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Imaging Optics - Lecture 1 – 26 February 2021  
 

Light Propagation 
The first thing we all learned about light is that it propagates in straight lines in air. This is 
rays optics.  

 
Figure 1.1 – Rays travel in straight lines 

We can also use ray optics in inhomogeneous media. Think of a point source illuminating 
a dielectric interface (Figure 1.2). We can get a good idea for what is going on by using 
Snell's law and rays. Ray optics are in fact widely used for optical design, which is the 
design of optical lenses and related systems such as microscopes, telescopes, eyeglasses, 
spectrometers, etc.  There are excellent ray tracing programs that can be used to design and 
optimize lenses and other optical elements. An entire course (or even a sequence of 
courses) on "optical design" can be offered.  

 
Figure 1.2 – Rays bend when index changes 
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This is not what we will do in this course. We will instead focus on wave optics and 
corresponding applications where the wave nature of light is essential of the problem at 
hand. The classic example for which ray optics fails is diffraction (Figure 1.3). Light 
passing through an aperture "bends" and it enters the geometric shadow area. This can be 
readily explained with wave optics (the Huygens principle for example). Interference is 
another phenomenon that can only be handled by wave optics. 

 
Figure 1.3 – Rays do not diffract 

 Formally, an optical ray is the vector perpendicular to the optical wavefront (Figure 1. 4). 
The wavefront is the locus of points in 3D space where the phase of the optical wave is the 
same.   

Formally then 

  

 
Figure 1.4 – Wavefronts and rays 

 

We can follow the evolution of rays even in the presence of index variations but what we 
cannot do is account for the amplitude variations of the wavefront.  The aperture is an 
example of such amplitude variations.  
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Another way to understand light propagation is by recognizing that light is an 
electromagnetic wave and must obey Maxwell’s equations.  (Maxwell determined light is 
an electromagnetic wave when he found theoretically that the speed of electromagnetic 
waves is the same as the speed of light which had been previously measured).   

If we start with Maxwell's equations 

 

 

 

and we are given the boundary conditions for the field we can then find the field 
everywhere in space. Finite element methods are often used to calculate the field 
everywhere. This is possible but difficult in general and certainly not intuitive. We will 
concentrate on a different method, the beam propagation method. We will start by solving 
analytically Maxwell’s equations assuming we are in a region without any free charges and 
constant dielectric constant (homogeneous medium) and derive the simplest version of the 
beam propagation equation which we will then numerically simulate.  

We first transform Maxwell’s equations into the wave equation by taking the curl of the 
top equation: 

 

 

This gives us the wave equation 

 

This is a vector equation. We can write in terms of each of the elements of the vector, for 
example Ex. 

 

The solution to this is the plane wave: 

 
Or in complex notation 
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Substituting this back into the wave equation 

 
This result holds only for a homogeneous medium where ε and  μ are constants. For this 
important case then we have everything we need. We can expand the field in one plane into 
a superposition of plane waves and then we can find the field everywhere. We will pursue 
this route in this course and in addition we will often make the paraxial approximation. 
The idea of the paraxial approximation can be understood through the "typical" optical 
system in Figure 1.5.  

 
Figure 1.5 – Paraxial approximation 

 A plane wave propagates near the optical axis z since the light has to be captured by the 
lenses and other apertures that are in the path of the optical system. For a plane wave,  

 

with the x and y angles being nearly 90 degree and θz  almost zero degrees. If I were to plot 
E as a function of x or y (see Figure 1.6) it will be a very slow varying function of x and y 
whereas if we plot it as function of z is it will be a very rapidly varying function.For a wave 
propagating along the z-axis (at zero degrees angle) we can write is as 

  

Ex x, y, z,t( ) = Aej ωt−kxx−kyy−kzz( )

k2 = kx
2 + ky

2 + kz
2 =ω 2µε

kx = k cosθ x

ky = k cosθ y

kz = k cosθ z

  E(z, t) = Ae jω te− jkz
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Figure 1.6a. Plane propagating in the z-direction 

For a wave propagating at an angle θ with respect to the z –axis the plot the following 
equation for the field: 

		

The	variation	of	the	field	in	z	axis	as	compared	to	the	x	axis	is	plotted	for	θ=50		in	
Figure	1.6b.	In	addition,	the	slowly	varying	field	described	by	the	wavevector	k-kz	is	
also	presented

 
	

	

	

Figure 1.6b Plane wave propagating at a an angle of 50 with respect to z  

 

 The paraxial approximation or equivalently the slowly varying envelope approximation 
gives us a way to write a more convenient or intuitive form of the wave equation: 

 

In other words the paraxial wave is almost like a plane wave which has slow  variations in 
the x and y directions. The dependence of A on z is also slow because the fast variations of 
the field in z was already taken out by the  term. We call   the slow varying 

  E(x, z, t) = Ae jω te− jk sinθxe− jk cosθz

Ex x, y, z,t( ) = A(x, y, z)e jωte− jkz

€ 

e− jkz A(x, y, z)
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envelope. So far no approximation has been made. If we plug the slowly varying envelope 
of the field expression in the wave equation we obtain: 

 same for y 

 

Plugging back into the wave equation and dropping the oscillatory terms that are common 
to all terms we obtain:  

 

Recognizing that  

 

and making the approximation that the second derivative in z of the A envelope is negligible 
we obtain 

 

or 

 

This is the beam propagation equation for a homogeneous medium such as air or free space.  

At this point it may not be clear why we took a perfectly nice wave equation with its clean 
plane wave solution, which we could use to represent ANY wavefront and then propagate 
each plane wave separately, and manipulated it to the beam propagation equation. As we 
will see it will be more convenient for paraxial optics to analyze and numerically simulate 
the beam propagation equation. Moreover, as we will see in a few weeks, it is easier to 
extend this method inhomogeneous and nonlinear media.  

To solve numerically the BPE we do not want to evaluate the derivatives. Instead we will 
use a Fourier transform trick, which proves computationally more efficient and numerically 
more stable.  

In general a tilda superscript will denote the Fourier transform. If  
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and  

 

then knowing the Fourier transform of a function we can calculate the Fourier transform of 
its second derivative by multiplying by - :  

 

Going back to the Beam Propagation Equation and taking the Fourier transform of both 
sides we have  

 

 

Therefore to implement this in MATLAB we need to take the following steps:  

1. Import  

2. Take the FFT of A(x,y,z=0) to produce  

3. Multiply  by . Need to be careful in this step. Need to know how 

to match the scale of the 's.  

4. Inverse FFT the product to get  

 

Fresnel diffraction 
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Convolution theorem: Given a pair of 2D functions f(x,y) and h(x,y) the convolution 
between f and h is given by:  

  

The Fourier transform of g(x), denoted by F(u) is given by  

 

where F and H are the Fourier transforms of f and h. The  

We can apply the convolution theorem to equation 1 above and use the Fourier transform 
pair  

  

to obtain the Fresnel diffraction formula: 

 

A spherical wave can be written as  

   

Comparing the expression for the Fresnel diffraction with the spherical wave we recognize 
that the Fresnel diffraction is a mathematical expression of the Huygen’s principle where 
each point in a wavefront acts as a secondary point source emanating a spherical wave. The 
total field at the observation plane is a superposition of the spherical waves.  
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Figure 1.7 Depiction of Huygens’s principle  

 


