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 Imaging Optics - Lecture 2 – 5 March 2021  
 

Diffraction  

	
Outline	

1. Intensity	
2. Phase	
3. Near	field	
4. Plane	wave	
5. Gaussian	beam	
6. Periodic	patterns;	gratings	
7. Non-diffracting	beams	

	

Last	 time	we	used	 the	paraxial	 approximation	 to	derive	 the	Beam	Propagation	
Equation	(BPE)	starting	from	the	wave	equation:	

				

where	A	is	the	slow	varying	envelope	of	one	of	the	transverse	components	of	the	
electric	field.	

	 		

where	v	 is	 the	speed	of	 light.	 	is	 the	complex	amplitude	of	 the	slowly	
varying	envelope.	The	actual	electric	field	is		

		

In	 free	 space	 the	 speed	 of	 light	 is	 v=3x108	 m/sec.	 For	 visible	 light,	 the	
wavelength	is	around	 	λ=0.5	μm.	This	means	the	temporal	 frequency	of	 light	at	
this	wavelength	is		ν=0.6x1015	Hz.	

Intensity		

At	 	the	high	temporal	frequencies	of	optical	waves,	 it	 in	not	possible	to	directly	
measure	 currents	 generated	 by	 moving	 charges	 on	 a	 metalic	 conductor	 for	
example.	Instead	typically	optical	detectors	work	by	freeing	bound	charges	and	
then	 collecting	 the	 freed	 electrons	 (or	 holes)	 to	 a	 site	 where	 they	 can	 be	
measured.	 	Therefore	 the	measured	 signal	 is	not	proportonal	 to	 the	 field	 itself	
but	rather	proportianal	to	the	optical	power	incident	on	the	detector.		The	power	

∂A
∂z

= − j
2k

∂2A
∂x2

+ ∂2A
∂y2

⎛
⎝⎜

⎞
⎠⎟

  Ex (x, y, z,t) = A(x, y, z)e j(ωt−kz ) k = 2π / λ =ω / v v = 1/ µε

A = A e− jϕ

Re{Ex} = A cos[ωt − kz −ϕ ]



	 2	

per	unit	area	carried	by	an	optical	field	is	called	the	intensity	(I)	and	it		is	given	
by		

		

where		 		with	the	asterisk	indicating	the	complex	conjugate.	In	order	to	
calcultate	 the	 signal	 measured	 by	 a	 detector	 we	 use	 the	 BPE	 to	 calculate	 the	
complex	 field	 at	 the	 detectore	 plane	 and	 then	 we	 simply	 take	 the	 magnitude	
squared	of	the	field.		

	Why	 is	 the	 intensity	 the	 magnitude	 square	 of	 the	 electric	 field?	 The	 power	
carried	by	an	electromagnetic	wave	is	given	by	the	Poynting	vector		

	 	 		

and	the	intesity	crossing	into	a	unit	area	 	of	the	detector	is		

	

For	a	plane	wave	propagating	in	z	we	can	use	Maxwell’s	equations	to	express	 	
in	terms	of	 :		

		 		

Therefore	in	the	case	of	a	plane	wave	the	intensity	is	proportinal	to	the	electric		
field	squared.	This	is	in	general	true	for	any	paraxial	wave.	In	particlular	we	can	
calculate	 the	 intensity	 by	 taking	 the	 magnitude	 square	 of	 the	 slow	 varying	
envelope	 .	In	real	notation		

		

The	 second	 term	 oscillates	 at	 twice	 the	 optical	 frequency	 and	 its	 temporal	
variation	 is	 averaged	 out	 by	 the	 detector.	 Therefore	 the	 average	 intensity	
measured	 by	 the	 detector	 is	 only	 the	 first	 term	 which	 is	 the	 same	 as	 the	
magnitude	square	of	the	complex	electric	field.		

	

Phase		

It	might	appear	that	the	phase	is	not	important	since	we	cannot	directly	measure	
it.	This	is	not	true.	Phase	is	at	least	as	important	as	amplitude	for	characterizing	
the	propagation	of	optical	waves.	In	order	to	appreciate	this	we	plot	in	Figure	2.1	
the	 diffraction	 pattern	 (x-z	 plot)	 of	 a	 square	 aperture.	 Figure	 2.1b	 is	 a	 square	
pattern	 that	 is	 amplitude	modulated	 (A=1	 inside	 the	 square	 and	 zero	 outside)	
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whereas	 Figure	 2.1a	 shows	 the	 same	 for	 a	 phase	 modulated	 square	 aperture	
(φ=π	 inside	 and	 0	 outside).	 	 Clearly	 both	 apertures	 diffract	 even	 though	with	
some	differences.	If	we	looked	at	the	two	apertures	with	our	eyes	in	white	light	
they	would	 look	 very	 different:	 an	 empty	 square	 in	 a	metallic	 screen	 versus	 a	
transparent	thin	film	with	some	barely	detectable	thickness	nonuniformity	in	the	
middle.		The	diffraction	patterns	by	the	laser	are	similar	however.	Why?	Because	
the	BPE	says	that	as	long	as	the	transverse	derivatives	are	non	zero	we	will	have	
changes	 as	 we	 propagate	 in	 z	 independently	 of	 whether	 these	 transverse	
variations	are	due	to	changes	in	amplitude	or	phase.		

	

Figure 2.1	

	

Near	field		

If	we	 look	 at	 the	 diffraction	 pattern	 for	 very	 small	 z	 then	 the	 field	 looks	 quite	
similar	to	what	it	was	at	z=0.	We	can	see	why	that	is	from	the	BPE	in	the	Fourier	
plane:		

		

If	 	 	then	the	exponential	term	is	approximately	equal	to	1.	 	We	
can	use	this	relationship	to	derive	an	estimate	for	the	maximum	z	for	which	are	
still	in	the	near	field.	We	can,	for	example,	calculate	the	mean	square	difference	
between 	and	 	normalized	 to	 the	 input	 image	 energy	 as	 a	
function	 of	 z	 and	measure	 how	 fast	 that	 rises.	 In	 this	way	we	 can	 experiment	
with	the	code	for	how	fast	different	images	get	out	of	the	near	field,	which	means	
how	 far	 in	 z	 do	we	 have	 to	 look	 in	 order	 to	 see	 significant	 diffraction	 effects.	
Figure	 2.2	 shows	 what	 happens	 with	 two	 different	 inputs,	 Sir	 Isaac	 Newton	
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portrait	and	a	smooth	square	aperture.	The	high	spatial	frequencies	contained	in	
the	former	yield	to	a	mean	square	difference	which	increases	faster	compared	to	
the	latter’s	one.		

	

Figure 2.2 

The	error	has	been	calculated	as:	

	

Plane	waves	

If	 a	 plane	 wave	 propagates	 in	 the	 z	 direction,	 then	 A	 is	 constant	 and	 nothing	
changes	for	the	slow	varying	envelope.	For	a	plane	wave	propagating	at	an	angle	
θ	with	respect	to	the	z	axis	the	electric	field	is		

	

		

where	C	 is	 a	 constant	 that	 expresses	 the	 strength	 of	 the	 field	 and	 the	paraxial	
approximation	above	is	valid	if	θ	is	small	.	Under	the	paraxial	approximation	we	
can	write	the	field	as		

		

If	we	want	to	represent	a	plane	wave	in	the	BPM	code	we	need	to	be	concerned	
about	the	fact	that	plane	waves	are	defined	in	the	infinite	space.	Since	the	waves	
are	 represented	 in	 the	 Fourier	 domain	 in	 the	 BPM,	 we	 can	 select	 the	 input	
window	 to	 be	 an	 integral	 number	 of	 periods	 in	 x	 and	 y.	 Then	 the	 FFT	
automatically	 assumes	 that	 the	 input	 in	 repeated	 indefinitely	 in	 x	 and	 y	 and	 a	
plane	wave	can	be	represented	in	this	way	in	the	BPM	code.		

A	better	solution	is	to	realize	that	in	real	life	we	don't	have	infinite	things.	In	real	
life,	 	we	encounter	 find	waves	with	planar	wavefronts	within	a	 finite	aperture.	
Then	we	can	 select	 an	FFT	window	sufficiently	 larger	 than	 the	aperture	of	 the	
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wave	 to	 give	 room	 to	 the	 beam	 to	 diffract.	 This	 is	 shown	 in	 Figure	 2.3a	 for	
various	values	of	Kx,	Ky.			

In	order	to	calculate	the	diffraction	patterns	in	Figure	2.3a,	we	set		

			

where	θ	is	the	angle	respect	to	the	z	axis	at	which	the	wave	is	directed	towards.	
We	can	measure	the	main	angle	at	which	the	wave	propagates	in	the	simulation	
for	 different	 θ’s	 and	 compare	 to	 the	 value	 that	 was	 used	 to	 set	 the	 boundary	
condition	(the	field	at	z=0).		Figure	2.3b	is	a	plot	of	the	diffracted	angle	measured	
through	 the	 simulation	 versus	 the	 angle	 inserted	 at	 the	 input.	 The	 two	 angles	
start	 deviating	 from	 one	 another,	 as	 the	 paraxial	 approximation	 is	 no	 longer	
satisfied.		

	

Figure 2.3a 

	
Figure 2.3b 

	

A(x, y, z = 0) = rect(x / a)e jΚx x Κ x = k sinθ



	 6	

Gaussian	beams		

The	 above	 example	 gives	 us	 the	 idea	 that	 finite	 aperture	 beams	 are	 easier	 to	
follow	through	with	the	BPM	and	closer	to	reality	in	many	optical	systems..	The	
edges	of	the	square	produce	artifacts	and	extra	scattering.	We	can	minimize	the	
scattering	artifacts	by	using	a	Gaussian	beam.	The	definition	of	a	Gaussian	beam	
is:	

	

Table	2.1	

	

	In	 figure	2.4	we	show	the	propagation	of	a	Gaussian	beam.	 It	comes	to	a	 focus	
and	back	out.		

	

Figure 2.4	
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An	 interesting	 feature	of	 a	Gaussian	beam	 is	 that	 it	 always	 stays	Gaussian.	We	
can	show	this	using	the	BPE	equation:		

		

Using	 the	 FT	 pair	 	and	 applying	 the	 scaling	
theorem	 you	 can	 show	 that	 the	 transverse	 shape	 of	 the	 amplitude	 of	 the	
propagating	 field	 is	 a	 Gaussian	 for	 all	 z	 and	 the	 phase	 is	 a	 spherical	 wave.		
Carrying	 out	 the	 painful	 algebra	 should	 give	 the	 expression	 for	 the	 Gaussian	
beam	in	Table	2.1	above.		Notice	that	there	is	a	180	degree	phase	shift	from	z	=	-
∞	to	z=	+∞.	This	extra	phase	shift	in	addition	to	the	 phase	shift	is	due	to	the	
detour	 the	 photons	 take	 to	 pass	 by	 the	 focus	 at	 z=0	 compared	 to	 the	 straight	
through	path	of	a	place	wave	(that	is	expressed	by	the	 .	For	large	numerical	
aperture	most	 of	 this	 phase	 shift	 happens	 right	 at	 the	 focus	 area	 because	 the	
detour	is	most	abrupt	there	since	the	focusing	wave	has	to	straighten	out	into	a	
collimated	beam	and	back	to	a	diverging	wave	in	a	small	distance.		

Laser	 cavities	 usually	 produce	Gaussian	beams	or	 their	 close	 relatives	 as	 their	
output.	The	reason	 is	 the	 laser	 is	usually	made	of	a	cavity	where	 light	bounces	
back	and	forth	between	two	mirrors.	In	order	for	the	cavity	to	be	stable	the	beam	
needs	 to	 reproduce	 its	 shape	 after	 it	 goes	 through	one	 round	 trip	 in	 the	 laser.	
The	 property	 of	 the	 Gaussian	 beam	 to	 remain	 a	 Gaussian	 after	 propagating	
together	with	 the	right	magnification	 in	 the	cavity	makes	 the	natural	modes	of	
the	cavity	be	Gaussian.		

	

Periodic	patterns		

An	 important	 class	 of	 diffraction	 patterns	 are	 those	 resulting	 from	 periodic	
inputs.	A	periodic	function	has	the	following	property:	

		

This	 can	 only	 be	 satisfied	 when	 where	 m	 is	 an	 integer	 and	 the	
spectrum	 is	 zero	 everywhere	 else.	 In	 other	 words	 periodic	 functions	 have	
discrete	set	of	frequencies	instead	of	a	continuous	spectrum.	They	have	a	Fourier	
series.	The	simplest	example	is	a	simple	cosine.		

		

The	cosine	is	periodic	with	period	 .	The	diffraction	pattern	of	such	a	
"grating"	is	shown	in	Figure	2.5.	

A(x, y, z = 0) = e−(x
2+y2 )/a2 ⇒ A

~
(kx ,ky , z) = FT {e

−(x2+y2 )/a2 }e j (kx
2+ky

2 )z/2k

e−π x
2

⇔ e−πu
2

with kx = 2πu

e jkz

e jkz

A(x − a, y, z = 0) = A(x − a, y, z = 0) ⇒ A
~
(kx ,ky , z = 0) = A

~
(kx ,ky , z = 0)e

jkxx

a = 2πm / kx

A(x, y, z = 0) = 1
2
+ 1
2
cos(Kxx)

a = 2π /Kx



	 8	

	

Figure 2.5	

We	observe	3	separate	diffraction	orders,	one	for	each	of	the	3	frequencies	that	
make	the	Fourier	transform	of	the	cosine.	The	idea	is	very	similar	to	the	idea	of	a	
plane	 wave	 as	 an	 input	 that	 we	 discussed	 earlier,	 except	 each	 plane	 wave	
component	is	now	launched	by	the	corresponding	spatial	frequency	in	the	input	
wavefront.		

We	can	also	have	period	waves	with	phase	modulation	of	the	input	frequency:		

	

The	diffraction	pattern	of	this	phase	sinusoidal	grating	is	shown	in	Figure	2.6.	

	

Figure 2.6	

	The	pattern	is		periodic	with	period	 but	there	are	more	orders	than	
in	the	simple	sinusoidal	amplitude	grating.	We	can	understand	that	by	taking	the	
Taylor	series	of	the	phase	grating	and	obtain	terms	proportional	to	cosn	where	n	
is	the	order	in	the	Taylor	expansion.	The	formula	for	the	series	expansion	of	the	
sinusoidal	phase	grating	is:		

	

Other	 types	of	Gratings	are	square	wave	grating	where	each	period	 is	partially	
on	 (value	 A=1)	 and	 partially	 off	 (value	 A=0).	 	 The	 diffraction	 pattern	 of	 the	
square	wave	grating	is	shown	in	Fig.	2.7.		
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Figure 2.7	

It	has	more	than	3	orders.	We	can	analytically	predict	the	strength	of	each	of	the	
orders	 by	 calculating	 the	 Fourier	 transform	 of	 the	 square	 wave	 (the	 Fourier	
series	actually).	For	the	square	wave	grating	we	have		

	 	

where	 	

We	can	also	look	at	a	phase	square	grating.	Figure	2.8.		

	

Figure 2.8	

It	has	its	own	orders.	Notice	it	does	not	have	a	zero	order.	Why?		

The	 diffraction	 pattern	 of	 the	 periodic	 pattern	 in	 Figure	 2.9	 consists	 of	 a	
repetition	of	the	picture	of	a	face	(Newton's	face).		
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Figure 2.9 

Notice	 that	 the	 diffraction	 pattern	 remains	 periodic.	 As	 we	 propagate	 in	 z	
something	 remarkable	 happens	 at	 some	 point.	 The	 faces	 reappear.	 As	 if	 an	
imaging	lens	had	undone	the	smearing	due	to	diffraction.	Why	does	this	happen?	
We	 can	 understand	 this	 better	 by	 considering	 the	 diffraction	 of	 a	 simpler	
periodic	function:	the	cosine	(figure	2.10).		
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Figure 2.10 

	

We	 see	 again	 that	 the	 grating	 replicates	 itself	 after	 a	 while	 and	 it	 does	 this	
multiple	 times.	 	 This	 self-duplication	 through	 diffraction	 process	 is	 called	 the	
Talbot	effect	and	it	can	be	explained	by	looking	at	the	BPE	in	the	Fourier	plane:		

	

When	the	input	is	periodic	the	Fourier	transform	is	non-zero	only	at	 .		If	

we	evaluate	 the	quadratic	phase	 term	at	 these	discrete	 frequency	 locations	we	

obtain	 .	This	becomes	1	at	z=2a2/λ	and	therefore	the	input	is	
reproduced	at	these	distances.		

It	becomes	a	bit	more	complex	 for	periodic	patterns	with	more	orders	but	 the	
same	 basic	 idea	 holds:	 	 We	 observe	 Talbot	 planes	 at	 distances	 z	 where	 the	
quadratic	term	equal	to	1	for	all	the	discrete	frequencies	of	the	periodic	pattern.	
Notice	that	periodic	patterns	in	practice	cannot	be	truly	periodic	because	of	the	
finite	aperture	of	the	system	and	effects	such	as	the	Talbot	effect	which	relies	on	
the	periodicity	eventually	(for	large	z)	do	not	persist	due	to	the	finite	aperture.		

Non-diffracting	 beams:	 If	 we	 take	 almost	 any	 input	 pattern	 and	 allow	 it	 to	
propagate	in	z	(diffract)	then	we	will	see	a	blurring	and	a	general	expansion	or	
spreading	 of	 the	 beam.	 We	 see	 this	 in	 the	 square	 aperture	 or	 the	 picture	 of	
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Newton's	phase.	There	 are	 some	 "special"	 patterns	however	 that	 seem	 to	defy	
diffraction.	Consider	the	diffraction	of	the	noise-like	pattern	in	Figure	2.11.	

	

Figure 2.11 

It	 is	 clear	 from	 the	 x-z	 plot	 that	 this	 pattern	 stays	 the	 same	 for	 quite	 a	while.	
What	 is	 special	about	 this	pattern?	 If	we	 take	 the	2D	Fourier	 transform	of	 this	
pattern	we	get	a	circle.	The	Fourier	transform	is	non-zero	only	along	a	locus	of	
frequency	values	satisfying:	

	

Looking	at	the	BPE	in	the	Fourier	domain	it	becomes	clear	why	this	works.	The	

	term	is	just	a	constant	phase	delay	and	therefore	the	patterns	does	not	
change.	In	Figure	2.11	a	random	phase	pattern	was	multiplied	by	the	circle	and	
therefore	the	 input	pattern	appeared	random	or	 like	speckle.	 If	we	start	with	a	
clean	circle	and	take	its	Fourier	transform	we	end	up	with	the	pattern	shown	in	
Figure	2.12.	
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Figure 2.12	

	This	beam	is	called	a	Bessel	beam	because	it	is	a	Bessel	function	in	r,	the	radial	
direction.	The	field	in	z=0	is	defined	as:	

	

where	 	and	 .	

Its	Fourier	transform	is	given	by:	

	

If	we	 now	 use	 the	 pattern 	as	 the	 initial	 condition	we	 get	
the	 x-z	 plot	 shown	 also	 in	 Figure	 2.12.	 This	 is	 a	 pencil	 beam	 that	 propagates	
without	diverging.		
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