ENGINES OF DISCOVERY

A Century of Particle Accelerators

"The real voyage of discovery consists not in seeking new landscapes but in having new eyes"

Marcel Proust

(Le véritable voyage de découverte ne consiste pas à chercher de nouveaux paysages, mais à avoir de nouveaux yeux)

Andrew Sessler · Edmund Wilson

25 Nobel Prizes in Physics that had direct contribution from accelerators

Year	Name	Accelerator-Science Contribution to Nobel Prize-
		Winning Research
1939	Ernest O. Lawrence	Lawrence invented the cyclotron at the University of Californian at Berkeley in 1929 [12].
1951	John D. Cockcroft and	Cockcroft and Walton invented their eponymous linear
	Ernest T.S. Walton	positive-ion accelerator at the Cavendish Laboratory in
		Cambridge, England, in 1932 [13].
1952	Felix Bloch	Bloch used a cyclotron at the Crocker Radiation
		Laboratory at the University of California at Berkeley
		in his discovery of the magnetic moment of the neutron
		in 1940 [14].
1957	Tsung-Dao Lee and Chen Ning	Lee and Yang analyzed data on K mesons (θ and τ)
	Yang	from Bevatron experiments at the Lawrence Radiation
		Laboratory in 1955 [15], which supported their idea in
		1956 that parity is not conserved in weak interactions
		[16].
1959	Emilio G. Segrè and	Segrè and Chamberlain discovered the antiproton in
	Owen Chamberlain	1955 using the Bevatron at the Lawrence Radiation
		Laboratory [17].
1960	Donald A. Glaser	Glaser tested his first experimental six-inch bubble
		chamber in 1955 with high-energy protons produced by
1071	D. L H. C L.	the Brookhaven Cosmotron [18].
1961	Robert Hofstadter	Hofstadter carried out electron-scattering experiments
		on carbon-12 and oxygen-16 in 1959 using the SLAC
		linac and thereby made discoveries on the structure of
1963	Maria Goeppert Mayer	nucleons [19]. Goeppert Mayer analyzed experiments using neutron
1903	Maria Goeppert Mayer	beams produced by the University of Chicago
		cyclotron in 1947 to measure the nuclear binding
		energies of krypton and xenon [20], which led to her
		discoveries on high magic numbers in 1948 [21].
1967	Hans A. Bethe	Bethe analyzed nuclear reactions involving accelerated
1701	Tano II. Benie	protons and other nuclei whereby he discovered in
		1939 how energy is produced in stars [22].
1968	Luis W. Alvarez	Alvarez discovered a large number of resonance states
1700		using his fifteen-inch hydrogen bubble chamber and
		high-energy proton beams from the Bevatron at the
		Lawrence Radiation Laboratory [23].
1976	Burton Richter and	Richter discovered the J/Ψ particle in 1974 using the
	Samuel C.C. Ting	SPEAR collider at Stanford [24], and Ting discovered
	_	the J/Y particle independently in 1974 using the
		Brookhaven Alternating Gradient Synchrotron [25].
1979	Sheldon L. Glashow,	Glashow, Salam, and Weinberg cited experiments on
	Abdus Salam, and	the bombardment of nuclei with neutrinos at CERN in
	Steven Weinberg	1973 [26] as confirmation of their prediction of weak
		neutral currents [27].

1980	James W. Cronin and	Cronin and Fitch concluded in 1964 that CP (charge-
1900	Val L. Fitch	parity) symmetry is violated in the decay of neutral K
	Vai L. Pitch	mesons based upon their experiments using the
		Brookhaven Alternating Gradient Synchrotron [28].
1981	Wai M. Ciarlaha	
1981	Kai M. Siegbahn	Siegbahn invented a weak-focusing principle for
		betatrons in 1944 with which he made significant
		improvements in high-resolution electron spectroscopy
1002	W	[29].
1983	William A. Fowler	Fowler collaborated on and analyzed accelerator-based
		experiments in 1958 [30], which he used to support his
		hypothesis on stellar-fusion processes in 1957 [31].
1984	Carlo Rubbia and	Rubbia led a team of physicists who observed the
	Simon van der Meer	intermediate vector bosons W and Z in 1983 using
		CERN's proton-antiproton collider [32], and van der
		Meer developed much of the instrumentation needed
		for these experiments [33].
1986	Ernst Ruska	Ruska built the first electron microscope in 1933 based
		upon a magnetic optical system that provided large
		magnification [34].
1988	Leon M. Lederman,	Lederman, Schwartz, and Steinberger discovered the
	Melvin Schwartz, and	muon neutrino in 1962 using Brookhaven's Alternating
	Jack Steinberger	Gradient Synchrotron [35].
1989	Wolfgang Paul	Paul's idea in the early 1950s of building ion traps
		grew out of accelerator physics [36].
1990	Jerome I. Friedman,	Friedman, Kendall, and Taylor's experiments in 1974
	Henry W. Kendall, and	on deep inelastic scattering of electrons on protons and
	Richard E. Taylor	bound neutrons used the SLAC linac [37].
1992	Georges Charpak	Charpak's development of multiwire proportional
		chambers in 1970 were made possible by accelerator-
		based testing at CERN [38].
1995	Martin L. Perl	Perl discovered the tau lepton in 1975 using Stanford's
		SPEAR collider [39].
2004	David J. Gross, Frank Wilczek,	Gross, Wilczek, and Politzer discovered asymptotic
2001	and	freedom in the theory of strong interactions in 1973
	H. David Politzer	based upon results from the SLAC linac on electron-
		proton scattering [40].
2008	Makoto Kobayashi and	Kobayashi and Maskawa's theory of quark mixing in
2000	Toshihide Maskawa	1973 was confirmed by results from the KEKB
		accelerator at KEK (High Energy Accelerator Research
	and Yoichro Nambu	Organization) in Tsukuba, Ibaraki Prefecture, Japan,
		and the PEP II (Positron Electron Project II) at SLAC
		[41], which showed that quark mixing in the six-quark
		model is the dominant source of broken symmetry [42].
L		model is the dominant source of broken symmetry [42].

2013: François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at **CERN's Large Hadron Collider**"

20 Nobels with X-rays

Chemistry

- 1936: Peter Debye
- 1962: Max Perutz and Sir John Kendrew
- 1976 William Lipscomb
- 1985 Herbert Hauptman and Jerome Karle
- 1988 Johann Deisenhofer, Robert Huber and Hartmut Michel
- 1997 Paul D. Boyer and John E. Walker
- 2003 Peter Agre and Roderick Mackinnon
- 2006 Roger D. Kornberg
- 2009 V. Ramakrishnan, Th. A. Steitz, A. E. Yonath
- 2012 Robert J. Lefkowitz and Brian K. Kobilka

Physics

- 1901 Wilhelm Rontgen
- 1914 Max von Laue
- 1915 Sir William Bragg and son
- 1917 Charles Barkla
- 1924 Karl Siegbahn
- 1927 Arthur Compton
- 1981 Kai Siegbahn

Medicine

- 1946 Hermann Muller
- 1962 Frances Crick, James Watson and Maurice Wilkins
- 1979 Alan Cormack and Godfrey Hounsfield