

**LPHE** for future Master **students** 

Fred Blanc

Guido Haefeli

Radoslav Marchevski

Olivier Schneider

Lesya Shchutska



April 5, 2023

# **High Energy Physics Laboratory (LPHE)**

- Experimental particle physics
  - participation in several international collaborations
    - LHCb at the LHC at CERN
    - NA62 at the SPS at CERN
    - SND@LHC at CERN
    - CMS at LHC at CERN
    - DAMPE/HERD in space (astroparticles)
- 36 scientists
  - 17 PhD students
  - 13 postdoctoral researchers
  - 6 teachers
    - Dr. C. Perrina
    - Dr. F. Blanc (MER)
    - Dr. G. Haefeli
    - Prof. R. Marchevski
    - Prof. O. Schneider
    - Prof. L. Shchutska



## **Students at LPHE**

• You can join our team of excellent master students for both Physics Project 1&2 (1st year) and specialization/Master projects (2nd year)



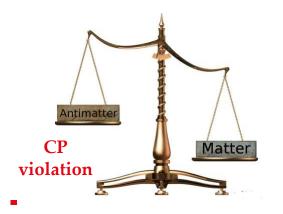


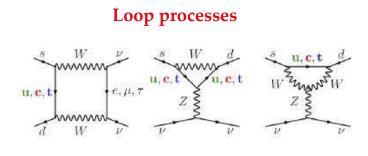
**Physics** Courses (19) Physics Project 1 (8) MA1 group I  $\vdash$ Year Courses (19) MA2 Physics Project 2 (8) group I Courses (30) Physics Research Training Semester (30) Minor (30) MA3 group Ila Semestre de spécialisation 7 Year Master Project (30) MA4

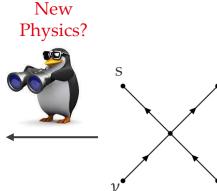
### Aims of the LPHE Master's program

- The students interested in doing their Physics Master degree at LPHE will
  - obtain general knowledge about particle physics phenomena and particle detection
  - be introduced to advanced concepts in modern particle physics with emphasis on relevant research topics
  - conduct small but complete particle physics experiments in teams of 2-3 students
    - beta spectrometer, "measurement" of the neutrino mass, measurement of muon lifetime and magnetic moment,
      development of a cosmic ray detector
  - get involved in particle physics research
    - working on small individual projects
    - completing a semester-long specialization
    - master thesis on a specific research topic
- At the end of the program the students will have the necessary skillset to pursue a doctoral degree

1


### **Courses offered by LPHE**

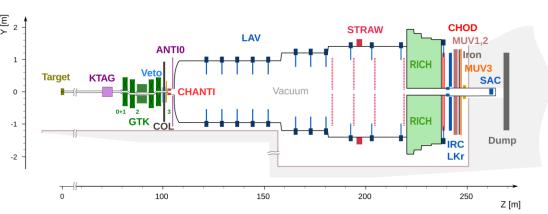

- Year 2023-2024: all courses are optional apart from the one in BA5
- We encourage students interested in particle physics to look at theory or accelerator course
  - e.g. Machine learning for physicists, Quantum Field Theory (LPTP), Introduction to particle accelerators (LPAP)
  - for more info see <a href="https://www.epfl.ch/schools/sb/sph/en/master/master-in-physics/">https://www.epfl.ch/schools/sb/sph/en/master/master-in-physics/</a>


| Course title                                    | Code            | Semester | Hours/week       | Teacher(s)               |
|-------------------------------------------------|-----------------|----------|------------------|--------------------------|
| Physique nucléaire et corpusculaire I           | PHYS-311        | BA5      | 2C + 2E (4 ECTS) | O. Schneider             |
| Physique nucléaire et corpusculaire II          | PHYS-312        | BA6      | 2C + 1E (3 ECTS) | O. Schneider             |
| Particle Physics I                              | <u>PHYS-415</u> | MA1      | 2C + 2E (4 ECTS) | R. Marchevski            |
| Particle Physics II                             | PHYS-416        | MA2      | 2C + 2E (4 ECTS) | L. Shchutska             |
| Particle detection                              | <u>PHYS-440</u> | MA1      | 2C + 2E (4 ECTS) | G. Haefeli               |
| Selected topics in nuclear and particle physics | <u>PHYS-400</u> | MA2      | 2C + 2E (4 ECTS) | F. Blanc                 |
| Particle physics: the flavour frontiers         | PHYS-??         | MA2      | 2C + 2E (4 ECTS) | R. Marchevski            |
| Introduction to astroparticle physics           | <u>PHYS-439</u> | MA2      | 2C + 2E (4 ECTS) | C. Perrina<br>A. Neronov |

### **New LPHE course in MA2**

- Particle physics: the flavour frontiers
  - explore the mysteries of the flavour structure in the Standard Model of particle physics
  - CP violation and its connection to matter-antimatter asymmetry observed in the Universe
  - differences between the flavour interactions of strange, charm, beauty quarks
  - study of rare or forbidden by the SM processes and understand why they can have discovery potential far beyond the energy frontier

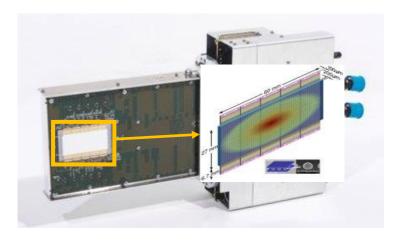


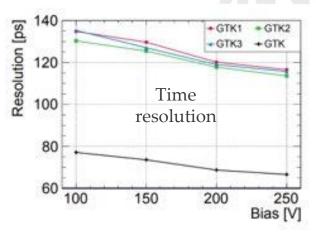





## Research at LPHE: NA62 experiment






- Fixed-target flavour physics experiment at the CERN SPS studying kaon decays
- Main goal: measurement of one of the golden modes of flavour physics  $K^+ \to \pi^+ \bar{\nu} \nu$ 
  - $BR(K^+ \to \pi^+ \bar{\nu} \nu) = (8.4 \pm 1.0) \times 10^{-11}$
- Broader physics program: rare/forbidden kaon decays and searches for exotic particles
- LPHE has a strong involvement in NA62: operation, tracking, physics analysis

# The 4D tracker of NA62: GigaTracKer







- LPHE is responsible for the GigaTracKer (GTK) detector
  - silicon pixel tracker providing 4D track reconstruction
  - operating at very large particle rates (~750 MHz of particles)
  - one of the most crucial detectors in NA62 used for tracking and background suppression
- Performance studies and operational aspects using data collected after 2021
  - effects of intensity on the detector (time resolution, sensor irradiation, track reconstruction efficiency, etc.)
  - calibration of the detector (pixel-by-pixel time calibration, alignment, etc.)







