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1. INTRODUCTION

The basic architecture for a holographic neural network [1] consists of 2-D neural planes that
are implemented using some form of spatial light modulator (SLM) or “smart pixel” technology
and 3-D holograms that implement the weighted interconnections between the neurons or pixels on
the SLMs. The 3-D storage capability of the volume hologram provides the system with very high
storage density allowing us to implement efficiently very large networks. Typically, a single volume
hologram can store 10° —10!? weights in a volume smaller than 1 em®. Therefore, optical networks
with billions of weights can be readily realized [2]. In addition to the large size of the optical
networks, speed is another desirable property. High speed is derived from the 2-D parallelism of
the optical system and the SLM in particular. Currently, the number of pixels on commercially
available SLMs is approximately 500 x 500 and devices with one million pixels are expected to
become available in the near future with the advent of high definition television. The speed of the
network is also dependent on the switching speed of the SLM. The devices most commonly used
today are based on nematic liquid crystal technology and they typically have a switching speed
of approximately 30 milliseconds (video rates). Devices based on ferroelectric liquid crystals or
semiconductors (GaAs) are expected to provide switching speeds in the 100 microsecond regime
and possibly less. We can get an estimate for the processing speed of a holographic network
by dividing the total number of weights stored in the hologram by the switching speed of the
SLM. For current technology the processing speed is in excess of 10%/(3 x 1072) & 3 x 101° weight
updates per second. Increasing the SLM speed to a millisecond yields processing speed in excess of
102 weight updates per second. The performance of optical networks (a billion adaptable weights
and 10!? weights updates per second) cannot be casily matched by electronic implementations.
However, some applications may require even better performance. Specifically, networks that are
trained with local algorithms [3,4] in image recoguition applications, can have a huge storage
requirement. The use of optical storage can provide an effective solution to this large storage
requirement [5]. In this paper we explore the use of 3-D disks [6] for the construction of networks
with extremely large storage capacity. 3-D disks can store up to 1012 weights [7] per disk. In this
paper we discuss how 3-D disks are used to implement an optical neural network and then derive
the capacity and speed of the resulting architecture.

2. 3-D DISK NETWORK
The optical network implemented with a 3-D disk is shown in Figure 1. A 3-D disk 1s sim-

ply a holographic material (e.g., photorefractive crystal or photopolymer) shaped as a disk. At
each location on the disk information is stored in the volume of the material through angular or

492/ SPIE Vol. 2026 0-8194-1275-9/93/$6.00

Downloaded from SPIE Digital Library on 10 Oct 2011 to 128.178.48.202. Terms of Use: http://spiedl.org/terms



3-D disk

input 2-D disk
layer

Recording
reference
beam

layer

Figure 1. Optical Network implemented with a 3-D disk.

wavelength multiplexing as in conventional holographic storage. The typical area of each location
is several mm?2. The transverse arca of the disk is large enough to support many such locations.
Therefore information is both spatially and angularly multiplexed in a 3-D disk. Different loca-
tions on the disk are accessed by using the mechanical motion of the disk and the head. The disk’s
rotation allows access to different spots around the disk whereas radial motion of the readout head
provides the scanning along the second direction. The holographic network shown in Figure 1 uses
the holograms stored at ecach location in the conventional manner of a holographic interconnected
network [1]. Then different locations are used to extend the network’s capacity. There are two
distinct modes of operation. In the first mode, cach location is used as an independent network
that is separately trained. Then the different locations on the disk are used to store the weights
for different tasks. For instance, if the network is trained to recognize faces, then each location
can be devoted to store the weights for a network that recognizes a specific person. Multiple
persons can be searched for by rotating the disks so that different areas are illuminated by the
optical beam, effectively reprogramming the network to look for a different person each time a
new location is illuminated. In the sccond mode of operation multiple locations on the disk are
used to build-up a network that is larger than the capacity of a single location. This is done by
first evaluating the network at one location and storing the response in an electronic memory,
prior to thresholding at the output layer. The respouse of subsequent layers is then accumulated
in the electronic memory thereby constructing a large “virtual” hidden layer that is built-up over
time. The final thresholding is performed electronically after all the locations that make up the
network have been evaluated.

The network described above can either implement a very large network with the number of
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weights being limited by the overall capacity of the disk or a large number of smaller networks
(each with approximately a billion weights) that can be quickly reprogrammed by rotating the
disk. In what follows we will consider the factors limiting the performance of such systems and
derive their storage capacity (the maximum number of weights that can be supported) and their
processing speed (the number of synapses per second that the network can implement).

3. NETWORK SIZE
The total number of weights, N,,, that the system in Figure 1 can support is given by

]\Tw = Nz'Nh.]\‘rl + JVII,NOJVI (1)

where N; is the number of input pixels, Nj, is the number of hidden units that can be implemented
at one time (at a single location), N, i1s the number of output units, and N; is the number of
locations on the disk where holograms are recorded. In image processing applications it is often
the case that N; >> N;, >> Ny which implies that N, =& N; N, N;. The input SLM sets the limit
on N, to approximately one million pixels. Nj, and N; are limited by the properties of the 3-D
disk. We wish to maximize the number of locations on the disk and at the same time maximize
the number of hidden units. Unfortunately, the two are related. In order to increase the number
of hidden units, we must record holograms at each locations using reference beams with a larger
angular deviation. The increase in the angle of the reference beam, causes a larger area on the
disk to be illuminated. This effect is shown in Figure 2. Therefore there is a maximum number
of hidden units beyond which the increase in the illuminated area is not compensated by the
increase in the number of hidden units. This effect determines the optimum number of hidden
units to be used.

Figure 2. Extra area taken up by defocusing and reference beamn angle change.

Another parameter that needs to be optimized is the thickness of the disk. The Fourier
transform of the input image is shown to come to focus at oune plane inside the crystal, halfway
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between the two disk surfaces. The extend of the signal beam is smallest at the Fourier transform
plane and it expands away from it. Therefore the area illuminated on the surface of the disk is
larger than the spatial extend of the Fourier transform itself and it grows larger as the disk becomes
thicker. This effect determines the optimum disk thickness. The two competing mechanisms that
give rise to the tradeoff are as follows: As the disk becomes thicker, the angular selectivity
increases and therefore we can have more hidden units within the same angular range of the
reference beams. However, the increase in the thickness also causes the illuminated area to grow
because of the defocusing just described. It is possible to optimize all the parameters of the
system simultaneously [7] to maximize the storage capacity of the disk. A convenient measure
for expressing the storage density 1s in terms of the nunber of weights per unit area on the disk’s
surface. This allows us to predict the storage density independently of the size of the disk and
also provides a direct comparison with the density of storage that can be obtained with a network
implemented with 2-D disks [8]. The optimum storage is plotted in Figure 3 where the number
of weights per pm? that can be stored on the disk is plotted as a function of the disk’s thickness.
Notice that the density peaks at 47.7 weights per micron squared at a thickness of approximately
3.2 mm. Also plotted on the same figure is the corresponding optimum number of hidden units
that achieve the optimum density. For the maximum density, the number of hidden units per
location 1s N, = 250. The arca that is illuminated on the disk in this optimum configuration is
5.27 mm?. Therefore, if the diameter of the disk is 5.25” the number of locations is N; = 2411
(assuming a 2 cm radius arvea at the center of the disk that is not used). Substituting N; = 108,
Nj, =250, and N; = 2650 in Eq. (1) we obtain a network size of 6.03 x 10! weights.
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Figure 3. Optimun storage density as a function of erystal thickness.
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4. PROCESSING SPEED

The processing speed of the network in Figure 1 (measured in weights per second) is equal
to the number of weights per location divided by the time 7 it takes to evaluate the response of
the network at each location. We have already calculated the number of weights per location to
be N;Nj, = 2.5 x 108. The time 7 is determined by the sensitivity of the hidden units. If we are
given the available optical power and the light efficiency of the system, then the sensitivity of the
devices used to implement the hidden units determine the required integration time. Specifically

MheNy,
;= LCIN ] (2)

b
NsLm 7]110L77DETI/\

where M is the number of photons that each hidden unit requires to turn on, h is Planck’s
constant, ¢ is the speed of light, nsiar, Yuor, and 1, are the SLM, detector, and hologram
efficiencies, I is the incident light intensity, and A\ is the wavelength of light. Using M = 10%,
Ny =250, I = 100 mW, X\ =488 um, 1,0, = 107°, pppr = .5, and nsa = .1, 7 = 2.037 psec.
The processing speed of the system is then equal to 1.23 x 10! weights per second. The rotational
speed of the disk required to sustain this processing speed is about 3,600 revolutions per minute
[9] which can be easily achieved.
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