter value uncertainty

µ 5115 ±5
σ 57 ±4

(b) Fit parameters for the B0
s → D∗

sD
∗
s

shape.

(c)

Figure 26

B0
s → DsKKπ

For the B0
s → DsKKπ decay, an insufficient amount (four events) of signal was left after

the selection. A plot of the B candidate invariant mass distribution is shown in figure 27.

We estimate 4 events should remain after the selection, so we ignore this background in

the fit.
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Figure 27: Reconstructed Bs → DsDs invariant mass distribution of true Bs → DsKKπ
after the selection. Too few events are left to build a fit shape.
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Combinatorial background

The combinatoric background is obtained by fitting the wrong-sign data with an expo-

nential shape. The result is shown in figure 28 and the exponetial parameter α is given

by (−8.6± 6.9) · 10−4.
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Figure 28: Combinatorial background fit obtained from an exponential fit to the wrong-
sign data.

11.3 Fit to 2011 and 2012 data

The full fit to data is the combination of all shapes obtained in the fits to the different

MC samples.

Once the fit is applied to data, some more corrections to the shape are made. The distinct

steps are explained in the sections below.

11.3.1 Signal shape tweaking

The B0
s → D+

s D
−
s shows a slight shift in mass in data with respect to the peak obtained

with MC. The distribution also looks slightly broader in the data. Thus, a correction

was made to the B0
s → D+

s D
−
s and the B0 → D+

s D
−
s shapes. A shift is applied to the

mean value obtained in MC, and a scale factor to the width. The correction values are

determined in the fit to data. The shapes for the B0 → D+
s D
−
s and the B0

s → D+
s D
−
s are

determined from a shared width and mean (with a shift equal to the mass differences from

the PDG), in other words the B0
s → D+

s D
−
s shape is used to constrain the B0 → D+

s D
−
s .

(This is based on the assumption that the mass values taken from the PDG are accurately

determined via other measurements, and that the mismatch between the shapes in MC

and data is due either to differences in calibrations or modelling in the MC.) Since the B0
s

peak has the largest contribution, the correction will be mainly driven by the normalisation

channel, and the B0 → D+
s D
−
s contribution is negligible.
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11.3.2 Fixing the fraction of B0 → DDs

The B0 → DDs background is not very well constrained in the general fit, since it is

not the most important contributing background to the general shape over the full range.

Thus, it can easily be misused by the minimisation algorithm to minimise the error on

the fit, setting its yield to any non realistic value. To prevent this happening, the yield

of the B0 → DDs decay was set to a fraction of the B0
s → D+

s D
−
s yield, obtained in the

calculation in equation 18. The B0
s → D+

s D
−
s shape is rather pure. By fixing the ratio

between B0
s → D+

s D
−
s and B0 → DDs, the fit can determine both yields in their expected

proportions. Ideally the fraction should also be fixed for the Λb → ΛcDs decay, but this

was unfortunately not possible due to the absence of a generator level efficiency value.

Since the Λb → ΛcDs shape is far away from the B0 in the upper tail of the B0
s → D+

s D
−
s

distribution, and has a very low contribution to the B0 → D+
s D
−
s mass region, it is less

critical and the yield was left floating.

11.3.3 Fixing the fraction of B0
s → D∗sD

∗
s

The fraction of B0
s → D∗sD

∗
s was also fixed, but with respect to the yield of B0

s → DsD
∗
s .

Indeed, it indirectly affects the contribution of the B0
s → DsD

∗
s background in the B0 →

D+
s D
−
s mass region, by its yield which is anticorrelated to the one of B0

s → DsD
∗
s . Thus,

fixing the contributions of these two decays to the right fraction with respect to each other

obtained in equation 19, ensures the B0
s → DsD

∗
s contribution is accurately modelled in

the B0 mass region.

11.3.4 Constraining the Bs → DsD
∗
s shape parameters and the fraction of

B0 → DDs

The fit shapes for the backgrounds were determined using MC samples, but the low statis-

tics remaining in the samples after the selection lead to significant uncertainties on the

fit parameters. The yield of the B0 → D+
s D
−
s largely depends on the shapes of the

B0
s → DsD

∗
s and B0 → DDs decays. In particular, a slight change in their widths can

lead to significant changes in the yield of the B0 → D+
s D
−
s decay. To account for this

effect, the uncertainties obtained on the fit shape parameters of the B0
s → DsD

∗
s shape are

added in the general fit as constraints. The respective parameters of the general fit were

constrained with a gaussian with mean value obtained in the fit to MC, and with standard

deviation equal to the uncertainty obtained. The uncertainty on the ratio of B0 → DDs

with respect to B0
s → D+

s D
−
s is also added as gaussian constraint to the ratio it was fixed

to before. Here the µ is the expected fraction obtained from the expected yield calculation

in eqution 18, and the σ is the uncertainty from the calculation.
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11.4 Results

11.4.1 Fit result

The fit to the 2011 and 2012 data is presented in figure 29 and the yields (or relative

fractions when applicable) are shown in table 17
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Figure 29: Fit to the 2011 and 2012 data. The B0 → D−D+
s is fixed to a fraction of the

B0
s → D+

s D
−
s , the other shapes are fixed to the MC values except for the B0

s → DsD
∗
s

where the values were fixed to the ones obtained under constraint.

Decay yield/fraction uncertainty

B0
s → D+

s D
−
s 1107.83 37.00

fB0→DsDs/Bs→DsDs 6.80 · 10−2 1.63 · 10−2

B0
s → DsD

∗
s 1052.09 33.44

fLb→LcDs/Bs→DsDs 0.13 0.03

µshift 2.05 0.46
width scale 1.11 0.03
combinatorial 158.28 30.85

Table 17: Fit parameters after the fit to 2011 and 2012 data.

An excess can be seen in the B0 mass region. Interestingly, the yield in the fit is almost

of a factor 2 smaller than the ones predicted in equation 14. The cause of this factor two

has been investigated, but could not be found to this time. It is unlikely to happen during

the selection, since it would also affect the efficiency obtained with the MC and factor out.

It could either be a mistake in the calculation, or data missing. It was checked that both

magnet polarities were present, and the grid job files were checked again for any potential

errors. Such a factor was also present in other analyses, namely [18] where a factor of

1.8 − 2.3 is reported. This factor is however not a concern for the computation of the

branching fraction of the B0, since it is obtained relative to the B0
s , and all constraints

were determined as fractions between the different backgrounds.
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11.4.2 Systematic uncertainties
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Figure 30: Fit to the 2011 and 2012 data. The B0 → D−D+
s is fixed to a fraction of the

B0
s → D+

s D
−
s with a constraint and the mean values and the widths of the gaussians of

the B0
s → DsD

∗
s are also floated under constraint.

Decay yield/fraction uncertainty

B0
s → D+

s D
−
s 1107.64 ±36.98

fB0→DsDs/Bs→DsDs 5.92 · 10−2 2.74 · 10−2

fB0→DDs/Bs→DsDs 3.90 · 10−2 0.80 · 10−2

B0
s → DsD

∗
s 1061.58 40.07

fLb→LcDs/Bs→DsDs 0.13 0.03

µshift 2.05 0.46
width scale 1.11 0.04
combinatorial 156.19 31.11
µ1DsDs∗ 5192.71 ±3.01
µ2DsDs∗ 5229.02 ±3.70
µ3DsDs∗ 5272.42 ±5.12
σ1DsDs∗ 49.16 1.74
σ1DsDs∗ 19.09 3.05
σ1DsDs∗ 18.51 2.12

Table 18: Fit parameters after the fit to 2011 and 2012 data with constraints.

The systematic uncertainty is mainly due to the low number of MC events available to

determine the background shapes. To determine the statistical uncertainty only, the fit

was performed with the parameters under constraint fixed at their optimal values after the

full fit. The statistical uncertainty obtained is ±1.626 · 10−2. The systematic uncertainty

is obtained by removing the statistical uncertainty form the uncertainty of the fit with

constraints: ∆syst =
√

(2.74 · 10−2)2 − (1.63 · 10−2)2 = 2.21 · 10−2.

Thus, the fraction of B0 → D+
s D
−
s compared to B0

s → D+
s D
−
s given by the fit result

in table 18 becomes fB0→DsDs/Bs→DsDs = (5.9± 1.6± 2.2) · 10−2.
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Figure 31: Residuals and pulls of the fit to the 2011 and 2012 data.

The pulls and residual distributions shown in figure 31 show no clear region of the mass

range where the fit is not accurate. All pulls are contained within the range [−2; 2], which

is the usual fit quality requirement. To increase the precision, one should have more

statistics in the MC samples to produce better shapes for the backgrounds.

11.4.3 Calculation of the B0 → D+
s D
−
s branching fraction

The ratio between the B0 → D+
s D
−
s and B0

s → D+
s D
−
s yield obtained in the fit allows to

compute the branching fraction of the B0
s → D+

s D
−
s decay. The computation is shown in

equation 20:

B(B0 → D+
s D
−
s ) = fB0→DsDs/Bs→DsDs ·

f(b̄→ B0
s ) · B(B0

s → D+
s D
−
s )

f(b̄→ B0)
(20)

(21)

= [6.63± 2.14(stat.)± 2.61(syst.)± 0.76(norm.)] · 10−5 (22)

where (stat.) is the statistical uncertainty, (syst.) the systematic one and (norm.) the

uncertainty due to the one on the B(B0
s → D+

s D
−
s ) branching fraction. This result is

within two sigma away from the theoretical prediction in [5] which is (1.12± 0.15) · 10−5,

and in accordance with the current limit in the PDG, which is set at 3.6 ·10−5 at 90% CL.
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11.5 Fit to the Run 1 and Run 2 2011, 2012, 2015 and 2016 data

The fit was also applied to the 2011, 2012, 2015 and 2016 data. Since no MC was available

for Run 2, the shapes determined using Run 1 MC in section 11.2 were used. This alone

already is very bold, since there are parameters changing between Run 1 and Run 2,

starting from the centre of mass energy available in the collision. The trigger also changed,

and the stripping changed accordingly. Nevertheless, the fit is shown in figure 32. The

first fit results show a small shift in mass of the B0 → D+
s D
−
s and B0

s → D+
s D
−
s decays,

in the opposite direction as the 2011 and 2012 data. The shape of the B0 does not make

sense here, since it strongly depends on the shapes of the backgrounds. A slight change

in their shape might have a huge impact on the B0 yield. Indeed, the background shapes

are taken on the Run 1 MC, they are not expected to accurately model the shapes of the

run 1 and run 2 data together.
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Figure 32: Fit to the 2011, 2012, 2015 and 2016 data. The B0 → D−D+
s is fixed to a

fraction of the B0
s → D+

s D
−
s with a constraint and the mean values and the widths of the

gaussians of the B0
s → DsD

∗
s are also floated under constraint (same procedure as for the

2011 and 2012 data alone).
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Decay/fraction yield/fraction uncertainty

B0
s → D+

s D
−
s 3201.30 62.61

fB0→DsDs/Bs→DsDs 1.68 · 10−2 2.13 · 10−2

fB0→DDs/Bs→DsDs 4.23 · 10−2 0.79 · 10−2

B0
s → DsD

∗
s 3269.33 80.36

fLb→LcDs/Bs→DsDs 0.11 0.02

µshift −0.68 0.29
width scale 1.19 0.02
combinatorial 428.06 53.87
µ1DsDs∗ 5197.14 2.55
µ2DsDs∗ 5227.62 3.41
µ3DsDs∗ 5273.65 3.41
σ1DsDs∗ 49.10 1.63
σ2DsDs∗ 23.44 2.74
σ3DsDs∗ 20.13 2.01

Table 19: Fit parameters after the fit to 2011, 2012, 2015 and 2016 data.

The relative fraction between B0 → D+
s D
−
s and B0

s → D+
s D
−
s was dramatically de-

creased: fB0→DsDs/Bs→DsDs = (1.679± 2.130) · 10−2 with an uncertainty larger than the

value itself, as shown in table 19.
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Figure 33: Residuals and pulls of the fit to the 2011, 2012, 2015 and 2016 data.

The mean shift of the B0 and B0
s shapes in the fit to the full 2011, 2012, 2015 and
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2016 dataset has a value of −0.68 ± 0.29 MeV against 2.05 ± 0.46 MeV in the 2011 and

2012 fit. The width scale factor applied to the same shapes now reads 1.19±0.024 against

1.11 ± 0.04 in the Run 1 fit. The residual and pull distributions in figure 33 also show

evidence of mismodelling.

These inconsistencies are all indications that there are differences between the Run 2

and Run 1 data, and that the background cannot be modelled accurately without any

Run 2 MC.

One can however estimate the increase in yield the run 2 would bring about, by com-

paring the yields of the normalisation channel. The B0
s yield for Run 1 and Run 2 data

is about 3201.30 ± 62.61 against 1107.64 ± 36.98 for Run 1 only. Thus, the yield of Run

2 is expected to be twice the one of Run 1 according to Lint and σb̄b, which would lead

to an overall increase of the statistics by about a factor 3. An observation might become

possible, provided we have the MC to obtain accurate efficiencies, and to properly study

the background shapes and model them correctly in the fit.

12 Discussion

This analysis allowed to compute a branching fraction for the B0 → D+
s D
−
s decay, using

the 2011 and 2012 data and the B0
s → D+

s D
−
s decay as normalisation channel. The result

is compatible with zero, and thus an upper limit can be set. A toy study also needs

to be carried out, in order to confirm the validity of the fit shape. The computation

was not done at the time of submitting the report, but it is envisaged to be done as

next step. With the Run 1 alone, no observation was expected, the result is thus not a

surprise. Adding the Run 2 data may have improved the statistics by almost a factor 2.9

making an observation possible, assuming systematic uncertainties can also be reduced.

Nevertheless, without any MC samples to determine the efficiencies, no quantitative result

can be obtained from the run 2 data. The 2015 and 2016 data, even though downloaded

and processed until the step of the fit, could not be used in the computation, since no MC

samples were available for the Run 2 for signal or any of the backgrounds.

In addition, the shapes of the backgrounds for the Run 2 data may be different, due

to changes in the dataflow. The trigger changed between Run 1 and Run 2, and the

stripping is also slightly different. Thus MC samples for Run 2 are essential to go further

in this analysis. They would enable to obtain the efficiencies for the different physical

backgrounds. Their shapes could also be accurately determined for the fit to the run 2 data,

which is essential to reduce systematic uncertainties. The B0 → D+
s D
−
s yield strongly

depends on the background shapes, in particular the B0
s → DsD

∗
s and the B0 → DDs.

The Run 1 result is systematically limited by the MC sample sizes, and could be much

more precise with more MC. B0 → D+
s D
−
s signal MC is also needed to determine any

efficiency differences between the B0 → D+
s D
−
s and B0

s → D+
s D
−
s control channel. The

analysis assumes these are similar as no B0 → D+
s D
−
s MC was available, but the decay
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time cut will lead to a small efficiency difference as the lifetimes of the B0 and B0
s are

different.

Run 2 MC samples are also required in order to train the MVA methods on Run 2

data. Here, the training performed using Run 1 MC and Run 1 wrong-sign data was used

for Run 2 data. For the combinatoric background MVA method (WS BDT in section

8.1), a training against a mix of Run 1 and Run 2 wrong-sign data could have been

envisaged, but the choice was made not to risk a training that would learn to discriminate

based on differences between Run 1 and Run 2 data. For the D∗s BDT (section 8.2), the

MC samples were only available for 2012. The above limitations clearly bias towards an

optimal selection for Run 1 data.

Even without the sensitivity improvement from the Run 2 statistics, improvements to

the Run 1 fit can also be envisaged. More statistics in the MC samples is required to

more accurately model the background shapes. Since the selection is very effective, the

low remaining background yields in the samples lead to significant uncertainties on the fit

parameters obtained on the MC. In addition, the figure of merit (section 8.7) was chosen

to maximise the significance based on the Run 1 and Run 2 expected yields. For a Run 1

only analysis, it could improve the precision to chose cuts optimised for the Run 1 expected

yields.

Regarding the MVA selection, a huge effort was put into using the new DNN classifier.

The method is still at an early stage, and needs ROOT to be compiled against the BLAS

library. No such version was available on Lxplus. The other envisaged classifier was the

PyKeras method, which is a wrapper for Keras (with TensorFlow backend). This very

nice method allows to use the state of the art deep learning library TensorFlow, through

the architectures available in Keras. Unfortunately, ROOT needs in this case again to be

compiled against the Keras library with TensorFlow backend, which was not available on

Lxplus. The processing of the data had to be done on the laptop, with all inconveniences

arising from this situation (slow processing time, connection instability, etc...). These

struggles, together with the much faster training time and the better classification accuracy

shown by the BDT classifier lead to abandon the idea of using DNN classifiers.

The poorer performance of the DNN classifiers might although be caused by the low

statistics in the MC samples. Indeed, the calculation in section 8.1.2 shows that deep

classifiers with a large number of neurons would overtrain given the small training sets.

A deep architecture is in turn needed to model complex patterns in data. So a higher

statistics in the MC samples might bring a DNN classifier to outperform the BDT one.

The DNN classifiers have the ability to generalise, and to learn abstract features present

in data. They are also more robust against correlations among the input variables. These

nice advantages might have better overcome the differences between Run one and Run

two.

The TMVA library is currently being improved with a new deep learning framework,

and this analysis tried to make use of the newest additions. They are not yet largely
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used and some early drawbacks persist. In addition, it can be very involving in TMVA

to realise tasks that other libraries allow to do very easily. For example the scikit-learn

library provides a grid optimisation search, which performs automatically a hyperparam-

eters optimisation, without the pain of running manually a classifier for each combination

of parameters. The use of scikit-learn could also be envisaged as an option for a future

analysis. The PyKeras method with tensorflow backend in TMVA is yet a very promising

classifier, since the training could be done completely in TensorFlow. All tools of the

library might be used without restriction, at the price of converting the training sets to a

format supported by TensorFlow. The classifier responses could then in turn be applied

to the data through the TMVA interface.

13 Conclusion

This analysis enabled to compute a branching fraction for the B0 → D+
s D
−
s decay, which

is compatible with both the theoretical prediction in [5] as well as with the current limit

in the PDG booklet. Since the significance is not enough to claim an observation, the

computation of a limit is envisaged, once the fit consistency is thoroughly confirmed with

a toy study. Unfortunately, the Run two data, which underwent the same selection process

as the Run one data throughout the whole analysis, could not be used for the final result

because no MC samples were available for 2015 or 2016. If the promising result obtained

with the Run one data is accurate, the additional statistics added by the Run two data

could enable an observation. This analysis also features very new DNN classifier methods,

that were unfortunately not used in the end due to the drawbacks listed in the discussion.

However, the experience made can help for future analyses to make a better use of these

DNN classifiers.
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15 Appendix

15.1 Integrated luminosity obtained from the tuple variables

Year Magnet polarity Integrated luminosity [pb−1] Uncertainty [pb−1]

2011 md 559.86 ±9.57
2011 mu 418.22 ±7.15
2012 md 991.26 ±11.50
2012 mu 999.42 ±11.59
2015 md 160.49 ±6.26
2015 mu 121.08 ±4.72
2016 md 848.63 ±33.10
2016 mu 793.15 ±30.93

Table 20: Integrated luminosity per year and magnet polarity

Note: md stands for MagDown and mu for MagUp.

15.2 Detailed summary of the signal efficiencies
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15.3 Detailed summary of the background efficiencies
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15.4 Signal shapes from the other channels
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(a) Fit shape for the signal and normalisa-
tion mode in the B2DsDs2 channel taken
from the B0

s → D+
s D

−
s 2012 and 2011 MC

samples produced with Pythia 8 and Sim08a.

Parameter value uncertainty

µ 5367.78 ±0.34
σl 15.03 ±0.59
nl 2.38 ±0.98
al 2.39 ±0.31
σr 10.72 ±1.09
nr 14.10 ±7.50
ar −2.20 ±0.74

(b) Fit parameters for the B0
s → D+

s D
−
s de-

cay in the B2DsDs2 channel.
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