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1. INTRODUCTION

The basic arcliitectnre for a holographic neural network [1] consists of 2-D neural planes that
are implemente(I nsing some form of spatial light modulator (SLM) or "smart pixel" technology
and 3-D holograms that implement the weighted interconnectK)ns i)etween the neurons or pixels on
the SLMs. The 3-D storage capability (:)f the volume hologram p1o\i(ies the system with very high
storage density allowing us to iinplernent efficiently veiy large networks. Typically, a single volume
holograin can store iO — 1010 weights in a volume siiialler than 1 cm3 Therefore, optical networks
with billions of weights can be readily realize(l [2] . In fld(litiofl to the large size of the optical
networks, speed is another (lesirable PropertY. High speed is (lerive(l from the 2-D parallelism of
the optical system and the SLM in particular. Currently, the number of pixels on commercially
available SLMs is approximately 500 x 500 an(I devices with one million pixels are expected to
become available in the near future withì the advent (I)f high (lefinitR)n television. The speed of the
network is also (lepenclent on the switching s1)eed of the SLM. The (le\Tices most commonly used
today are based on nenlatic liquid crystal technology and they typically have a switching speed
of approximately 30 milliseconds (video rates ). Devices based on ferroelectric liquid crystals or
senucon(luctors (GaAs ) a.ie expected to plo\Ti(le switching speeds in the 1 00 microsecond regime
and possil)ly less. We cai get an estmiate for the )roce.ssing speed of a holographic network
by divi(ling the total inunber of weights stole(l in the holograin by the switching speed of the
SLM. For current tecimology tim pr(.)cesung sI)ee(l is in excess of 1O/(3 x 102) 3 x 1010 weight
updates iei' second. Increasing the SLv1 sl)eed to a millisecond yields processing speed in excess of
1012 reight updates ier second. The perfoiinance (I)f pti(al net\v(I)rkS (a billion adaptable weights
and 1012 weights Up(lates jer sec()nd) cannot be (asi1y lnatche(l by electronic iniplernentations.
However, snie applications niay require even i)ette1 1)elfolrIlance. Specifically, networks that are
trained Witil local algorithnis [3,4] in ilulage iec giii ti( )fl al)1)licatR)ns, can have a huge storage
requirenlent. The use of optical stolag(' (an l)rovi(le an eflective s()lUtiOl1 to this large storage
reqlurernent [5] . In this paper we (:xp1()re t11( uSe of 3—D disks [6] for the construction of networks
with extreinely large storage caicity. 3—D disks caii st(I)1e Ui) t(I) 1(312 weights [7] per (lisk. In tIiis
paper we discuss how 3-D disks are used to inipleiiieiit an optical neural network and then derive
the capacity and speed of the resulting aichitecti.ire.

2. 3-D DISK NETWORK

The optical lletwolk nnpleniented with a 3—D disk is shown in Figure 1. A 3—D (lisk is sim-
ply a holographic material (e.g., photorefractive crystal or phot( )polymer) shaped as a (liSk. At
each location on the disk infirination is stored in the volume of the material through angular or
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Figure 1. Optical Network iinplenientecl with a 3—D disk.

wavelength rniltip1exing as in c()nventi(I)na.1 hologiapliic st()rage. The ty)ica1 areaof each location
is several mm2. The transverse area of the (lisk is large enough to support many such locations.
Therefore information is both s1)atiLllY and aiigilariy uniltiplexed in a 3—D disk. Different loca—
tio)flS Oil the (liSk are accessed iy using the fl1echaflical 1iI()ti(I)fl of the (lisk and the hea(i. The disk's
rotation allows access to diflerent S1)(I)ts aroun(l the (lisk \vl1eas ra(lial motion of the readout head
provides the scanning al(I)ng the sec(.)n(l (lirecti()n. The iK)l(I)g1a)l1ic network 5lK)Wfl in Figure 1 uses
the holograins stored at each location in the conveuti()nal inaniier of a holographic interconnected
network [1] . Then difirent locatioiis are used to ext(E1i(l the net\v(:)rk's capacity. There are two
distinct modes of oJ)eration . In the firs t 111s )(l(, (1.('l1 l(I)cati()11 is llse(l 1.S 1fl in(lependent network
tliat is se)arate1y traifle(l. Tln the different l()CL.ti()11S OH the (lisk are used to store the weights
for different tasks. For install(e, if the lletw(1)rk is traille(l to recogniZe faces, then each location
can be devoted to store the weights fr a iietwork that recognizes a. specific person. Multiple
persons can be searched for by rotating the (lisks so that (lifferent a.rea.s are illiuninated by the
optical beam, effectively re)rogra1nnuh1g the iietwork to look for a (liflerent person each time a
new location is illuminated. In the sec()n(l nl(I)(le of ()l)('rat.i(:)n niultiple locations Ofl the disk are
used to bUil(l—up a net.w()rk that is larger than the capacity ()f a single location. This is (lone by
first evaluating the network at' one location and storing the respnse in an electronic memory,
prr to threslm()1(liflg at the (:)ut1)ut. layer. The 1(s1)()11Se (.)f SulI)sequent layers is then accumnulated
in the electronic niemor thereby coust.iuctnig a large virt.ua1" hidden layer that is built—up over
time. The final thresholdmg is performed electronically after all the locations that make up the
network have been evaluated.

The network describe(l above caii either implement, a very large network with the number of
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weights being limited by the overall capacity of the disk or a large number of smaller networks
(each with approximately a billion weights) that caii be quickly reprograrnme(l by rotating the
disk. In what follows we will consider the factors limiting the performance of such systems and
derive their storage capacity (the maximum number of weights that can be supported) and their
processmg speed (the munber of synapses per second that the network can implement).

3. NETWORK SIZE

The total number of weights, Na,, that the system in Figure 1 can support is given by

TT — N2N,1. N, + T N N10 (1)

where N is the number of input pixels, Ni, is the number of hidden units that can be implemented
at one time (at a single location), N is the number of output units, and N, is the number of
locations on the (lisk where l1olograins are recorde(l. In image processing applications it is often
the case that N > > N11. > > No which iflhl)lieS that N1, J\T j\T11 Ni . The input SLM sets the limit
on N0 to approxinate1y (I)ne inillioii pixels. AT1, fl(l AT1 are liniite(l 1r the properties of the 3—D
disk. We wish to maximize the inunber of locations on the (lisk a11(l at the same time maximize
the number of hidden uruts. Unfortunately, the two are related. In or(ler to increase the number
of hidden units, we niust record li(I)hI)gralns at each locati(I)ns using reference beams with a larger
angular deviation. The increase in the angle of the reference beam, causes a larger area on the
disk to be illuminated. This effrct is shown in Figure 2. Therefore there is a maximum number
of hidden units beyond which the ilicrease 111 the illuminated area is not compensated by the
increase in the number of hidden units. This effect determines the optimum miumber of hidden
units to be used.

Figure 2. Extra area. taken up by (lefocusilig and reference beam angle change.

Another parameter that needs to be o1)tmliz(d is the thickness of the (lisk. The Fourier
transform of the input image is shown to conic to focus at one plane inside the crystal, halfway
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between the two disk surfaces. The extend of the signal beam is smallest at the Fourier transform
plane an(1 it expands away from it . Therefore the area illuminated on the surface of the disk is
larger than the spatial extend of the Fourier transfoiiii itself an(l it grows larger as the disk becomes
thicker. This effect (letermines the optimum (lisk thickness. The two competing mechanisms that
give rise to the tradeoff are as follows: As the (lisk beconies thicker, the angular selectivity
increases and therefore we can have 111(1)1C ili(l(leLI units within the same angnlar range of the
reference beams. However, the increase in the thickness also causes the illuminated area to grow
because of the defocusing just (lescribe(l. It is possil)le to optimize all the parameters of the
system simultaneously {7] to maximize the st(:)rage ca)acity of the (lisk. A convenient measure
for expressing the storage density is in terms of the number of weights per unit area on the disk's
surface. This allows us to pl'e(lict the storage density ifl(lepen(lently of the size of the disk and
also provides a direct comparison with the density of storage that can be obtamed with a network
implemented with 2-D (lisks [8] . The (:)ptilllum st(:)rage is plotted in Figure 3 where the number
of weights per //rn2 that can be stored on the (lisk is plotted as a function of the disk's thickness.
Notice that the density peaks at 47. 7 weights l)e1 miCron square(l at' a thickness of approximately
3.2 i-nm. Also plotted on the same figure is the ('(:)11es)o11(ling optiinuni nunber of hidden units
that achieve the oPtin1llu (lensity. For tik' lllfl'Xilflhlfll (leflSit3T, the rniinber of hi(lden units per
location is Nh = 250. The area that is illiuiuiiated on the disk in this optimum configuration is
5.27 mm2. Therefore, if the (liameter of the disk is 5.25" the nmnber of locations is N1 = 2411
(assuming a 2 cm radius area at the center of the (115k that is not use(l). Substituting N = 106,
Nh = 250, and N1 = 2650 in Eq. (1) we obtain a network size of 6.03 x 1011 weights.

ioo

L (mm)
Figure 3. Optimiuii storage (lelisity as a fuiictioii (I)f crystal thickness.
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4. PROCESSING SPEED

The processing si)eed of the net\vork in Figure 1 (measiued in weights per second) is equal
to the number of weights per location (livideci by the time r it takes to evaluate the response of
the network at each location. \'Ve have already calculate(l the nuniber of weights per location to
be .JVJVj = 2.5 x 108. The time 'i is detellflinc(l 1r the sensitivity (I)f the hidden units. If we are
given the available optical 1)\\Te1 aiid the light efficiency (.)f the system, then the sensitivity of the
devices used to iinp1enent the hi(lclen units (letellinne the 1e(Illile(l integration time. Specifically

]\/IhcN1,
T , (2)

h/SLM11IIOL1/DET'/\

where A4 is the iniinber of 1)h()t()lls that each hidden unit reqiiies to turn oii, h is Planck's
constant, c is the speed of light, /SLiJ, 1lHoL, and 171)E7' are the SLM, detector, and hologram
efficiencies, I is the incident light intensity, ail \ is the wavelength of light. Using M = iO,
Nh 250, I = 100 inVV, \ =488 urn, 1/JIOL iD, /flE7 .5, a11(l 71SLM = .1, T = 2.037 sec.
The processing speed of the system is tiieii equal to 1.23 >< 1014 weights per second. The rotational
speed of the (lisk requil'e(l to sustain this )roccssi11g sp(((l is ab(I)ut 3,600 revcduticns per minute
[9] which can be easily aclueve(l.
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