The Match Fit Algorithm: A Testbed for the
Computational Motivation of Attention

Joseph G. Billock!, Demetri Psaltis', and Christof Koch!

California Institute of Technology
Pasadena, CA 91125, USA
billgr@sunoptics.caltech.edu

Abstract. We present an assessment of the performance of a new on-line
bin packing algorithm, which can interpolate smoothly from the Next Fit
to Best Fit algorithms, as well as encompassing a new class of heuristic
which packs multiple blocks at once. The performance of this novel O(n)
on-line algorithm can be better than that of the Best Fit algorithm. The
new algorithm runs about an order of magnitude slower than Next Fit,
and about two orders of magnitude faster than Best Fit, on large sample
problems. It can be tuned for optimality in performance by adjusting
parameters which set its working memory usage, and exhibits a sharp
threshold in this optimal parameter space as time constraint is varied.
These optimality concerns provide a testbed for the investigation of the
value of memory and attention-like properties to algorithms.

1 Introduction

The computational abilities of humans and computers are in many ways com-
plementary. Computers are good at routine, serialized tasks where high degrees
of precision are required. Humans are good at dealing with novel situations in
cases where highly precise operation is less important. One contributing fac-
tor to this is the computational architecture used by computers and humans.
Computer algorithms usually approach problems with the goal of seeking exact
solutions, or at least solutions which are optimal in some sense. To do this, they
use as much information about the problem domain as possible. Human compu-
tation, we argue, is bound by a different set of constraints. The computational
architecture of the brain is set up in a way which sharply limits the amount of
information reaching its planning areas. This bottleneck (which mandates the
contents of "awareness”) makes humans very good at generalizing, dealing with
novel situations, and responding quickly, but less good at finding exact solutions.

We would like to explore the area where the demands placed on computer
algorithms are more similar to those which the brain handles—situations where
highly complex problems defy exact solutions, and where external time pressure
forces rapid response— and investigate how computer algorithms deal with these
constraints.

The bin packing problem is a promising testbed. It is a known NP hard prob-
lem ([2], [3]), and is very general, with applications to cutting stock, machine and

V.N. Alexandrov et al. (Eds.): ICCS 2001, LNCS 2074, pp. 208-216] 2001.
© Springer-Verlag Berlin Heidelberg 2001

The Match Fit Algorithm: A Testbed for the Computational Motivation 209

job scheduling, parallel processing scheduling, FPGA layout, loading problems,
and more ([4], [1]). In its most basic form, the problem is phrased thus:

Definition 1. Given a set S of real numbers in (0, 1], we wish to find the small-
est possible number k such that there are k subsets of S, s;, i = 1.k, with
$;iNs; =0 fori#j, Us; =5, and Vs; Y {s;} < 1.

One can think of this problem as an assortment of blocks of varying sizes
being fit into bins of unit size. The goal is to fit the blocks into as few bins as
possible without overfilling them. The elegance of the bin-packing problem has
attracted much attention. Since finding exact solutions for NP problems is com-
putationally intractable, researchers have generally attempted to find heuristics
which perform well, and to analyze this performance. A large number of heuristic
approaches have been suggested. These can be classified into on-line and meta-
heuristic approaches. The on-line approaches (such as the Best Fit algorithm)
are in general much, much faster than the meta-heuristic approaches (such as
genetic algorithms or simulated annealing). In this paper, we will present and
characterize a new online heuristic for the bin packing problem.

The algorithm we describe is motivated by some considerations on the Best
Fit algorithm. Given that the worst case performance ratio of on-line algorithms
is quite low, from 1.7 for Best Fit to 2 for Next Fit ([5], [6]), there is not much
room for algorithms which perform dramatically better than these. When we
consider a time-constrained problem, however, where algorithms are under time
pressure to produce the best possible packing, then we can consider algorithms
which have comparable or slightly improved performance than Best Fit (BF),
but which perform at speeds nearer to that of Next Fit (NF). The inspiration for
our algorithm is a characteristic of the way in which Best Fit treats bins in its
interim solutions. Bins below a certain level can be thought of as ”in progress,”
that is, actively being used by the algorithm to pack new blocks. Above a certain
bin level, however, the flow of incoming bins is enough to make the algorithm
unlikely to work any more with a particular bin at that level. Furthermore, the
number of ”in progress” bins remains quite constant even for very large problems.
We have designed an algorithm which operates in linear time (as Next Fit), but
which uses approximately those bins and blocks which Best Fit would use, and
whose performance is thus very close to that of Best Fit.

2 Match Fit Algorithm

The operation of the algorithm (see Fig. [[) maintains in memory those bins
which are actively involved in the solution of the problem. It does this by limiting
the size of its ”short-term memory” according to parameter specification, and
taking full bins out of this short-term memory to keep within that bound. We
have introduced a memory for blocks, as well. The algorithm matches blocks and
bins from its memory, which is usually quite small compared to the problem as
a whole. The criteria used for matching produces bins which are nearly full (and
will not be re-examined). Thus, the algorithm takes advantage of the relatively

210 J.G. Billock, D. Psaltis, and C. Koch

bl bl

%%%4—5 v P bins

?\/’

Nearly-full 7\ ? 1 %)
bins - - % - %%%
% : Upacked

________________ blocks
Working Memory

A few blocks and partially filled bins

Fig.1. The Match Fit algorithm illustrated. The algorithm maintains a memory of
bins and blocks. On each cycle it attempts to find matches between bin/block pairs
which are within a small threshold of making a full bin. When it finds such a match, it
removes the nearly-full bin from its memory and refreshes its memory from the queue
of waiting blocks and/or new, empty bins. If no such match is found, blocks are put
into bins in which they don’t match exactly, but the bin is not removed from memory.

small number of bins in the ”in progress” category for excellent time-performance
even for large problems (the algorithm is O(n)) with a relatively small (O(1))
memory. After each iteration, the memory is replenished from any blocks left
unpacked. The bin memory is replenished with empty bins. If no suitable matches
in memory can be found, the algorithm forces placement of blocks into bins
anyway, and then replenishes memory.

We have run Match Fit on the Falkenauer [7] test sets and compared its
performance to Best Fit (Table[).

Table 1. Falkenauer data test comparison results

Best Fit Match Fit Match Fit Match Fit
3 Bins, 3 Blocks 10 Blocks, 6 Bins unlimited memory
Performance 0.96 0.90 0.96 > 0.99
Ratio
(mean)

Statistically, Match Fit (MF) can outperform the Best Fit algorithm. For
working memory sizes of only 10 blocks and 6 bins, or of 6 blocks and 8 bins, the
average performance of Match Fit was 0.96, which is what Best Fit performs on
the test set. For this test, the 1000 block probems were used, which is composed

The Match Fit Algorithm: A Testbed for the Computational Motivation 211

of problems with a uniform normalized block distribution on integers in [20,100]
with bin size 150. The working memory size, then, is about 2% of the problem
size for performance at parity with Best Fit. For very large working memory
sizes (comparable to the size of the problem), Match Fit very often yeilds optimal
solutions (which are known for these test problems), with an average performance
of 0.995.

g -~ ------I-----m---:-;
g //, e ----'t"‘:-‘i—:---. L
I ’ .-"'I“ -
S * "
O o9l oot - |
& 5 «
= R
8 R
c .' f
© | K] I. |
§0.85 R
o .I
o8- f —— 1 block |
i == == 5 blocks
v smmus 15 plocks
=== 100 blocks

0.75 1 1 1 1 Il Il Il Il
1 2 3 4 5 6 7 8 9 10

Number of bins in memory

Fig. 2. Performance of MF algorithm on large test problem. 10,000 blocks; uniform
distribution (0, 1] on size. The bins are of size unity. The performance increases as the
working memory of the algorithm increases slowly towards the performance of Best Fit
(which is 98%).

In Fig. 2 the algorithms performance on a very large problem (10,000 blocks;
uniformly distributed in size) is shown. The early saturation of performance sug-
gests that Match Fit will do well under time pressure. The reason is that since
the MF algorithm takes a shorter time to operate, and still can produce compet-
itive performance with BF, then when there is not much time to operate, the MF
algorithm will be able to keep up and perform better than BF. The saturation is
comparable when either bin or block memory is increased. Of the two, increasing
block memory offers slightly better marginal performance. This suggests that bin
packing algorithms which operate in very resource-limited environments would
do well to expand the number of blocks they consider simultaneously alongside,
or even before, they expand the number of partially-filled bins they consider.

212 J.G. Billock, D. Psaltis, and C. Koch

3 Time-Pressured Performance Characteristics

0.95¢

0.9r

Match Fit
5 Bins

—— 3 Blocks
---- 30 Blocks
--—-- 200 blocks

o

o

3}
‘

Next Fit

Performance
o
~
(6]

Best Fit
0.65

0.6

0.55

0.5 ‘ 2 ‘ 3 ‘ 4 5
10 10 10 10 10
Time allowed (ms)

Fig. 3. Comparison of time-pressured performance of three bin-packing algorithms.
The performance of Match-Fit is intermediate to Next Fit and Best Fit. The time
allowed for the problem solution is shown in milliseconds, but will scale if a different
processor is used for the problem, while maintaining the general shape of the curves.
The problem is packing 10,000 blocks uniformly distributed in size over (0,1] into
unity-sized bins.

Our primary focus in this investigation is the performance under time pres-
sure of these various algorithms. By time pressure we mean the performance
of the algorithm in a situation where the best solution is demanded from the
algorithm after a particular length of time. The time constraint is enforced by
an external controller, which allows the algorithms to run on a problem for a
fixed amount of time, and then allocates any remaining blocks unpacked by the
algorithm at one block per bin. This is equivalent to blocks passing a real-life
packing machine operated by one of these algorithms. If the algorithm could not
consider a particular block as it passed (that is, if the blocks passed too quickly)
then that block would pass outside the working area of the machine and be
placed into its own bin. Fig. Blshows a performance comparison between the BF,
NF, and a few configurations of the MF algorithm (with 5 bins and a varying

The Match Fit Algorithm: A Testbed for the Computational Motivation 213

numbers of blocks available to its working memory). The problems being solved
by the algorithms are the packing of the 10,000-block problem (uniform (0,1] dis-
tribution on block size) into bins of size unity. As can be seen, the performance
of the MF algorithm is intermediate to BF and NF performance.

0.85

0.80

o
oy
3

Performance
©
3
o

0.65 . .
Bin Memory Size: 5

Time allowed: 200ms

1 10 100
Blocks Memory Size

0.60

Fig.4. Optimality in memory size for time-pressured MF algorithm. Under time
pressure, there is a performance optimum for the MF algorithm. Too many items in
memory slows the algorithm down too much, whereas with too few items, it does not
perform as well. The problem is packing 10,000 blocks uniformly distributed in size
over (0, 1] into unity-sized bins.

An examination of the performance characteristics for the MF algorithm
indicates that when the algorithm is in its most interesting performance region
in terms of its time-pressured performance—that is, performing well, but not yet
at its optimum where it would be best to choose the most possible memory—
there is an optimum in the amount of working memory the algorithm uses. This
is shown more explicitly in Fig. @ The optimal for this case (with 5 bins) is
about 25-30 blocks in memory. When fewer blocks are used, the performance is
less because the algorithm doesn’t have as good a chance of finding good packings
for blocks. When the memory uses more blocks, the performance also decreases,
because although good packings are being found, it takes the algorithm longer
to find them and runs out of time. In the case of the BF algorithm, which is
equivalent to a limiting case of the MF algorithm where an almost unlimited bin
memory is allowed (but using a single block in memory at a time), the packing
is superior, but the time taken is roughly two orders of magnitude more.

214 J.G. Billock, D. Psaltis, and C. Koch

There is another interesting effect in how the optimal strategy changes as the
time pressure eases. Fig. [illustrates that there is a quite abrupt change in the
optimal approach to solving the problem as the time pressure is slowly varied.
In this figure, the memory parameters of the algorithm were varied widely (from
1 bin and 1 block to 200 blocks in memory and 20 bins in memory). For each
value of time pressure, the various Match Fit algorithms using their memory
parameters were run, and the best performer was examined. The top plot of
Fig. Bl shows the best performance of any of the Match Fit algorithm configura-
tions in solving the problem. The bottom plot shows the working memory size
(the addition of blocks and bins in memory) at this optimal point. We observe
a sharp threshold in the parameter space of the optimal configuration. Below
this threshold, the optimal approach to solving the problem is for the algorithm
to use a small working memory to best advantage. This remains true as the
time pressure eases off and the algorithm is able to perform better and better.
When the performance becomes close to its asymptotic limit, however, there is
a transition. For time pressures less than this transitional value, the algorithm
is better off to use basically as much memory as is available to it (the saturation
in working memory size shows reflects the maximum sizes used in the simula-
tions). Before the threshold, the performance curves exhibit the clear optimum
we anticipate for a system solving a demanding problem in real-time: there is an
optimum in the amount of resources it should dedicate to the task. As the time
pressure eases off, this optimum becomes less pronounced, and the approaches
which use more resources start to become attractive.

4 Conclusions

The Match Fit algorithm provides an interpolation between two of the most in-
teresting on-line approaches to solving the bin packing problem. The bin packing
problem has the charactistic, shared with many difficult problems, that only part
of the problem is important at any one time, and neglecting much of the prob-
lem state in the functioning of the algorithm need not lead to great performance
deficits. We then devised an algorithm which would take advantage of this idea
by utilizing a user-defined amount of computational resources in its solution of
the problem.

Since we are able to vary the size of the memory available to the MF algo-
rithm smoothly, we can observe the impacts of strategies which are resource-
intensive and those which do not require so many resources. When not under
time pressure, we observe asymptotic performance behavior with respect to the
amount of resources used. When the algorithm is under time pressure, however,
there is an optimum in the computational resources used by the algorithm. This
corresponds to the difference between the usual computer and human compu-
tational strengths. When there is less time pressure, and when exact solutions
are wanted, the approach which uses the most information about the problem
is favored. Under conditions where time pressures are important, it is best to

The Match Fit Algorithm: A Testbed for the Computational Motivation 215

1.0 i N R 250 §
= :

0.9 | | 200 I

E

8 .Y
€ 0.8 150 ©
m o
c o
5 g
o7 100 @
o P
o

i | IS

0.6 —e— Maximum Performance 50 o
—&— \Norking memory size €

at optimum ()]

C

‘ . x

0.5 03

10 100 1000 10000 =

Time allowed (ms)

Fig.5. The performance of MF as a funtion of time pressure and the corresponding
sudden change in strategy needed to achieve optimal performance. For time pressures
such that the algorithm cannot perform at its asymptotic level, the optimal strategy
is to use a relatively small working memory. The transition between this regime-that
where it is optimal to use a very small working memory and that where it is optimal
to use a very large working memory-is extremely sharp. The error bars in the top
plot show the standard deviation in performance of the memory configuration with
the highest mean performance over 10 runs of the simulation. The error bars in the
bottom plot indicate the standard deviations for those values of working memory size
for which the performance at a given time pressure was ever the best in any simulation
run, and so are quite pessimistic.

severely restrict the amount of information considered by the planning parts of
the algorithm.

Under increasing time pressure, we observe that there is a very sharp thresh-
old between the optimal performance of the two approaches. When time pres-
sure is severe-that is, there is not enough time to quite get to near-asymptotic
performance, it is advantageous to select a strategy which uses very few com-
putational resources. When the time pressure is not so severe, it very quickly
becomes advantageous to use very large (relative to the previous case) amounts
of computational resources. The reason for this is that under intense time pres-
sure, the system switches from performance being asymptotic in the amount of
resources used to having an optimum. Instead of providing a performance boost,
having more resources available simply ”distracts” the algorithm and slows it
down as it has to take time to take the extra information into account.

These two lessons—an optimum in the performance vs. resource utilization
curve when the algorithm operates in time constrained environment, and the sud-
den transition from a limited-memory optimum to a large-memory optimum-—we

216 J.G. Billock, D. Psaltis, and C. Koch

believe are extensible to a wide variety of computationally interesting problems.
The bin packing problem shares with many other interesting problems the char-
acteristic that it is very hard to solve exactly, but relatively easy to get close.
When there is this smooth measure on performance (instead of the more binary
case of, say, the k-SAT [8] problem), we expect to observe these two phenomena
in real-time algorithms.

References

1. Izumi, T., Yokomaru, T., Takahashi, A., Kajitani, Y.: Computational complexity
analysis of Set-Bin-Packing problem. IEICE Transactions on Fundamentals Of Elec-
tronics Communications and Computer Sciences: 5 (1998) 842-849

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA. (1979)

3. Karp, R.M.: Reducibility Among Combinatorial Problems. In Complexity of Com-
puter Computations, R.E. Miller and J.W. Thatcher eds. Plenum Press, NY. 1972
85-104

4. Johnson, D.S.: Fast Algorithms for Bin-Packing. Journal of Computer Systems Sci-
ence 8 (1974) 272-314

5. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., Graham,R.L.: Worst-Case
Performance Bounds for Simple One-Dimensional Packing Algorithms. SIAM Jour-
nal of Computing 3 (1974) 299-326

6. Mao, W.: Tight Worst-case Performance Bounds for Next-k-Fit Bin Packing. STAM
Journal on Computing 22(1) (1993) 46-56

7. Falkenauer, E.: A Hybrid Grouping Genetic Algorithm for Bin Packing. Work-
ing paper CRIF Industrial Management and Automation, CP 106 - P4, 50 av.
F.D.Roosevelt, B-1050 Brussels, Belgium. (1996)

8. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: Deter-
mining computational complexity from characteristic 'phase transitions’. Nature
400(6740) (1999) 133-137

	The Match Fit Algorithm: A Testbed for the Computational Motivation of Attention
	Introduction
	Match Fit Algorithm
	Time-Pressured Performance Characteristics
	Conclusions
	References

