Electronic transport in low dimensional systems

For example: 2D system I<<L; L = macroscopic extent
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Quantum well (2D)

Confinement in x direction and free electrons in the y,z directions
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Two identical barriers in series: Coherent transport;
t t complex transmission
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Quasi-localized state

Peak in the barrier transmission
when the electron energy matches
one of the well discrete energy level
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Resonant tunneling in semiconductor double barriers*

L. L. Chang, L. Esaki, and R. Tsu

IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
(Received 18 March 1974)

Appl. Phys. Lett., 24, 593 (1974)
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FIG, 1. Current and conductance characteristics of a double-
barrier structure of GaAs between two Gag gAlp ;As, as shown
in the energy diagram. Both the thicknesses and the calculated
quasistationary states of the structure are indicated in the
diagram. Arrows in the curves indicate the observed voltages
of singularities corresponding to these resonant states.

In the simple model of square barriers the current peaks
appear at about V =2E



VOLUME 60, NUMBER 6 PHYSICAL REVIEW LETTERS 8 FEBRUARY 1988

Observation of Discrete Electronic States in a Zero-Dimensional Semiconductor Nanostructure

M. A. Reed, J. N. Randall, R. J. Aggarwal,®’ R. J. Matyi, T. M. Moore, and A. E. Wetsel ®

Central Research Laboratories, Texas Instruments Incorporated, Dallas, Texas 75263
{Received 2 October 1987)

Electronic transport through a three-dimensionally confined semiconductor quantum well (*quantum
dot™) has been investigated. Fine structure observed in resonant tunneling through the quantum dot cor-
responds to the discrete density of states of a zero-dimensional system.

Phys. Rev. Lett. 60, 535 (1988)
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FBTS::"’- FIG. 1. A scanning electron micrograph of various size
GaAs nanostructures containing quantum dots. The dark re-
i gion on top of the column is the electron-beam defined Ohmic
Er I: - . T contact and etch mask. The horizontal bars are 0.5 pm,
FIG. 2. Schematic illustration of the vertical (a-a’) and lateral (b-b') potentials of a column containing a quantum dot, under Temperature
zero and applied bias. ®(r) is the (radial) potential, R is the physical radius of the column, r is the radial coordinate, W is the de- .
pletion depth, @ is the height of the potential determined by the Fermi-level (Ey) pinning, and E. r is the T'-point conduction-band
erergy. Smearing

The principal peak is due to the
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FIG. 3. Current-voltage characteristics of a single
quantum-dot nanostructure as a function of temperature,
showing resonant tunneling through the discrete states of the
n=2 guantum well resonance. The arrows indicate the v "
positions of the discrete states for the T =1.0-K curve.



Quantum wire (1D)

L Channel: 1D, ballistic
1D ballistic channel (transport without scattering)
(k>0)
_:__: _______________________ N.B.: Ohmic contact
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Quantized conductance through individual rows
of suspended gold atoms

Nature 395, 78 1 (1998) Figure 1 Scanning tunnelling microscope (STM) configuration built at the
speciman stage of a UHY electron microscope. The conductance, G =1V, was
obtained by measuring V,, = — R/, for a constant bias volage Vi, where Reis
the feedback resistor for current sensing, and fisthe current passing through the
contact between the tp and the sample. For most experiments, Ve = 13my and

FRe=100kQ. The imaging electron beam entered from top and typically had a
Piazo current density of 0.45 4 nm at the contact between the tip and the substrate,
Bridges of gold atoms formed at the contact were imagad at =107 magnification
on a video monitor and simultaneously recorded with the currert at intervals of
33ma.
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Figure 2 Electron microscope images of a contact while withdrawing the tip.
A gold bridge formed between the gold tip (top) and gold substrate (bottom),
thinned from a toe and ruptured at f, with observationtimes of 0, 0,47 1.23,1.33,1.80
and 217 s, respectively. Dark lines indicated by arrowheads are rows of gold
atomns. The faimt fringe outside each bridge and remaining in fis a ghost due 1o
interference of the imaging electrons. The conductance of the cortactis 0 at fand
~2% 13k~ ate. V= —10mV and 8r = 10k
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The conductance is quantized

The conductance of a mono-
atomic wire is 2e%/h and that of
a bi-atomic wire 1s twice as
large
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Quantized conductance of a single and a double strand of gold atoms. a)
Conductance change of a contact while withdrawing the tip. Conductance is
shown in units of G, = 2e>=h. b) Electron microscope images of gold bridges
obtained simultaneously with the conductance measurements in a). Left, bridge at
step A; right, bridge at step B. c) Intensity profiles of the left and right bridges
shown in b). The shaded area is the intensity from the bridge after subtraction of
the background noise. d) Models of the left and right bridges. The bridge at step
A has two rows of atoms; the bridge at step B has only one row of atoms.




Quasi 1D channel in 2D electron system
Phys. Rev. Lett. 60, 848 (1988)

Depletion by electro-
static gates

High mobility
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Narrow constriction; quasi-1D
(width d ~ Fermi wavelength %.) 0 -+ -

d:250nm, L.=1000 nm GATE VOLTAGE (volts)

With N parallel 1D channels (subbands): Limited conductance 2e?/h
even without scattering,

G(Erp) = Z T, (Ep) (T = 0) regardless of length L:
"contact resistance”

Temperature effect

+ Electrons populate leads according to Fermi-Dirac distribution:
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+ Conductance at finite temp. T:
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eg. thermal smearing of conductance staircase

* Higher T: incoherent transport
(dephasing due to inelastic scattering, phonons etc)



Coulomb blockade in quantum dots (0D)

Quantum dots Rev. Mod. Phys. 74, 1283 (2002)
(artificial atoms)

Two energy parameters:

¢—
U - ‘charging energy’ €2/C
(e-e interaction strength) U
AE - singl rticl i I
— single-particle AE |
level spacing

Tunnel resistance >>h/e? -> dot fully decoupled from the electrode

(a) Metal Island
O
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a) A metal island embedded between electrodes which are electrically
connected. Transferring an electron onto the island (b) or taking off the electron
from the island (c) charges the capacitor formed by the island and the electrodes

Classical charging energy for a capacitor E=q%/2C =e2N?2/2C for N
electrons (C is the island capacitance)
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L(N +1)— u(N) = € Additional energy to spend for
adding one electron




Two terminal arrangement
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Since a current flow through the island requires the electron number to
fluctuate at least by one electron, the energy barrier due to the charging
energy inhibits transport for

E=eV<e?C (Coulomb blockade)



Single electron transistor
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With increasing gate-source voltage eV ¢ electrons are accumulated on
the 1sland. Whenever the charge state fluctuates by e, current I, flows
for small applied voltage V¢ through the island, leading to a
periodically modulated I, — V ;4 characteristic.

Actually both V¢ and V ;4 can be used to control the current
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Competing channel in single electron tunneling
through quantum dot

Fictitious total energy spectra of N and N+1 electrons confined in a quantum dot
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Coulomb diamonds
Coulomb blockade Coulomb blockade + resonant tunneling

2

Giatc Voltage (arb, units)

Gate Voltage (V)

Bias Voltage {arb. units)

Vps = 0 -> Coulomb blockade
Vps > 0 -> Coulomb blockade +

P - ety resonant tunneling

-10 (0 10
Source-Drain Voltage (mV)

(a) Differential conductance, 0I/0V 4, plotted in a color scale in the plane of
(Vg Vsq) for N=0-12 at B = 0. The white regions (i.e. the Coulomb diamonds)
correspond to 0I/0V 4 = 0, red indicates a positive 01/0V,, while blue indicates
some regions of negative 0//0V 4. (b) Schematic stability diagram. In the
diamonds at non-zero bias voltages transport can take place via single-electron
resonant tunneling (SET), double-electron resonant tunneling (DET), etc.



VOLUME 71, NUMBER 24 PHYSICAL REVIEW LETTERS 13 DECEMBER 1993

Competing Channels in Single-Electron Tunneling through a Quantum Dot

J. Weis, R. J. Haug, K. v. Klitzing, and K. Ploog*
Maz-Planck-Institut fiir Festkirperforschung, Heisenbergsirasse I, 70569 Stuttgart, Federal Republic of Germany
(Received 3 August 1993)

Coulomb blockade effects are investigated in lateral transport through a quantum dot defined
in a two-dimensional electron gas. Tunneling through excited states of the gquantum dot is ob-
served for various tunneling barriers. It is shown that transport cccurring via transitions between
ground states with different numbers of electrons can be suppressed by the occupation of excited
states. Measurements in a magnetic field parallel to the current give evidence for tunneling processes
involving states with different spin.

Vps (mV) Vps (MV)

FIG. 2. (a) Differential conductance dI/dVps given in lin-
ear grey scale (white < —0.1 uS, black > 2 uS) as a function
of back-gate voltage Vg for different bias voltages Vps. (b) At
the top: regions of SET are hatched, regions where the num-
ber of electrons can change by two at a time are cross-hatched.
Lower part: The main structures visible in (a) are sketched.
Dashed lines show regime of negative differential conductance;
dotted lines show suppressed conductance.



Room-temperature transistor based on a single

carbon nanotube
Sander J. Tans, Alwin R. M. Verschueren & Cees Dekker

Nature, 393,49 (1998)

20

0.0
Vs (V)

The nanotube transistor (‘TUBEFET’). Main: room-temperature / —V traces
measured in vacuum for a nanotube device at a series of gate voltages. Left inset:
AFM image showing the nanotube lying across platinum electrodes. The gate
voltage 1s applied to the n+ doped Si underneath the 300-nm-thick SiO02 layer.
Right inset: Small-signal conductance G vs. Vg



Coulomb diamonds

Actually both source-gate and source-drain voltages affect the
conductance

For a fixed gate voltage V,, the source-drain voltage V can be used to
open or close the conducting channel
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Multi structure spectrum due to charging and confinement energy levels

To observe the Coulomb blockade kT< e2/C

e2/C =1-10 meV
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Coulomb blockade in a magnetic field

Appl. Phys. A 69, 297 (1999)
T=100 mK
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Zeeman splitting: 1/2guB-(-1/2guB)=guB

Two peaks in the conductance separated by guB
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Kondo effect

Physics World, 33 January 2001
Normal ground state:

But, imagine ....

Coulomb blockade -t_ E, ;" T\ 4‘

Virtual Okay
Heisenberg: Af ~ h/E,

W

.
-

Net result:
- ’[l'ﬂll.‘:;pﬂl"['-}
- spin flip

Many such events combine to produce the Kondo
effect, which leads to the appearance of an extra
resonance very close to the Fermi level

b density of states

Kondo temperature

JI'U [ ﬂ(EF—EO)(U+EO—EF)} 4
kT, = exp| — 5
v E.

I' is the width of the energy level affected by the tunneling
process; U = e2/C




The conductance depends on the electron number

Nature 408, 342 (2000)

Kondo resonance makes it easier for states belonging to the two
opposite electrodes to mix. This mixing increases the conductance
(1.e. decreases the resistance).
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