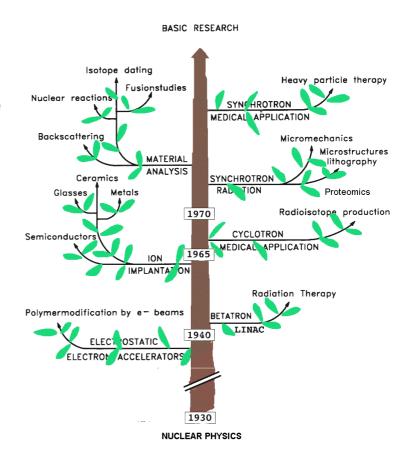
L aboratoryP articleA cceleratorP hysics

Lenny Rivkin, EPFL & PSI

http://lpap.epfl.ch



The Role of Accelerators in Physical and Life Sciences

"It is an historical fact that scientific revolutions are more often driven by new tools than by new concepts"

Freeman Dyson

Possibilities for TPs, Master thesis

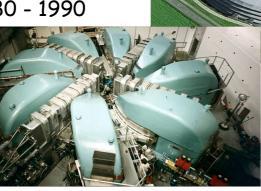
PSI (several postdocs, graduate students)

- SwissFEL: future X-Ray Free Electron Laser
- Swiss Light Source (SLS)
- neutrons, muons beams
- Hadron therapy

CERN (16 EPFL doctoral students)

- LHC and its upgrades, injectors
- future linear colliders R&D
- neutrino beams

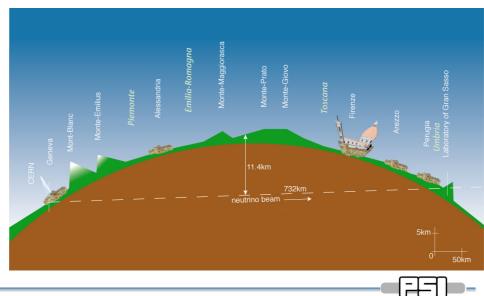
Other accelerator labs in the world (SLAC, MAXLab, etc)



Accelerators at PSI

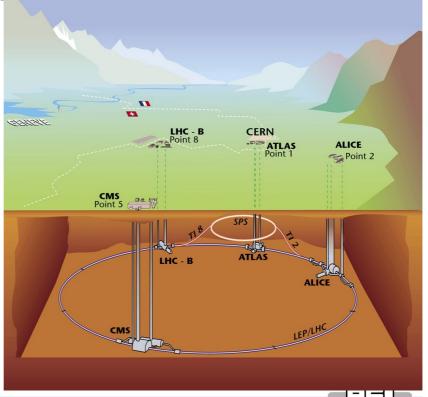
SwissFEL 2005 -2016

Synchrotron Light Source 1990 - 2000



Examples of TPs

CERN neutrino beams steering, LHC new injector beam CLIC Test Facility etc.



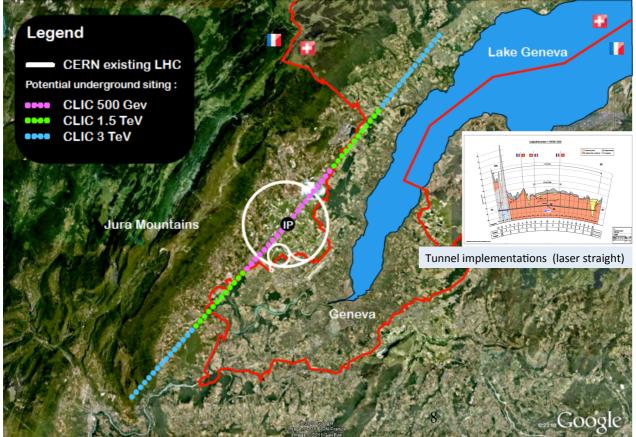
27 km "tunnel with the future"

LHC 7+7 TeV

protons on protons

$$L = 10^{34} \, cm^{-2} s^{-1}$$

High energy frontier: 80 km tunnel?


Depending on the achievable magnetic field

- 42 TeV with 8.3 T (present LHC magnets)
- 80 TeV with 16 T (new technology, Nb₃Sn)
- 100 TeV with 20 T (high temp sc magnets)

Figure 9. Two possible location, upon geological study, of the 80 km ring for a Super HE-LHC (option at left is strongly preferred)

CLIC near CERN

Accelerator R&D

LHC and its upgrades

e+e- linear colliders: ILC and CLIC

Neutrino beams, factory; Muon collider

Synchrotron light sources, Free Electron Lasers

Neutron sources

Advanced accelerator concepts

Medical applications (e.g. hadron therapy)

