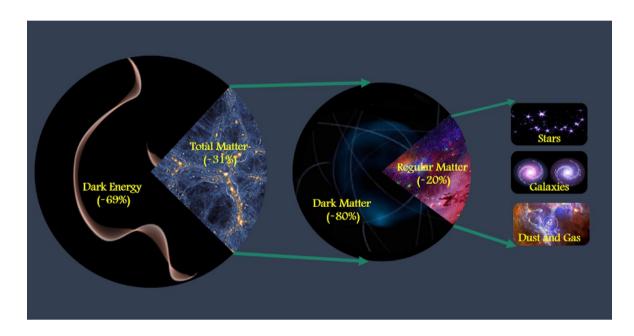


LPHE for future Master students

Fred Blanc
Guido Haefeli
Radoslav Marchevski
Olivier Schneider
Lesya Shchutska


February 29, 2024

Standard model of particle physics

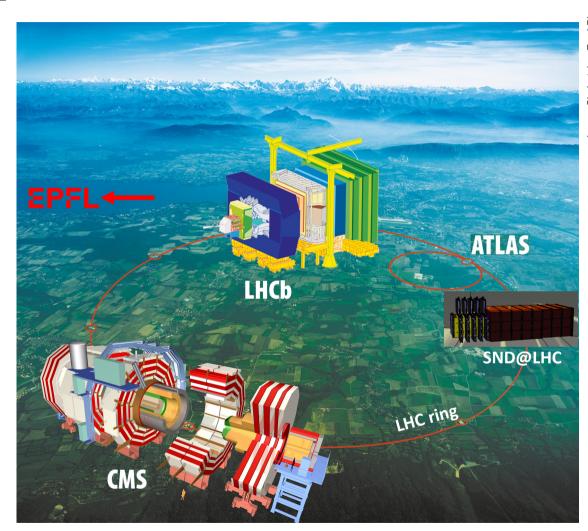
- is complete since 2012:
 - 3 generations of matter particles, identical apart from their mass
 - carriers for 3 forces
 - Higgs mechanism for masses
- works very well for all phenomena observed in the lab
 - · several tensions here and there exist

Why particle physicists do not stop?

- standard model accounts for about 5% of the content of the universe
- dark matter was "discovered" more than 90 years ago – and still no explanation for its nature

 + there are many more arguments of why standard model of particle physics is not an ultimate theory

All these motivate numerous "new physics" searches


LPHE for future Master students

LHC and detectors – our main tool

First idea of the LHC in 1976
Approved for construction in 1994
Started stable operation in 2009
Planned to run till ~2040

Some numbers:

- pp collisions at 7, 8, and 13.6TeV, with 25ns bunch crossing (40MHz)
- ~10¹³ b hadrons produced
- Power consumption of the LHC and experiments: 750 GWh/year

measurement

EPFL Master thesis: LHCb

	Thesis
Report number	CERN-THESIS-2022-122
Title	Study of $B^0 \to K^{*0} \gamma$ with conversions and $B^0 \to K^{*0} e + e -$ at very low q^2
Author(s)	Lemettais, Clotilde (LPHE, Lausanne)
Publication	77 p.
Thesis note	Master of Science MSc in Physics : EPF Lausanne : 2022
Thesis supervisor(s)	Quagliani, Renato ; Schneider, Olivier
Note	Presented 12-07-2022
Subject category	Particle Physics - Experiment
Accelerator/Facility, Experiment	CERN LHC; LHCb

- measured $B^0 \rightarrow K^{*0}e^+e^-$ rate for low $q^2 \equiv m^2(e^+e^-)$
- proved that we calibrated our electrons well in this regime!
- thesis is cited in a high-profile LHCb paper (arXiv:2212.09153)
- Clotilde is doing a PhD on Belle II (exp. in Japan)

https://cds.cern.ch/record/2826428

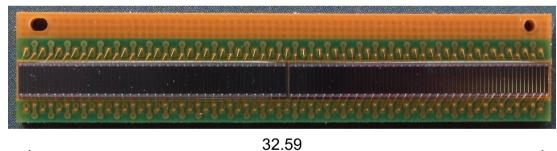
FIGURE 9.1: Total data fit of $B^0 \to K^{*0}e^+e^-$ candidates in the very low q^2 for all run periods and trigger categories merged

	$\mathcal{B}(B^0 o K^{*0} e^+ e^-, vl)$
Nominal setup	$(1.57\pm0.12)\cdot10^{-7}$
Nominal, noPRMVA setup	$(1.54\pm0.12)\cdot10^{-7}$
Tight setup	$(1.53\pm0.12)\cdot10^{-7}$
Tight, noPRMVA setup	$(1.54\pm0.12)\cdot10^{-7}$
Predicted value (PDG)	$(1.58\pm0.10)\cdot10^{-7}$
Predicted value (Belle)	$(1.50\pm0.08)\cdot10^{-7}$

Master thesis: external (on IceCube, 2022)

- physics projects at LPHE
- Master thesis external
- After his Master, Marc spent one year at the South Pole doing a "winterover": running the IceCube detector
- more reading in LPHE news:
 - https://www.epfl.ch/labs/lphe/en/fulfilling-his-dream-marc-is-going-to-antartica-for-the-icecube-experiment/

Instrumentation projects: SciFi



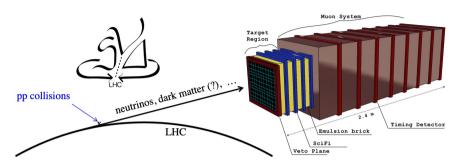
SciFi: charged particle tracking detector

- Scintillating fibres
 - Ø250 microns
 - 6 layers

Light read out by photodetectors:

mm

Fast data acquisition: at 40 MHz



LPHE for future Master students

SciFi for the SND@LHC: Scattering and Neutrino Detector at the LHC

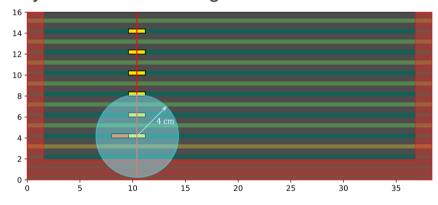
- more compact SciFi stations:
 - 39×39 cm²
- active R&D of new features:
 - particle time arrival measurement (300 ps precision)
 - electron shower imaging and energy measurement
- data-taking since 2022

SND in the LHC tunnel

Full experiment as a start: Physics Project I

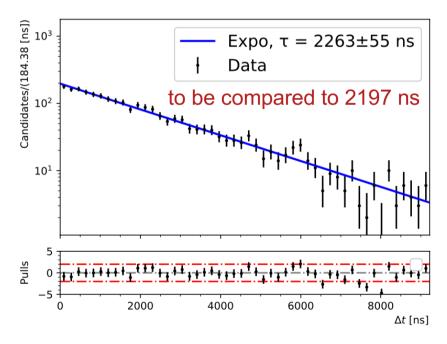
Cosmic ray detection with a ECAL

- this one is a new experiment
- students are developing new features each semester:
 - develop and refine simulation
 - decide how to take data
 - develop reconstruction algorithms
 - come up with new analysis ideas
- achieved muon lifetime measurement in fall'22 for the first time!

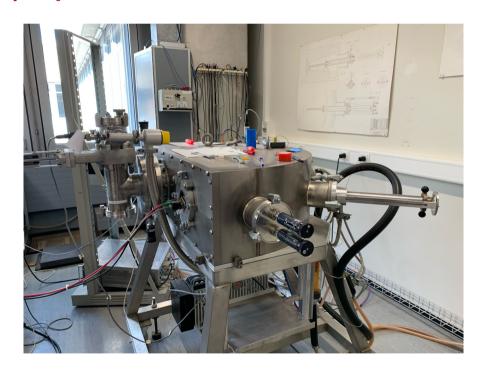

- design, construction and operation of a small complete particle physics experiment
- work in a group of 2-3 people
- final written report by each group

Cosmic ray detection with a ECAL

Example event of a decaying muon

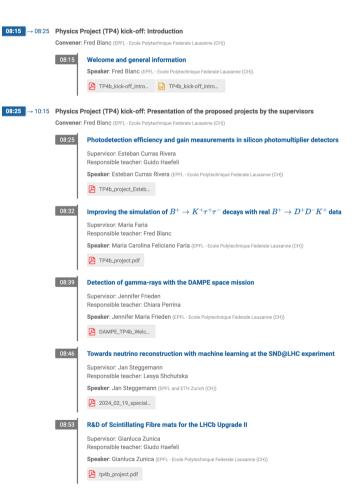

yellow hits: incoming muon

orange hits: electron from $\mu \rightarrow e\nu\nu$ decay


Time interval between the arrival of the muon and production of the electron is $\Delta t = 3299$ ns

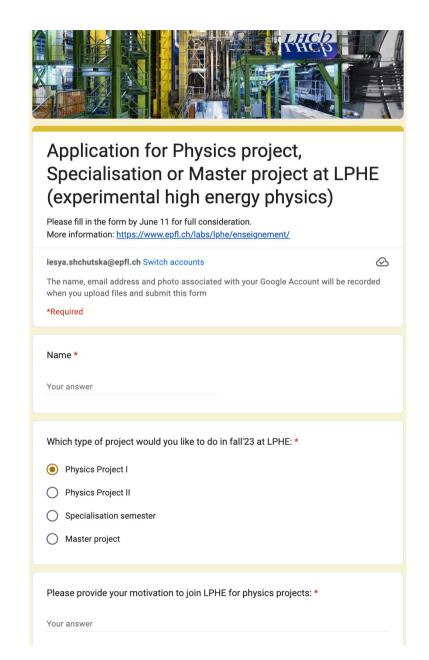
Result by the students (fall'22)

Physics Project I: two other experiments


 β -spectrometer: "measure" ν mass

μ lifetime measurement

Further projects: individual, you choose



More information and application

- more information on Master level courses and Physics Project I:
 - https://www.epfl.ch/labs/lphe/enseignement/
- if interested, please fill in the form by June 9 for full consideration:
 - https://forms.gle/Rkyh2okmP9rzaYta9 sign in with your EPFL account

