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Imaging Optics - Lecture 3 – 12/03/2021 

 

Diffraction  

	
Outline	

1. Near	field/far	field	
2. Fourier	transforms	and	linear	systems	
3. Huygens,	spherical	waves,	Fresnel	diffraction	
4. Fraunhoffer	diffraction	
5. Angular	spectrum	and	non-paraxial	propagation	
6. Evanescent	waves	
7. Wavelength	dependence	of	diffraction	

Near	field-Far	field:	Let’s	start	by	propagating	a	square	aperture	to	the	far	field	
using	the	code.	Very	close	to	the	aperture	we	have	the	pattern	being	same	as	the	
input.	This	is	the	near	field.	

After	 a	while	 the	 diffraction	 pattern	 of	 the	 square	 breaks	 up	 in	multiple	 lobes	
that	 keep	 evolving	 (Figure	 3.1a)	 and	 eventually	 the	 pattern	 stabilizes	 (Figure	
3.1b)	maintaining	its	shape	but	growing	as	z	increases	(Figure	3.1c).		

(a) 	

(b) 	
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(c) 	

Figure	3.1	

By	definition	we	are	in	the	far	field	when	the	amplitude	of	the	diffraction	pattern	
no	 longer	 changes	 its	 shape	 as	 z	 increases	 but	 it	 gets	 larger.	 The	 phase	 of	 the	
pattern	is	quadratic.	When	viewed	over	a	small	fixed	region	in	x-y	the	quadratic	
curvature	becomes	increasingly	slower	finally	at	large	z	the	wavefront	becoming	
practically	planar.	If	we	look	at	the	entire	x-y	plane	for	large	z,	the	magnitude	of	
the	 field	 becomes	 a	 sync	 function,	 which	 is	 the	 magnitude	 of	 the	 Fourier	
transform	the	square:	This	 is	generally	true:	 	The	magnitude	of	the	far	field	is	
the	magnitude	of	the	Fourier	transform	of	the	near	field.		

To	get	a	better	idea	for	why	this	is	let’s	look	at	the	diffraction	pattern	of	a	square	
aperture	 with	 a	 grating	 inside	 (Figure	 3.2).	 As	 we	 propagate	 the	 diffraction	
pattern	 starts	 splitting	 into	 3	 distinct	 beams,	 eventually	 each	 of	 the	 3	 beams	
becomes	a	separate	sync	function	(the	FT	of	the	square	aperture).		

	
Figure	3.2	

We	can	interpret	this	as	each	of	the	3	frequency	components	of	the	input	grating	
launching	 a	wave	 in	 a	 separate	 direction.	 For	 a	 grating	 vector	 	the	
wavevector	 launched	 is	 a	 plane	 wave	 with	 wavevector	

	

As	 these	 beams	 propagate	 at	 different	 angles	 away	 from	 the	 near	 field	 they	
separate	 spatially	 (in	 x	 and	 y)	 from	 each	 other	 and	 eventually	 the	 field	 we	
measure	at	a	particular	location	in	x-y	in	the	far	field	is	the	strength	(amplitude)	
of	the	field	of	the	wave	that	is	launched	in	a	particular	direction.		

 

K = (Kx ,Ky )
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A	beam	launched	in	a	direction	 	will	arrive	at	position	 .	Recognizing	
that	 u=1/Λ	 is	 the	 spatial	 frequency	we	 have	 a	mapping	 from	 frequency	 in	 the	
near	field	to	spatial	coordinate	(x	and	y)	in	the	far	field.		

Returning	to	the	BPE,		in	the	frequency	domain	we	have		

	

In	order	 to	get	back	 to	 the	space	domain	we	 take	 the	Fourier	 transform	of	 the	
product	 above.	 This	 yields	 the	 convolution	 of	 	with	 the	 Fourier	
transform	of	the	quadratic	phase	term.	What	we	would	like	to	do	next	is	switch	
to	 the	 integral	 based	 description	 of	 diffraction	 (traditional	 Fourier	 Optics)	
instead	of	the	differential	equation	description	of	the	BPE	approach.	We	will	first	
do	 a	 parenthesis	 to	 review	 Fourier	 transforms	 and	 in	 a	 particular	 2D	 Fourier	
transforms.		

2D	Fourier	transforms:		

The	2D	FT	of	a	function	A(x,y)	is		

	

where	 u	 and	 v	 are	 the	 spatial	 frequencies	 in	 cycles	 per	 mm	 (c/mm).	 The	
amplitude	of	 	the	FT	measures	the	strength	of	a	frequency	component	in	A(x,y)	
with	grating	vector		

,	where	 	

	

We	plot	in	Figure	3.3		cos(Kxx+Kyy)	for	Ky	=0,	Kx	=0,	and	Kx=Ky.	Notice	that	we	can	
think	 of	 each	 of	 the	 2D	 gratings	 as	 having	 a	 frequency	 1/Λ	 and	 that	 can	 be	
rotated	 	 in	 any	 direction.	 The	 Fourier	 Transform	 is	 a	 complex	 function.	 The	
magnitude	 conveys	 the	 strength	 of	 the	 grating	 component	 in	 A(x,y)	 and	 the	
phase	the	precise	position	of	the	fringes.		The	inverse	FT	is		

	

Simply	 plugging	 in	 the	 FT	 equation	 into	 the	 inverse	 FT	we	 can	 verify	 that	 the	
inverse	 reproduces	 the	original	A(x,y).	 	 The	 inverse	FT	 says	 that	A(x,y)	 can	be	
expressed	as	a	linear	combination	of	complex	sinewaves.		
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Figure	3.3	

We	show	a	number	of	examples	of	2D	FTs	in	Figure	3.4.	Of	particular	interest	in	
the	2D	sync	and	the	Airy	functions.		

	

	
Figure	3.4	

	

Fresnel	Diffraction:	The	Fresnel	diffraction	formula	is	written	below:	
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We	can	derive	the	Fresnel	diffraction	formula	from	the	Huygens	principle.	Each	
point	at	the	input	radiates	a	spherical	wave	with	amplitude	and	phase	given	by	
the	 amplitude	 and	 phase	 of	 the	 field	 at	 that	 point.	 The	 expression	 for	 the	
spherical	wave	is:	

,	where	 	

The	 phase	 kr	 is	 due	 to	 the	 delay	 of	 a	 wave	 disturbance	 propagating	 outward	
from	 the	point	 source	of	 the	wave,	 the	 	term	 is	due	 to	energy	 conservation.		
The	area	of	 the	sphere	which	 the	wave	crosses	as	 it	propagates	away	 from	the	
origin	 grows	 as	 and	 the	 power	 crossing	 the	 sphere	 at	 any	 r	 needs	 to	 stay	
constant	 therefore	 the	 field	 is	 1/r	 and	 the	 intensity	 .	 	We	 can	 rewrite	 the	

spherical	wave	using	the	paraxial	approximation	 	in	

the	exponent	and	using	r~z	in	the	denominator.		By	inspection	then	the	Fresnel	
diffraction	 formula	 simply	 says	 that	 we	 calculate	 the	 wave	 propagation	 as	 a	
superposition	 of	 spherical	waves	 launched	 by	 the	wave	 at	 preceding	 z-planes.	
This	is	the	interference	point	of	view	of	the	diffraction	process.		

Alternative	 derivation	 of	 the	 Frensel	 Formula:	 Sinewaves	 are	 important	
because	 they	 are	 eigenmodes	 of	 linear	 shift	 invariant	 systems.	 Specifically	
consider	the	system	we	have	been	dealing	with	and	shown	in	Figure	3.5.	If	each	
point	in	A(x,y,z=0)	is	one	of	the	inputs	and	A(x,y,z)	at	each	point	(x,y)	at	z	is	an	
output,	 then	 each	 output	 in	 a	 linear	 combination	 of	 the	 inputs	 since	 linear	
superposition	holds	in	the	wave	equation	and	hence	the	BPE.	If	we	say	that	the	
“weight”	 of	 the	 connection	 from	 point	 (x,y)	 at	 z=0	 to	 a	 point	 (x’,y’)	 at	 z	 is	
h(x,y,x’,y’)	then	we	can	write	the	following:		

	

The	“kernel”	or	 impulse	response	h	 is	a	4D	function	and	it	can	be	simplified	by	
observing	that	a	shift	in	x	or	y	in	the	input	is	expected	to	cause	the	same	shift	in	
the	output:	

	

This	 system	 is	 a	 linear	 shift	 invariant	 system.	 It	 is	 also	 called	 the	 convolution	
between	 A(x,y,z=o)	 and	 h(x,y).	 If	 the	 input	 to	 this	 system	 is	 a	 complex	 2D	
sinewave	 e	 j(Kxx+Kyy)	 then	 the	 output	 is	 the	 same	 complex	 sinewave	 (an	
eigenfunction)	times	a	constant	(the	eigenvalue).	The	only	pattern	that	has	this	
magical	property	is	the	sinewave.	If	we	enter	the	input	in	the	equation	above	we	
obtain:		

	

where		 	
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This	is	interesting:	The	eigenvalue	is	the	2D	FT	of	h(x,y).		We	expect	h	to	depend	
on	z.	We	know	from	the	plane	wave	solution	of	the	wave	equation	that		

	

Using	 the	 FT	 pair	 for	 a	 complex	 Gaussian	 beam	we	 can	 obtain	 once	 again	 the	
Fresnel	diffraction	formula.	This	is	left	as	an	exercise.		

	
Figure	3.5	

	

Far	Field	or	Fraunhoffer	diffraction:	It	 is	now	easy	to	show	from	the	Fresnel	
formula	that	the	far	field	is	the	FT	of	the	near	field	distribution:		

	

In	order	 to	obtain	 the	FT	relationship	 the	quadratic	phase	 term	 	must	be	
approximately	one.	This	gives	us	a	condition	for	being	in	the	far	field:		

	

Angular	 Spectrum:	 The	 form	 of	 the	 BPE	 in	 the	 Fourier	 domain	 suggests	
suggests	 that	 each	 frequency	 component	 that	 makes	 up	 the	 input	 waveform	

A(x,y,z=0)	 picks	 up	 a	 quadratic	 phase	 	as	 it	 propagates	 a	 distance	 z.	
Multiplying	 both	 sides	 of	 the	 BPE	 in	 the	 Fourier	 domain	 by	 	we	 can	
recognize	that	the	phase	term	that	each	frequency	component	picks	up	is	simply		

	written	 after	 making	 the	 paraxial	 approximation.	 The	 spectral	
decomposition	of	an	input	distribution	in	its	2D	frequency	components	 	

and	 the	 launching	 of	 a	 plane	 wave	 with	 wavevector	 	with	 a	
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corresponding	complex	amplitude	 	is	called	the	Angular	Spectrum.	It	is	
the	 complementary	 point	 of	 view	 of	 the	Huygens	 principle	 of	 the	 launching	 of	
spherical	weaves	conveyed	by	the	Fresnel	diffraction	formula.		

Non-paraxial	 Beam	 propagation:	 	 A	 very	 interesting	 observation	 from	 the	
discussion	in	the	previous	paragraph	is	that	we	can	calculate	the	propagation	of	
the	optical	wave	without	ever	having	to	invoke	the	paraxial	approximation.	We	

can	 simply	 use	 	and	 in	 free	 space	 this	 is	 100%	 accurate.	 The	
beam	propagation	code	contains	a	version	 that	 is	non-paraxial.	Using	 this	code	
we	 can	 compare	 the	 propagation	 of	 a	 grating	 with	 and	 without	 the	 paraxial	
approximation	 for	 two	 different	 spatial	 frequencies.	 There	 is	 so	 no	 real	
advantage	 in	 using	 the	 paraxial	 approximation	 if	 we	 use	 a	 computational	
approach.	 The	 advantage	 of	 the	 paraxial	 version	 of	 the	 BPE	 and	 the	 Fresnel	
diffraction	formula	is	that	is	much	easier	to	handle	analytically	the	propagation	
of	classic	paraxial	behaviors	such	as	Gaussian	beams,	Bessel	beams,	and	Talbot	
planes.		

Evanescent	Waves:	 	As	the	spatial	 frequency	of	kx	and	or	ky	 increases	then	the	
argument	 of	 the	 square	 root	 becomes	 negative	 and	 therefore	 the	 square	 root	
imaginary.	This	gives	us	

	

a	real	exponential.		Without	any	gain	this	will	be	a	decaying	exponential.	The	rate	
at	which	the	field	decays	is	 .	This	quantity	is	zero	when	the	period	Λ	
of	 the	grating	 is	equal	 to	 the	wavelength	of	 light	λ.		Figure	 	3.6	shows	 the	non-
paraxial	 propagation	 of	 gratings	 of	 different	 periods	 demonstrating	 that	 for	
subwavelength	grating	periods	the	diffracted	wave	decays.		

A
~
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Figure	3.6	

	

Wavelength	Dependence:	The	diffraction	equations	contain	the	wavelength	of	
light	λ.	Therefore,	we	expect	the	pattern	to	change	as	we	change	the	wavelength	
of	 the	 light.	 Inspection	 of	 the	 Fresnel	 diffraction	 formula	 shows	 that	 	always	
appears	 as	 a	 product	with	 z.	 That	means	 if	 	then	 the	 diffracted	wave	 at	

	will		be	the	same	as	the	one	at	z	at	wavelength	λ.	For	example	the	light	
diffracted	by	a	grating	with	 	will	diffract	light	at	an	angle	 .	
In	other	words	the	diffraction	angle	will	change	with	wavelength	but	the	lateral	
displacement	(in	x)	of	the	beam	will	be	the	same	if	we	move	from	z	to	z’.	Figure	
3.7	 shows	 the	 diffraction	 of	 a	 grating	 (including	 the	 Talbot	 planes)	 at	 two	
different	wavelengths.		

	

λ
λ → λ '

z ' = zλ / λ '
Kx =1/Λ sin(θ ) = λ /Λ
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Figure	3.7	

	


