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Interferometry	
	
Interferometry	 is	 the	 most	 common	 method	 for	 measuring	 the	 phase	 of	 an	
optical	 field.	 	 A	 wide	 variety	 of	 interferometers	 exist.	 We	 will	 start	 with	 the	
Michelson	interferometer	shown	in	Figure	1.		
	
	

	
	
Figure	1	Michelson	inteferometer	



The	Michelson	is	widely	used	to	measure	the	shape	of	a	surface,	characterize	the	
coherence	 properties	 of	 a	 light	 source,	 or	 measure	 phase	 shifts	 in	 the	 space	
between	the	two	arms.	The	signal	detected	by	the	detector	is		
	

		
	
The	 fact	 that	 we	 have	 two	 separate	 waves	 overlapping	 or	 interfering	 in	 the	
detector	plane	results	in	an	intensity	pattern	that	contains	information	about	the	
phase.	Specifically	we	obtain	information	about	the	phase	difference	between	the	
two	beams	of	 the	 interferometer.	We	can	 think	of	one	of	 the	 two	beams	as	 the	
known	 reference	 and	 then	 we	 can	 deduce	 from	 the	 interference	 pattern	 the	
phase	 of	 the	 other	 beam.	 In	 Figure	 3	 we	 see	 the	 phase	 on	 a	 Michelson	
interferometer	with	one	of	the	two	mirrors	being	spherical.	
	

	
	

Figure	3	
	
	The	recorded	pattern	in	this	case	is	of	the	form	
	

		
	
This	 pattern	 is	 called	 a	 zone	plate	 in	 optics	 and	 it	 comes	 up	 often	 since	 it	 is	
essentially	 the	 interferometric	 recording	of	 the	 impulse	 response	of	 free	 space	
propagation.	 	 If	 the	 shape	 of	 the	mirror	 were	 not	 spherical	 and	 unknown	we	
might	 try	 to	 deduce	 its	 shape	 from	 the	 interference	 measurement.	 	 For	 a	
spherical	mirror	it	seems	natural	to	interpret	the	zone	plate	as	corresponding	to	
a	 spherical	 surface	 shape	 for	 the	 second	 mirror.	 If	 the	 shape	 is	 not	 regular	
however	we	may	have	a	problem	of	 interpretation.	The	 fact	 that	we	observe	a	
signal	 that	 is	 proportional	 to	 the	 cosine	 of	 the	 phase	 introduces	 an	 ambiguity	
since	 	for	 any	 integer	 m.	 This	 is	 the	 phase	 unwrapping	
problem.	It	is	an	easy	problem	in	1D	if	we	assume	continuity	of	the	surface	being	
imaged	 but	 the	 problem	 becomes	 a	 complex	 optimization	 exercise	 in	 2D.	 The	
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phase	 	can	be	a	constant	or	it	can	be	a	known	function	of	x	and	y.	We	will	see	
later	 on	 as	 we	 talk	 about	 holography	 that	 making	 the	 reference	 a	 linear	 or	
quadratic	function	of	position	brings	up	interesting	possibilities.		
	
Michelson	invented	and	used	this	interferometer	in	1887	(together	with	Morley)	
to	measure	the	speed	of	light	as	the	earth	rotates	around	the	sun	(Figure	4).	It	
was	thought	at	the	time	that	there	was	an	“aether”	everywhere	filling	in	what	we	
now	know	to	be	vacuum.	It	was	also	believed	that	the	eather	moved	with	respect	
to	the	earth.	If	this	were	true	the	speed	of	light	would	depend	on	whether	the	
light	travelled	“down-wind”	or	“up-wind”.		Michelson	showed	that	there	was	no	
difference	in	the	speed	of	light	up	or	down	wind	and	this	put	in	question	the	
existence	of	the	aether.	Michelson	got	the	Nobel	prize.		
 

	
	
Figure	 4.	 The	 velocity	 of	 the	 aether	 would	 change	 the	 speed	 of	 light	 as	 the	
velocity	of	the	wind	changes	the	speed	of	sound.		
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Figure	 5.	 	 The	 interferometer	 used	 in	 the	 Michelson-Morley	 experiment	
(photograph	and	schematic	diagram)	and	the	fringes	obtained	with	white	 light.	
Notice	that	the	middle	fringe	is	black-and-white.	A	change	in	velocity	of	the	light	
shifts	the	position	of	this	fringe.		
	
The	pattern	in	Figure	5	is	the	interference	between	two	white	light	plane	waves.	
We	can	understand	the	rainbow	effect	by	looking	at	the	interference	pattern	of	
two	monochromatic	plane	waves	at	wavelength	λ.		
	
	 		
	
At	x=0	the	position	of	the	central	fringe	does	not	depend	on	wavelength	whereas	
at	 x>0	 the	position	depends	on	 the	wavelength.	Therefore	with	 the	white	 light	
source	 the	 central	 fringe	 is	white	 and	 the	 rest	 are	 rainbow	 colored.	Michelson	
used	this	effect	to	track	the	central	fringe.			
	

  
e− j 2π sinθ x/λ + e+ j 2π sinθ x/λ 2=2+ 2cos(4π sinθ x / λ)



More	 recently	 an	 upgraded	 version	 of	 the	 Michelson	 interferometer	 was	
constructed	 (Figure	 6)	 and	 used	 to	 detect	 gravity	 waves.	 	 The	 leaders	 of	 this	
project	at	Caltech	and	MIT	received	the	Nobel	prize	in	2017.		

	
	
Figure	6	Schematic	diagram	of	the	Michelson	interferometer	used	in	the	gravity	
wave	detection	experiment	(LIGO).		
	
Source	coherence		
	
In	the	discussion	so	far	we	have	been	assuming	a	perfectly	coherent	light	source	
(time	dependence	 	).	If	we	do	not	have	a	purely	monochromatic	source	then	
our	ability	 to	observe	 interference	 is	 generally	 impaired.	Consider	 for	example	
the	 Michelson	 interferometer	 with	 a	 source	 whose	 light	 amplitude	 can	 be	
described	by	 		where	a(t)	is	the	slow	varying	temporal	envelope	of	
the	source.		Suppose	that	the	two	paths	of	the	interferometer	differ	by	a	distance	
d	and	both	mirrors	are	perfectly	flat.	Then	the	signal	detected	is		
	

		

where	 	and	 		is	the	auto-correlation	of	the	source	(a(t)).	This	is	also	
called	the	temporal	coherence	function.	We	know	from	the	correlation	theorem	
that	the	Fourier	transform	of	the	correlation	is	the	power	spectrum.	See	Figure	4.	
The	wider	the	bandwidth	(W)	of	the	light	source	(while	light	source)	the	shorter	

its	 correlation	 length.	 	 The	 coherence	 length	 is	 .	 	 In	 order	 to	

e jωt

E(t) = a(t)e jω0t

Idet = a(t) 2 dt + a(t −τ ) 2 dt∫∫ + 2Re{ a(t)a*(t −τ )∫ dt}cosωτ

= 2R(0)+ 2R(τ )cosωτ
τ = d / c R(τ )

Δd = c Δτ = c
W



observe	 interference	 between	 two	 optical	 beams	 the	 difference	 in	 the	 optical	
paths	they	follow	to	reach	the	detector	must	be	less	than	the	coherence	length	of	
the	source.		
	

	
Figure	7	

	
Optical	Coherence	Tomography	(OCT)	
	
If	a	source	with	 low	coherence	 is	used	then	 	can	be	very	short.	Practically	a	
micrometer	is	readily	obtainable.	 	A	Michelson	interferometer	can	then	be	used	
as	an	imaging	device	by	scanning	the	reference	mirror	on	one	arm	and	the	object	
on	 the	 other.	 When	 a	 scatterer	 on	 the	 objects	 reflects	 light	 in	 one	 arm	 an	
interferometric	sinusoidal	signal	is	detected	only	if	the	signal	reflected	from	the	
mirror	on	the	other	arm	is	at	the	same	distance	within	one	coherence	length.	In	
this	way	scanning	the	object	in	3D	and	detecting	the	interferometric	signal	a	full	
3D	 image	 of	 the	 object	 can	 be	 formed.	 See	 Figure	 5	 for	 an	 example	 of	 an	OCT	
image	of	a	retina.		
		

Δd



	
	

Figure	8.	OCT	image	of	a	retina	
	
	
Other		interferometers			
	
The	drawing	of	four	different	interferometers	are	shown	in	Figure	6:	The		Mach-
Zhender,	 a	 shearing	 interferometer,	 Youngs	 double	 slit,	 and	 the	 pinhole	
interferometer.		
	
The	 pinhole	 interferometer	 is	 particularly	 interesting.	 A	 pinhole	 in	 a	
semitransparent	medium	smaller	than	the	diffraction	resolution	limit	provides	a	
reference	to	the	wavefront	that	goes	through	the	entire	semitransparent	mask	.	

The	 transmittance	 of	 the	 mask	 can	 be	 written	 as	 	.	 The	

constant	 background	 provides	 the	 pathway	 for	 the	 signal	 whereas	 the	 small	
square	aperture	samples	the	field	and	scatters	it	into	a	spherical	wave	which	acts	
as	a	reference.	See		Figure	7.	This	system	is	similar	in	some	respects	to	dark	field	
imaging.		
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Shearing	interrerometer		 	 	 										Pinhole	interferometer	
	
Figure	8	Interferometers	
	
	

	
Figure	9.	Pinhole	interferometer	
	
	
Wavefront	measurement		
	
A	diagram	of	the	Shack	Hartman	interferometer	is	shown	in	Figure	10.	An	array	
of	small	lenses	(a	lenslet	array)	is	used.	Each	lenslet	samples	the	local	wavefront		
which	 appears	 as	 a	 plane	 wave	 to	 the	 small	 aperture	 of	 the	 lens.	 The	 local	
direction	of	the	plane	wave	is	mapped	to	position	in	the	back	focal	plane	of	the	
lenslet.	Measurement	of	 the	position	 is	 an	 estimate	of	 the	 local	phase	 gradient	
from	which	we	can	obtain	the	phase	profile	by	integration.		
	
	



	
	
Figure	10.	Shack-Hartman	interferometer	
	

1. Spatially Modulate Illumination: 
We have assumed that the input object in an imaging system is a thin transparency 
illuminated by a monochromatic plane wave. This is sometimes true, particularly in a 
laboratory setting, but often this is not the case. The illumination maybe 
polychromatic and not collimated and objects may be the reflectance of a scattering 
surface. In most cases we can model such more complex situations by selecting a 
“structured illumination” properly.  If we illuminate the input transparency with a 
monochromatic plane wave travelling at an angle instead of along the z-axis, the pass-
band of the imaging system is shifted. This is demonstrated in Figure 6.7 for different 
angles of illumination. We can see that distortion a low pass filtering is introduced 
because only one of the diffracted orders of the higher spatial frequencies makes it 
through the aperture of the lens and when we plot amplitude or intensity these 
frequencies do not show up.  



Figure 11 
We can try a variation on this theme where two off-axis plane waves are used for 
illumination at this time and in this way we can improve the resolution by capturing 
higher spatial frequencies (Figure 12).  

 
Figure 12 

 
Another possibility is to have a spherical wave illumination (Figure 13). For a 
converging wave this can help keep the light near the optical axis and reduce 
aberrations.  
 
 
 



 
Figure 13 

 
Incoherent Illumination: 
 
If the illumination is not monochromatic then in principle it is straightforward to 
analyze the optical system one wavelength at a time as a monochromatic system as 
we have been doing. In the end we can superimpose all the frequency components to 
obtain the polychromatic response. This is precisely the approach if the temporal 
variation of the polychromatic light illumination is known deterministically. In 
general this would be a pulsed light source. The other possibility is to have an 
“incoherent” of a “partially coherent” illuminating source. In this case the amplitude 
of the illuminating field is modulated by a quasi-monochromatic wave  
where the time modulation is a random process that is not deterministically known but 
instead it can only be characterized by its time averaged properties such as the time 
averaged intensity  

  

or its power spectrum. By quasi-monochromatic we mean that the response of the 
optical system does not vary with wavelength of frequency over the bandwidth of the 
monochromatic component under consideration. We can take the spatial Fourier 
transform in x and y of the sample realization of the random process  to 
obtain a spectrum of plane waves with random amplitudes propagating at different 
angles. We can best analyze the effects of the coherence properties of the illumination 
on the diffraction pattern by considering how light originating from different points 
on the wavefront will interfere downstream. See Figure 12.  
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Figure 14. Spatial coherence 

 
For a purely spatially incoherent light source light will not interfere with light 
coming from any other place:  

  

If we assume spatially incoherent illumination at the input of a single lens imaging 
system, we obtain.  

 

The next step it to carry out the integration over time (t) first which gives us 
 (where I0   is the average  illumination intensity) and then we get 

the final expression for the output intensity as  

  

This simple result tells us that the system which with coherent illumination is linear in 
complex field amplitude and has an impulse response equal to a sinc function now it 
is a linear system in light intensity instead and it has an impulse response equal to 
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sinc2.  The result is quite intuitive since each point at the input reads out the impulse 
response of the coherent system and the overall intensity is recorded as the sum of the 
intensities rather the sum of the amplitudes which are then squared.  
The intensity of the incoherent imaging system also in the form of a convolution 
between the input intensity and sinc squared.  This means we can determine the 
frequency response for the incoherent imaging system which is the Fourier transform 
of sinc squared which is a triangle function (the autocorrelation of a square). The 
intuitive explanation for this is described in Figure 13.  

 
Figure 15 

 
Diffuse illumination: 
 
Diffuse illumination is the opposite of collimated. Light propagates in all directions. 
Spatially incoherent light is diffuse as we just saw but is also possible to have 
coherent light (laser light) that is diffuse. This is the case when we bounce a laser off 
the (rough) surface of a wall. Let us assume the amplitude reflectivity of the wall is 
f(x,y) and the roughness introduces a phase  then the input (the object) to the 
imaging system is the product of the two. The effect of the diffuse illumination is 
similar to the incoherent light illumination discussed above except now at the output 
we have  

 

This is very similar to the incoherent case but there is an important difference. In the 
incoherent case the randomness was due to the unknown temporal oscillation of the 
light which was averaged out by the detector integration. In this case the randomness 
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(the unknown) is the exact shape of the wall.  We take the shape wall to be a random 
variable with some probability distribution. In order to obtain the average we would 
have to repeat the experiment many-many times on different walls or at least on 
different positions on the wall and then compute things like the average (the expected 
value) and the standard deviation. For a single measurement the coherent scattering 
from the wall is very noisy (speckle; see Figure 16 below) because this averaging has 
not been done. If we model the roughness of the wall as a random variable we can 
calculate the mean and standard deviation of the image intensity and then divide the 
two to obtain the signal to noise ratio. When we do that we obtain SNR=1.  
 
 

	
	
	
Figure	16.		


