Multiple-invariant space-variant optical processors

David Casasent and Demetri Psaltis

Multiple invariant optical correlators are considered. By multiple invariance, we mean invariance to more
than one distortion parameter per axis of the processor. Space variant optical processors using coordinate
transformations and a new phase detection scheme are used to realize such correlators. A theoretical analy-
sis and experimental verification are included.

. Introduction

The parallel processing and real-time features of
optical processors have not been sufficient alone for
these systems to see extensive use in pattern recogni-
tion.! One reason for this lack of practical use for op-
tical correlators has been their lack of flexibility and the
limited number of operations achievable in these pro-
cessors.2 Hybrid optical/digital processors? and space
variant optical processors*® have increased the flexi-
bility of these systems and included nonlinear opera-
tions and space variant systems to the repertoire of
optical processors. We recently reported on a space-
variant, distortion-invariant optical correlator using
coordinate transformations that allows correlation of
two functions that are distorted versions of one anoth-
er. However, this approach could only be applied to
functions that were distorted by at the most, two sep-
arate distortions (for a 2-D system). Since more than
two distortions occur in practice in image pattern rec-
ognition problems, optical processors must address such
real issues if they are to be viable candidate pattern
recognition systems. In this paper, we consider the
formulation of a multiple-invariant, space-variant op-
tical processor that is invariant to multiple distortions.
A general theoretical analysis is presented first, followed
by several specific cases and implementation methods.
We conclude with experimental confirmation of the
fundamental principle.

Il. Space-Variant Processors

Since these multiple-invariant systems will be for-
mulated using space-variant processing methods, spe-
cifically by use of coordinate transformations, we review
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the general formulation of a distortion-invariant,
space-variant processor. A 1-D example is considered
for simplicity. Let f(x) be the original undistorted
function. The distorted function f/(x) is described
by

f(x) = f(x") = flg(x,0)], 1

where g(x,a) is the distorting function, and a is the
unknown distortion parameter. To realize a space-
variant processor [invariant to the g(x,a) distorting
function), a coordinate transformation £ = h~! (x) is
applied to both functions. This produces two new
functions f; (£) and fy’ (¢), which can be used in a con-
ventional space-invariant correlator to achieve corre-
lation invariant to the distortion g(x,a).

The coordinate transformation is chosen to convert
the distortion into a shift &y for all values of a. Given
g(x,a), the coordinate transformation can be found
from®

dg(x,a)
dfo x ox
=h"Yx)=—— —dx. 2)
¢ * da .f—m ag(x,a) ¥ (
da

These new coordinate transformed functions f1(x) and
f1’(x) are shifted versions of one another. Thus a con-
ventional space-invariant system can be used to corre-
late them. The intensity of the output correlation peak
will be independent of a, and the location of the output
correlation peak will be proportional to a. These basic
principles are used in several stages in the present
multiple invariant system.

Prior space-variant processors using coordinate
transformations can accommodate only one distortion
parameter per axis (one distortion parameter for a 1-D
system or two distortions for a 2-D system or in general
one distortion parameter per axis). If the distorting
function depends on more than one parameter, tne
distorted function is

F(x) = fx") = flg(x,an89)], ®
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where 1-D functions are used, and the distorting func-
tion g is described by two distortion parameters a; and
az. Then from Eq. (2), we see that since h~1(x) depends
on dg/da; and since

(08)/(8a;) 5 (3g)/(da;), )

each distortion parameter requires a different coordi-
nate transformation h=1(x). It thus follows that the
maximum number of distortion parameters that coor-
dinate transformation processing can accommodate
equals the number of dimensions of the processing
system. In this context, a distortion is multiple if it is
described by more parameters than coordinate trans-
formation processing can accommodate.

. Prior Multiple-Invariance Approaches

When the distorted function is described by Eq. (3),
we can achieve multiple invariance by (a) scanning
through all values of the additional distorting parameter
or (b) elimination of the additional distorting parameter
by filtering in the transform plane.

The first approach involves construction of a number
of systems invariant to one of the parameters (say ap),
with each system corresponding to one value of the
second parameter as. If these systems cover all values
of as, the output of one of them will be the same for all
values of a; and a, for all input functions related by Eq.
(3). This approach has been used in multiple holo-
graphic matched spatial filter systems,? conventional
multichannel Doppler signal processors,8 and in optical
correlators using mechanical movement of components
to effect a scale or rotational search.? However, these
solutions require a large processing space (if parallel)
or are slow (if sequential).

The second approach is more attractive. It uses the
fact that a shift in the input coordinates can be trans-
formed into a linear phase factor in Fourier transform
space. Elimination of this phase factor also eliminates
any shifts in the input coordinates. Until now only the
formation of the magnitude of the Fourier transform has
been suggested as a method of achieving multiple in-
variance.>10 We consider this formulation and its
shortcomings in detail below.

With the reference function f(x) and the distorted
input function f’(x) defined by Eq. (3), we can realize
multiple invariance by first applying the transformation
x = h(§) tof(x). This transformation must satisfy

g(x,a1a5) = glh(£ - £),a4], (5)

where £ = £y(ay) is a constant depending only on the
unknown distortion parameter a;. The transformation
x = h(¢) is determined from Eq. (2). This yields a new
function

f(& = &0, a2) = fig[h (¢ — £o),aq]}. (6)

If we attempted to correlate f and f” in a conventional
space-invariant processor, the peak intensity of the
correlation will fluctuate as as changes. Using a 2-D
multichannel processor, each channel can be adjusted
to correspond to different as values. This will solve the
1-D problem presently being discussed but not the 2-D
version of it.
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Fig. 1. Schematic block diagram of a multiple-invariant, space-
variant optical correlator using the magnitude of the Fourier
transform.

To address the real problem, elimination of the dis-
tortion parameter a1, we form the Fourier transform of
fand f”. This yields

F (& ~ £o,a2)] = exp (—jwko) F”(w), V)]

where F is the Fourier transform of f”” and w is the ra-
dian spatial frequency variable in the Fourier transform
plane. If we form the magnitude of the Fourier trans-
form of f, we will have removed the dependence on aj.
We can then retransform F”’(w) and recover f” inde-
pendent of @;. This new f” function and f can then be
correlated, except that we have lost the phase of F(w)
and hence potentially useful information about /7. The
magnitude of the Fourier transform represents the
frequencies present in the input, and the phase of the
Fourier transform is affected by the distribution of these
frequencies in the input. Thus some information is lost,
since two functions with the same frequency content but
different spatial distributions of these frequencies could
produce identical results. This could lead to false
correlations for such functions. The extent of this as
a problem depends upon the specific functions and
application.

However, two processors can be cascaded as in Fig.
1. The first processor consists of a coordinate trans-
formation that converts a; to a shift by & as before.
The magnitude of the Fourier transform of this function
(together with f subjected to the same transformation
and Fourier transform magnitude operation) can then
be used as the input to a correlator invariant to as (as
aq affects the magnitude of the Fourier transform).
The location of the output correlation peak will then be
proportional to as as in conventional space-variant
processing by coordinate transformations.

f and f’ (the original distorted function) are then used
as inputs to a second space-variant correlator (invariant
to a1). This second correlator is made adjustable so
that it responds to different as values. The output of
the second correlator then provides a correlation in-
variant to a; and ay, and the location of the output
correlation peak is proportional to ¢;. Thus a; and as
can be determined and multiple distortions accommo-
dated by this system.



This method has several limitations besides the loss
of phase information associated with the formation of
the magnitude of the Fourier transform. First, the
coordinate distortion described by as may or may not
be preserved as a coordinate transformation in Fourier
space. Furthermore, in the presence of noise, the
magnitude of the Fourier transform is not completely
unaffected by a shift since interference occurs between
the signal and the noise.

IV. Phase Extraction

The major problem with achieving multiple invar-
iance by forming the magnitude of the Fourier trans-
form of the coordinate transformed function was the
loss of phase that occurred. We have recently!! re-
ported on and demonstrated a method whereby the
phase can be extracted from a complex wavefront. For
this present application, we describe this phase ex-
traction process as follows.

At the input plane we record f(x — xo) + f(—x + x0)
and detect the magnitude of its Fourier transform on
aTV camera. After thresholding the output signal with
a limiter and normalizing the width of all fringes by a
monostable in the video line, we obtain a function T'(w)
whose derivative is

dTw) . d(w)
dw _[sm(q)][ dw +x°]’ @

where ¢(w) is the phase of the Fourier transform F(w)
of f(x), and g is a constant.

Recall that the phase of the Fourier transform of the
function in the multiple-invariant correlator contains
a portion that is nonlinear in » (due to the spatial dis-
tribution of the function itself) and a portion that is
linear in w (due to the location of the function in the
input plane). By taking the Fourier transform of Eq.
(8), the de term is proportional to the shift in the input
coordinates. This value can then be used to position
the input function properly. Alternatively, the deriv-
ative of Eq. (8) can be formed (this eliminates the con-
stant term x and all linear phase terms in the trans-
form) and integrated twice. This yields the desired
phase function free of all linear terms. This phase
function can then be combined with the magnitude of
the Fourier transform and inverse transformed to re-
construct the input function free from a shift.

V. Multiple-Invariant Correlation

The schematic block diagram of a multiple-invariant
correlator that avoids the phase loss problems of the
prior system is shown in Fig. 2. Recall that the object
of this system is to correlate two functions: f’(x) de-
fined by Eq. (3) and the undistorted function f(x) and
to determine the unknown distortion parameters a; and
as. For simplicity, only the f'(x) channel of this system
is shown in Fig. 2. The undistorted reference function
f(x) is operated upon similarly.

As shown in Fig. 2, a coordinate transformation x =
h1(£1) is applied to the distorted input function f'(x) =
f(x’), where from Eq. (3)

x’ = g(x,a1,a2). 9

The coordinate transformation £; = hy~1(x) affects only
the distortion parameter a; and converts its effect to a
shift by &o in the £; coordinate, such that

glhi(81),a1,89] = g1(é1 — £or,09), (10)

where &1 = £o1(a1) is a constant dependent on the un-
known parameter a; only. The Fourier transform of

fi(&1 — £o1,a2) = flg1(& — for,a9)] (65))

is F(w) exp (Jw&o1). Using the linear phase extraction
scheme!! of Sec. IV, we can determine £y;(a1) and hence
ai.

If we use the &1(a1) value found from the phase ex-
traction system to shift f1(£; — £01,a2), we obtain f1(£1,a).
Applying the inverse transform £ = h;~1(x) to this
function we obtain

flg1lh171(x),a2l) = flg(x,a2)], (12)

which is now independent of a;.

We can now apply conventional space-variant cor-
relation®$ by coordinate transformation to this function.
and f(x). We achieve this by applying the coordinate
transformation £s = ho~1(x) to both f(x) and f[g(x,a2)],
where &, is selected to satisfy Eq. (2). These two new
coordinate transformed functions f(£2) and f(£2 — &o2)
[where &g = £02(as) is a constant dependent on the un-
known a only] are then used as inputs to a conventional
space-invariant correlator. The output correlation’
peak is invariant to the distortion described by Egs. (3)
and (9). The location of the output correlation peak is
proportional to £p2 and hence to as. Thus the desired
distortion invariant correlation has been realized and
the unknown distortion parameters a; and az deter-
mined.

f(x)

x’lq(x.a..az)
£x*)= 1(x)

x=h|(¥.l)
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Fig. 2. Schematic block diagram of a multiple-invariant, space-
variant optical correlator with no phase loss of information.
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VI. Experimental Demonstration

To demonstrate this multiple-invariant correlator
and its use, we consider the case of a multiple distortion
consisting of a shift in the input coordinate (i.e., the
input object can occur anywhere within the input plane)
and another distortion such as a scale or rotational
change between the input and reference functions.
Since a shift of the input object in one coordinate occurs
independently of the other coordinate in a 2-D image,
two separate parameters describe the shift distortion.
If any other type of distortion exists simultaneously,
space-variant processing by coordinate transformation
alone is not sufficient, and multiple-invariant, space-
variant processing is needed since the limit of one dis-
tortion per axis has been exceeded. (The shift alone
involves one distortion per axis.)

The phase extraction scheme described in Sec. IV can
be used to extract the shift in the input function. We
demonstrate this experimentally below. This shift
information can then be used to center automatically
the reference and input functions properly to allow
space-variant processing by coordinate transformation
to be used as in Fig. 2.

To demonstrate the key issue, extraction of the shift
information, two rectangular inputs (1 mm X 2 mm)
separated by 10 mm were used. Their interference
pattern was formed by a 762-mm focal length lens and
detected by a vidicon camera. This pattern, photo-
graphed from a monitor, is shown in Fig. 3(a). The ef-
fect of the magnitude of the Fourier transform of the
rectangular inputs is visible as a variation of the inten-
sity of the fringes in the main and side-lobes and across
all lobes. The thresholded and pulse normalized ver-
sion of this pattern is shown in Fig. 3(b). The effect of
the amplitude modulation has now been removed, the
fringe width is now uniform, and the fringe intensity far
more uniform. [A peak detector circuit was used in
conjunction with the threshold circuit to insure that the
fringes in Fig. 3(b) occur at the center of the fringes in
Fig. 3(a).] Since the input rectangular function is
symmetric, its Fourier transform is real, and the fre-
quency of the fringes is constant and determined by the
separation or shift in the inputs.

The derivative of the first diffracted order of the
pattern in Fig. 3(b) is shown in Fig. 3(c). This pattern
is constant and proportional to the separation or shift
2x¢ between the two inputs.

(b)

(d)

Fig.3. Experimental demonstration of shift or phase extraction in a multiple-invariant, space-variant optical correlator: (a) magnitude of

the Fourier transform of the interference pattern; (b) thresholded and pulse width normalized version of (a); (c) derivative of the first diffracted

order of the pattern in (b) showing the input phase data; (d) same as (c) but for the pattern in (a) showing the need to remove the amplitude
modulation.
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The spacing between the two inputs 2x¢ + x1 (where
2% is the separation for zero shift and x; is the shift)
was varied. For each case the intensity (x¢ + x1)2 of the
derivative of the function like the one in Fig. 3(b) was
detected. In Fig. 4, we show a plot of the actual and
experimentally determined values of the input shift x;.
The departure of the two curves at large x; is due to
departures in the performance of the lens at large ap-
ertures and higher space bandwidths. To demonstrate
the necessity to eliminate the magnitude of the Fourier
transform from the interference pattern, we directly
differentiated the pattern in Fig. 8(a). The result,
shown in Fig. 5(c), clearly shows the effects of amplitude
modulation. Detection of the phase data from this
latter pattern is clearly impossible.

"VIl. Discussion

As noted before, if a shift in the input and another
distortion are simultaneously present, a multiinvariant

processor is needed. We can apply this to functions

distorted as

flg(x,a1,89)] = flg(x — ay,a2)], (13)

as noted earlier. In this case, the shift in the input
coordinate is eliminated first, and a space-variant sys-
tem invariant to as is then used. The scale, rotation,
and shift-invariant problem1® addressed earlier is a
practical 2-D example of such a problem.

In instances in which a shift in the input coordinates
cannot be expressed by Eq. (13), such as

gx,a1,a2) = x% + ag, (14)

we first eliminate the distortion parameter ay. This
is accomplished!? by applying the coordinate trans-
formation £; = In(inx) to the function. Equation (14)
then becomes

glexp (exp1),a1,a2] = exp [exp (¢1 + Inay)] + a2 (15)

= g1(¢1 = o1,82),

where the effect of the coordinate exponentiation dis-
tortion parameter a; has been converted to a shift by
_ £o1(ay) = —Ina;. This shift can be eliminated as noted
earlier. The effective distortion then reduces to

glexp (exp1),1,a2] = exp (expé1) + a2
= g1(¢1,a2). (16)
An inverse coordinate transform £; = In(Inx) is now
applied to Eq. (16) to yield
g(x,l,a2) =x + as. 17

The resultant function can now be processed in a con-
ventional shift-invariant, space-invariant optical cor-
relator.

It should be noted that this multi-invariant optical
correlator is not limited to just two distortion parame-
ters per axis. Consider the distorted function

flai(x — a2)?3]. (18)

The parameters az and a; can be eliminated as noted
earlier, and a system such as the one just discussed, in-

(xo+x|)2

(NORMALIZED
UNITS) 2
DETECTED
LINEAR
PHASE FACTOR; 5 -

ACTUAL

x ((mm)
DISPLACE-
MENT
Fig. 4. Plot of actual vs experimentally determined values of the
) shift of the input function.

| 2 3 4

variant to the distortion parameter a3, used to produce
a 1-D optical correlator invariant to all three distortion
parameters and in which all three unknown distortion
parameters can be determined.

Vill. Summary

A multiple-invariant, space-variant optical processor
has been described in which two functions described by
any number of separate distortion parameters can be
correlated with no loss in SNR of the correlation. The
unknown distortion parameters can also be determined
in this scheme. Experimental confirmation of the key
step (determination of the non-linear phase portion of
a complex optical transform) has been provided.
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