

Development of a cosmic-ray detector (electromagnetic calorimeter)

Serhii Cholak Guido Haefeli

26/09/2022

Calorimetry

- Important and powerful detector techniques in experimental particle physics
- Two main categories:
 - Electromagnetic calorimeters (ECAL) for detection of e^{\pm} and γ
 - Hadron calorimeter **(HCAL)** for detection of π^{\pm} , p^{\pm} , K^{\pm} , etc
- It measures:
 - Energy of incoming particles (by absorption)
 - Spatial location of the energy deposit
 - (Sometimes) direction of incoming particles

• HCAL module

ECAL module

Our detector

- ECAL made of organic scintillator stripes forming active layers, that are interleaved with passive layers (absorbers)
- 16 layers in total in XY, corresponding to 0.75 radiation lengths (X_0) and about 0.035 nuclear interaction lengths (λ_0)
- Each sensitive layer has 24 scintillating bars with a wavelength shifting fibre
- Possibly to readout 24x16 = 384 channels

To the photodetector

384 mm

What can we detect?

- Muons and electrons coming from cosmic rays, that are hitting atmosphere
- How do we know it was an electron? Muon?
- How can we measure its energy?
- Actually we really don't know —> you will be the ones doing it for the first time! second time :)
 - We had a first attempt of measuring cosmic muons with our detector in the previous semester

Measurement by C. Polivka, L. Niggli, T. Monnard

Already done:

• the full readout using application-specific integrated circuit (ASICS)

EPFL Serhii Cholak

Already done:

- Geometry mapping (readout channels to physical cells)
- Basic track reconstruction algorithm

You will be doing:

- Improving track (+ showers) reconstruction algorithm
- Time alignment of the readout channels
- Detecting muon decays inside of ECAL (developing data analysis algorithm) based on the track reconstruction)

Run 81.20488 56.139007568359375 31.073135375976562
6.00726318359375 -19.058609
81.20488
56.139007568359375 31.073135375976562 6.00726318359375

FIGURE 4 Example of Track reconstruction

FIGURE 5 Example of Track reconstruction

Serhii Cholak

EPFL

To the photodetector

FIGURE 6 Example of 3D track reconstruction

Thank you!

Serhii Cholak

Code editors and some useful tips:

- Visual Studio Code (VSC) allows you to write your code directly on your machine and port it to the cluster / remote via ssh tunnel (<u>https://</u> code.visualstudio.com/docs/remote/ssh)
- Sublime text same functionality except the remote writing
- Old-schoolers use VIM / emacs! No need to install anything, just to learn couple dozens of short cuts ;)
- To copy data from and to the remote machine **scp** is fine but I do recommend **rsynk**
- For the most curious, there is a possibility to "mount" a remote machine as local disc to your PC (https://askubuntu.com/questions/412477/mount-remote-directory-using-<u>ssh</u>)

Starting tutorials + project documentation:

• Tbd