

Heavy flavour spectroscopy at LHCb ICHEP2012 36th International Conference for High Energy Physics

R. Märki on behalf of the LHCb collaboration

Ecole Polytechnique Fédérale de Lausanne (EPFL)

5 July 2012

- Motivation and status
- The LHCb experiment at CERN
- Mass measurements of Λ_b^0 , Ω_b^- , Ξ_b^- and Ξ_b^0
- First observation of excited Λ_b^0 baryons
- Observation of excited D_{sJ} mesons
- Summary and plans

Motivations for heavy quark hadron spectroscopy

Different QCD models predict different masses, lifetimes, branching ratios, spin-parity etc. for many *c*- and *b*-hadrons.

Further confirmation and testing of models of the heavy quark interactions is provided by *c*- and *b*-hadron spectroscopy

b-baryon status: 16 predicted ground states

- Weakly decaying: Λ_b^0 , Ξ_b^0 , Ξ_b^- and Ω_b^- baryons observed
- Strongly decaying: only charged Σ_b^{\pm} observed
- Some first excited states seen

c-meson status:

• Remaining puzzles in *cs* states

The LHCb experiment at CERN

- LHCb single-arm forward spectrometer at the LHC
- Recording *pp* collisions with $\sqrt{s} = 7$ TeV (in 2011) and 8 TeV (in 2012)
- Optimized for measurements in heavy-flavour physics
- Comprizes tracking detectors, RICH detectors, calorimeters and muon chambers.
- The tracking system: Vertex Locator (VeLo), Tracker Turicensis (TT), Inner-Tracker (IT) and Outer Tracker (OT)

Mass measurements at LHCb

- Many mass measurements performed at LHCb
- Good mass resolution
- Example: currently world best A⁰_b mass measurement with 35 pb⁻¹ of 2010 data¹.

LHCb Λ_b^0 mass measurement $M(\Lambda_b^0) = 5619.19 \pm 0.70 \text{ (stat)} \pm 0.30 \text{ (syst) MeV/c}^2$

Also recent ATLAS measurement²

$$M(\Lambda_b^0) = 5619.7 \pm 0.7(\text{stat}) \pm 1.1(\text{syst}) \text{ MeV/c}^2$$

 \rightarrow Consistent with the LHCb value.

¹Physics Letters B 708 (2012) 241 ²ATLAS-CONF-2012-055

Momentum calibration at LHCb

• Crucial ingredient for mass measurements is momentum scale calibration.

- Momentum scaled by factor 1α such that the invariant mass of $J/\psi \rightarrow \mu^+ \mu^-$ is reconstructed at the PDG value.
- Systematics evaluated by the spread in calibration of other well known two-body decays (D⁰, K⁰_S, etc.).

Ξ_b^- and Ω_b^- mass measurements

Before the first LHCb measurement, both Ξ_b^- and Ω_b^- baryons have been observed but there was a very significant inconsistency regarding the Ω_b^- mass.

	Value measured or predicted for $M_{\Omega_b^-}$				
DØ ³	6165	\pm 10	\pm 13	MeV/c^2	
CDF ⁴	6054.4	\pm 6.8	\pm 0.9	MeV/c^2	
Theory ⁵	6052.1	\pm 5.6		MeV/c^2	

DØ measurement of \varOmega_b^- mass is more than 6 standard deviations away from the CDF one !

Also: only the CDF value is in agreement with main QCD models.

³Phys. Rev. Lett. 101:232002 (2008) ⁴Phys. Rev. D80:072003 (2009) ⁵Annals Phys. 324:2-15 (2009)

$\overline{\Xi_{h}^{-}} \rightarrow J/\psi \, \overline{\Xi^{-}}$ and $\Omega_{h}^{-} \rightarrow J/\psi \, \Omega^{-}$ mass measurements - Fits

- Using 0.62 fb⁻¹ of 2011 data
- Single gaussian fit
- Width fixed to MC 0

Events / (10 MeV/c²)

40

35

30 25

20

15 10Ē

5600

$\varXi_b^- \to J\!/\!\psi\,\varXi^-$ and $\varOmega_b^- \to J\!/\!\psi\,\varOmega^-$ mass measurements - Systematics

Source of uncertainty	$\Xi_b^- \to J/\psi \Xi^-$	$\Omega_b^- \to J/\psi \Omega^-$
Momentum calibration:		
Average momentum scale	1.2	2.1
η dependence of momentum scale	< 0.1	< 0.1
Detector description:		
Energy loss correction	< 0.1	< 0.1
Mass fitting:		
Signal model	0.1	0.1
Background model	< 0.1	0.7
Total systematic uncertainty	1.2	2.2

Biggest systematic uncertainty from momentum calibration

Final result

[LHCb-CONF-2011-060]

$$egin{aligned} M_{\Xi_b^-} &= 5796.5 \pm 1.2 \ (ext{stat.}) \pm 1.2 \ (ext{syst.}) \ ext{MeV/c}^2 \ M_{\Omega_b^-} &= 6050.3 \pm 4.5 \ (ext{stat.}) \pm 2.2 \ (ext{syst.}) \ ext{MeV/c}^2 \end{aligned}$$

 \rightarrow in agreement with CDF and not with DØ.

The Ξ_b^0 baryon

A signal has been observed for the first time in the $\Xi_b^0 \rightarrow D^0 p K^$ channel with a significance of 2.6 standard deviations.

The fit gives
[CERN-LHCb-CONF-2011-036]

 $M_{\Xi_b^0} = 5802.0 \pm 5.5 \text{ (stat)} \pm 1.7 \text{ (syst)} \text{ MeV/c}^2$

$\Lambda^0_b \to \Lambda^+_c \pi^-$ at LHCb

Within the full 2011 statistics (1 fb^{-1}):

- Huge samples of hadronic decays of Λ_b^0 collected !
- 70'540 \pm 330 signal events⁶
- ${\circ}~$ Signal-to-background (±25 MeV/c² around the nominal ${\it \Lambda}^0_b$ mass) S/B = 11

⁶arXiv:1205.3452

Excited Λ_b^0 -baryons

- $\,\circ\,$ Excited \varLambda^0_b states: two states with $\mathsf{J}^P=1/2^-$ and $3/2^-$
- ${\scriptstyle \circ }$ Orbital excitations with L =1
- First observation at LHCb
- Predictions exist:

Reference	$M[\Lambda_{b}^{0*}(1/2^{-})]$	$M[\Lambda_{b}^{0*}(3/2^{-})]$	
Capstick, Isgur	5912	5920	
[PRD 34 2809 (1986)]			
Baccouche, et al.	5920 (spin-averaged)		
[hep-ph/0105148]			
Garcilazo, et al.	5890	5890	
[hep-ph/0703257]			
Ebert, et al.	5930	5947	
[arXiv:0705.2957]			
Karliner, et al.	5929 ± 2	5940 \pm 2	
[arXiv:0804.1575]			
Roberts, Pervin	5939	5941	
[arXiv:0711.2492]			

Predicted mass above $\Lambda_b^0 \pi^+ \pi^-$ threshold (5900 MeV/c²) but below the $\Sigma_b \pi$ one (around 5950 MeV/c²).

First observation of excited Λ_b^0 baryons

Kinematic fit - Λ_b^0 and Λ_c^+ mass constraint

The significances of the observations are 4.9 and 10.1 standard deviations, respectively.

⁷arXiv:1205.3452

Current status of $c\overline{s}$ mesons

• $D_{s0}^*(2317)^+$ and $D_{s1}(2460)^+$ states discovered in the $D_s^+\pi^0$ channel in 2003 but were predicted to have much higher masses

- D^{*}_{s1}(2700)⁺, D^{*}_{sJ}(2860)⁺ and D_{sJ}(3040)⁺ excited states observed in DK and D^{*}K decay modes and in three-body b-hadron decays at the B-factories between 2006 and 2009
- Quantum numbers of $D_{s1}^*(2700)^+$ need further confirmation
- Existence of the $D_{sJ}^*(2860)^+$ resonance still unclear and its spin-parity unknown

D^0 , D^+ and K_S^0 at LHCb

Very clean samples of D^0 , D^+ and K_S^0 at LHCb

(a) D^+ , (b) D^0 , (c) K_S^0 decaying inside and (d) outside the vertex detector $K_S^0 \to \pi^+\pi^-$ mass resolution down to 3.5 MeV/ c^2 !

D_{sJ} states observations

Combined fit⁸ - background subtracted (first peak is $D_{s2}^{*}(2573)^{+}$)

- All compatible with previous results from the B-factories, $D_{sl}^*(2860)^+$ confirmed
- Precision dominated by systematic effects
- No statistically significant D_{sJ} resonance above 3 GeV/c² observed
- Spin-parity assignment still need angular analysis of D^*K

⁸LHCb-PAPER-2012-016

Summary and plans

- LHCb gives most precise Λ_b^0 mass measurement
- \varXi_b^- and \varOmega_b^- masses measured at LHCb and CDF observation of \varOmega_b^- confirmed
- ${\circ}\,$ Excited Λ_b^0 state observed and measured for the first time at LHCb
- LHCb confirms existence of $D^*_{sJ}(2860)^+$ and $D^*_{s1}(2700)^+$, mass + decay width measured
- New measurements are soon to come with 2011 data (1 fb⁻¹): Λ_b^0 , Ξ_b^- and Ω_b^- lifetimes
- Excellent prospects for further spectroscopy at LHCb in the years to come: expect 2.5 fb⁻¹ by end of 2012 + additional 5 fb⁻¹ at least by 2017 with a *b*-hadron production cross section twice as large.

Thank you for your attention

BACKUP SLIDES

Ξ_b^- and Ω_b^- mass measurements

- ${\scriptstyle \bullet}\,$ Theory, CDF and LHCb agree but DØ does not.
- Measurements and prediction still have large uncertainties.

 $M(\pi^+\pi^-)$ spectrum in $\Lambda_b^{0*} \to \Lambda_b^0 \pi^+\pi^-$

• $M(\pi^+\pi^-)$ spectrum is consistent with the result of phase-space decay simulation ($\chi^2/ndf = 1.6$ for ndf = 9)

- $D^+ K^0_S$ and $D^0 K^+$ mass distributions without background subtraction
- The low signal-to-background ratio is responsible for the large systematic uncertainties