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2021 Imaging Optics Course Notes - 8 
 
 
Wide field microscopy of 3D objects 
 
In our discussion about imaging systems we found that the limit on the transverse (x-
y) resolution is due to the finite aperture of the lens. For a square aperture in a sible 
lens imaging system the limit was  in each direction where z2  is the distance 
from the lens to the image plane.  For a circular aperture of diameter B the PSF is a 
Bessel function and the width of the Bessel function is the classic resolution limit  

 
 

We consider the intensity of two points close to each other at the input plane and plot 
their joint image. (See Figure 11.1).  When the two sources are far apart then the two 
PSF”s are clearly separated. But as they get closer it becomes difficult to tell whether 
we have two sources or a single bigger source. Notice that the relative phase between 
the two sources makes a difference also. The sidelobes of the PSF can interfere with 
our ability to see weak sources even farther away than the resolution limit. (See 
Figure 11.1) 
 

 
Figure 12.1 

We can design a PSF that may have a somewhat broader main lobe but lower 
sidelobes which can give better image quality. The classic example is a Gaussian PSF. 
The way this can be accomplished is to have a Gaussian pupil function at the lens 
rather than the clear aperture we had in the derivation of the previous lecture. 
Therefore when we take the Fourier transform over x” we will get a Gaussian (the FT 
of a Gaussian is a Gaussian) and not a sinc function. 
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We have been discussing the imaging of 2D objects (thin transparencies placed at the 
input plane).  In fact, objects are generally 3D and therefore it becomes important to 
think about the 3D PSF of the imaging system. In other words it is important to know 
the response induced at the image plane as an input point source (scatterer or emitter) 
moves in z.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12,2 
 

 
 
 
 
 
 
As the point source moves from z=0 to z=Δz, the focus spot moves to   

  

We calculate the 3D PSF by plotting the amplitude of the light as a function of x,y for 
z=z1+z2+Δz2. As Δz2 increases the 2D PSF spreads in the detector plane and the 
intensity falls off. Just like in the 2D case we can define the resolution criterion 
somewhat arbitrarily for the distance Δz2 where the light intensity drops to ½ of the 
intensity at Δz2=0.  We can do this numerically using the code for different numerical 
apertures of the lens. (Figure 11.2). Alternatively we can get an analytical expression 
by considering either a Gaussian beam coming to a sharp focus in the image plane and 
then defocussing away from it or by tracing rays. The ray tracing calculation shown in 
Figure 11.2 is based on the idea that if we ignore diffraction and in the absence of lens 
aberrations the image of an ideal point source will be an infinitesimally small focus 
spot. As we move away from the focus, the spot will grow even under the ray optics 
approximation due to defocussing. We can get an estimate for Δz2 by calculating the 
distance in z where the spot size predicted by ray optics will grow to the spot size of 
the diffraction limit.  From the geometry of Figure 11.2 we have:  
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In other words if the numerical aperture is close to 1 then the transverse and axial 
resolutions are comparable. Often however in practice the PSF is cigar shaped with 
the axial resolution being several times poorer than the axial. Exactly the same 
conclusion is drawn by using the BPM to simulate the focusing of a point source 
(Gaussian beam) through a lens of finite aperture. The larger aperture gives a tighter 
focus in x-y (the little red dot) and also a less elongated response in z.  In microscopy 

 is the depth resolution of a conventional wide field instrument and we normally 
want this to be as small as possible. In photography  is the depth of focus and 
generally want this to be as large as possible. If the lens aperture is open wide we 
obtain good light sensitivity (why?) and better transverse resolution but the objects 
that are not in the exact plane of best focus are blurred.  
 

 
Figure12.3 

It is interesting to ask how do we perceive 3D objects. After all we have lenses in our 
eyes whose aperture opens and closes depending on the brightness of the scene we are 
looking at. At night the aperture (pupil) opens wide and we lose depth perception, 
resolution, image quality (abberations become important) and color sensitivity. 
During the day we normally look at 3D objects that are not transparent. We perceive 
the 3D shape of the world by focusing in different planes, the parallax between the 
two eyes, the relative size of the objects, the obstruction of objects that are behind 
other objects, and the relative motion of objects as we move side-to-side. 3D movies 
clearly demonstrate dramatically the power of parallax but if we close one eye we still 
perceive a 3D world even if that eye has an artificial lens that does not automatically 
refocus.  Therefore the brain does a lot of the 3D shape recognition.  With a dual lens 
imaging system or more generally a multiple lens system we can estimate the 3D 
shape of the object by simple geometry by assuming that each image is a 2D 
projection of the 2D object in the direction of the optical axis of each imaging system.  
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Wide field versus scanning microscopy 
 
If the 3D objects to be images are partially transparent then things become more 
complicated. This is often the case in microscopy, particularly when imaging 
biological samples. We will draw the distinction between wide-field and scanning 
imaging systems. Wide-field is the type of system we have been discussing so far. 
The object is illuminated with a beam of light that is large enough to cover the entire 
object or at least a big part of it. The light transmitted, scattered or emitted by the 
object is imaged onto a 2D sensor. Alternatively the incident beam can be focused 
spot that is scanned in 2D or 3D to illuminate sequentially different parts of the 
object. Clearly the scanning method is more complex and time consuming but it has 
some advantages. It is easier to explain these advantages assuming the object being 
imaged is a fluorescent object but the same general arguments apply for scattering 
objects.   
 
For a wide-field imaging system, as we focus on different planes of the object we get 
a sharp image of a  slice (section) of the object and the rest of the object is 
recorded as a superimposed blurred background. For complex 3D objects the out of 
focus planes contribute a background that reduces the contrast. This background 
grows with object thickness and ultimately it limits our ability to see each slice 
separately. We can also consider the axial resolution as the separation of two point 
sources in z that will allow us to clearly distinguish them. The axial resolution is 

therefore simply . The basic difference between wide-field imaging 

and the scanning version is that the image is obtained by illuminating one voxel (3D 
pixel) at a time. At first glance it might seem that this gives us an advantage in terms 
of suppressing the out-of-focus background fluorescence. This is not true however. 
You can convince yourself of this by considering the time integrated illumination 
intensity of a scanning beam and compare this to the illumination intensity of the 
wide-field illumination. They are the same. There is an advantage in terms of 
resolution in scanning systems since the overall PSF is the product of the PSF of the 
imaging system that introduces the illuminating beam and the PSF of the imaging 
system that images the fluorescence onto the 2D sensor. The product of the two PSF’s 
is narrower in all 3 dimensions and therefore there is an improvement in resolution 
generally by a factor less than 2 (  for matched Gaussian PSF’s ). 
 
Confocal Imaging 
 
There are several ways to suppress the background in a scanning imaging system. We 
will discuss here the confocal microscopy method, invented by Marvin Minsky (better 
known as the father of the field of artificial intelligence). The image on the left in 
Figure 11.4 was obtained with a wide-field microscope by focusing on the 
fluorescence emitted by a cell. Also shown in Figure 11.4 is the same cell imaged 
with a “confocal” microscope. The improvement provided by the confocal 
microscope is evident.  
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Figure 12.4 

The optical arrangement of confocal microscope is shown in Figure 11.5.  

 
Figure 12.5 

The illuminating laser is focused on the object (if a non-laser source is used then a 
pinhole is imaged onto the object instead). The object is mounted on a 3D 
translational stage so that the illuminating spot can be sequentially scanned 
throughout the volume of the object. The fluorescence is not uniform throughout the 
volume of the object but it is much stronger in the region near the focus. This 
illumination volume is approximately the same as the cigar-shaped 3D PSF of the 
imaging system.   
 
  
The fluorescence generated is imaged onto the plane of the “pinhole aperture”. The 
combined PSF of the two imaging systems determined the resolution as we discussed 
earlier. The difference between the two PSF’s is shown in Figure 11.6. The difference 
is evident and the resulting difference in the quality of the wide-field versus scanning 
imaging can be significant. The dramatic improvement observed in Figure 11.4 is due 
to the pinhole however. Light that is emitted (or scattered) from a point source located 
at the plane of the object that is not in focus with respect to the plane of the pinhole 
aperture will be blurred and spread to a bigger diameter compared to the pinhole size. 
Points at the plane of best focus will be mapped to a diffraction limited spot. The 

	



	 6	

pinhole diameter is generally selected to be equal to the diffraction limited resolution, 
thereby passing efficiently the light originating from the confocal position on the 
object. Points on the object that are not in focus spread out on the plane of the pinhole 
and are blocked. Therefore the out-of-focus planes of the object are suppressed and 
they do not introduce the unwanted background.  

 
Figure 12.6 

 
 
Tomography 
 
 
Wide field Microscopy 
 
Imaging of 3D objects is often referred to as sectioning in microscopy. In a 
conventional wide field microscope the projection of the 3D object in the direction of 
the optical axis is obtained (see Figure 1). Under the ray optics approximation 
(diffraction can be neglected) the signal  detected on the imaging sensor, in the 
wide field microscope is  
 

   (1.1) 

  
where	 	is	the	complex,	3D	transmittance	function	of	the	
object.		It	is	as	if	the	object	behaved	like	a	thin	transparency	except	the	z	
dependence	of		the	absorption	and	the	dielectric	constant	are	explicitly	taken	
into	account.	The	function	 describes	the	3D	absorbtance	of	the	sample			
whereas	the	3D	distribution	of	the	index	of	refraction	is	proportional	to	 .	
Notice	that	in	the	absence	of	a	detection	method	that	records	the	phase	the	
detected	signal	does	not	contain	information	about	the	index	of	refraction	in	this	
case.	More	on	this	later.		
	
Radon Transform 
 

d(x, y)

d(x, y) = e
− α (x,y,z )dz∫ e

− j β (x,y,z )dz∫ e− jkz
2

= e
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If	we	illuminate	the	object	with	a	plane	wave	at	an	angle	 	we	can	calculate	
the	detected	signal	by	rotating	the	coordinates	system	and	Eq.	(1.1)	can	be	
rewritten	in	the	rotated	coordinate	system.	….	
	
Diffraction	Tomography	
	
If	diffraction	cannot	be	neglected	we	can	use	the	Fresnel	integral	to	calculate	

assuming the sample is illuminated with a plane wave propagating with 
amplitude propagating along the z axis :  

   (1.2) 

where	z=0	is	at	the	focal	plane	of	the	imaging	system	in	Figure	1.			
	
	The	above	expression	has	two	approximations:	The	first	is	the	usual	
approximations	for	the	Fresnel	integral	(paraxial,	scalar	diffraction)	which	we	
undid	by	replacing	the	paraxial	version	with	the	spherical	wave	and	the	second	
is	the	Born	approximation	where	we	have	implicitly	neglected	multiple	
scattering	by	assuming	that	the	Fresnel	formula	which	is	applicable	for	
propagation	in	homogeneous	media	can	be	used.	If	we	don’t	use	the	paraxial	
approximation	and	use	the	scattering	cross	section,	Eq.	1.2	becomes	the	Born	
approximation	diffraction	integral.	If	the	incident	field	is	not	a	plane	wave	along	
z	or	is	not	even	a	plane	wave	at	all	then	if	we	neglect	the	modification	of	the	
incident	wave	as	it	propagates	through	the	object	then	we	can	simply	replace	A	
by	the	Fresnel	diffraction	integral	of	the	incident	wave	accounting	for	its	
propagation	from	 	to	 	.	We	will	come	back	go	this	later		but	first	we	
will	explore	how	this	is	done	in	the	Fourier	plane.		
	
The	Wolf	transform	
	
The	illumination	pattern	is	decomposed	into	its	Fourier	components	and	we	can	
consider	the	light	scattered	by	the	3D	sample		for	each	plane	wave	component	at	
a	time.		WE	also	take	the	3D	Fourier	transform	of	the	transmittance	function	

	decomposing	it	into	gratings	of	varying	magnitude	and	orientation.	
From	our	analysis	of	the	diffraction	of	volume	gratings	when	illuminated	by	a	
plane	wave	we	know	that	there	is	a	Bragg	condition	relating	the	incidence	angle	
	of	the	illumination,	the	period	of	the	volume	grating	 	and	its	orientation.		

This	Bragg	matching	condition	is	depicted	diagrammatically	in	Figure	12.7.		
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Figure	12.7	
	
If	we	know	the	amplitude	and	phase	of	the	illuminating	wave,	then	we	can	derive	
the	diffracted	field	due	to	each	individual	grating	component	of	the	object.	We	
have	seen	that	for	a	thick	grating	the	diffracted	wave	is	approximately	a	plane	
with	a	wave-vector	 =	 	with	the	constraint	that	both	 and	 	lie	on	the	
Ewald	sphere.	In	the	optical	system	of	Figure	X,		 is	focused	onto	a	pixel	of	the	
camera	determined	by	the	transverse	components	 	and	 .	Specifically

		
	
The	amplitude	and	phase	of	the	light	incident	on	each	pixel	of	the	camera	is	a	
measure	of	the	amplitude	and	phase	of	the	corresponding		grating	component	of	
the	object		with	3D	spatial	frequency	components	
	

   

For	each	measurement	of	the	camera	the	number	of	gratings	we	measure	is	
equal	to	the	number	of	gratings	on	the	camera.	Changing	the	angle	of	hthan	106		
pixels	and	it	is	possible	to	have	more	than	 	illumination	angles,	yielding	
measurement	of	the	amplitude	and	phase	of		more	than	a	billion	frequency	
components	(gratings)	of	the	3D	Fourier	spectrum	of	the	object.	An	inverse	3D	
Fourier	transform	of	this	measured	portion	of	the	spectrum	yields	the	estimate	
of	the	object	f(x,y,z).		
	
For	the	BPM	approach	to	Optical	Diffraction	Tomography	see	the	following	
paper:	
	
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-2-6-517	
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