

Intra-atomic exchange,
electron correlation effects:
LOCAL (ATOMIC) MAGNETIC MOMENTS

d or f electrons
Intra-atomic exchange, electron correlation effects:

LOCAL (ATOMIC) MAGNETIC MOMENTS

Hund's rules

Inter-atomic exchange:
MAGNETIC ORDER

$$
H_{e x c}=-\sum_{i \neq j} J_{\mathrm{ij}} \mathbf{S}_{\mathrm{i}} \cdot \mathbf{S}_{\mathrm{j}}
$$

Dipolar Interaction:

SHAPE ANISOTROPY

$$
H_{d i p}=\frac{\mathbf{m}_{1} \cdot \mathbf{m}_{2}}{r^{3}}-3 \frac{\left(\mathbf{m}_{1} \cdot \mathbf{r}\right)\left(\mathbf{m}_{2} \cdot \mathbf{r}\right)}{r^{5}}
$$

Long range interaction between magnetic moments

$$
H_{d i p}=\frac{\mathbf{m}_{1} \cdot \mathbf{m}_{2}}{r^{3}}-3 \frac{\left(\mathbf{m}_{1} \cdot \mathbf{r}\right)\left(\mathbf{m}_{2} \cdot \mathbf{r}\right)}{r^{5}}
$$

m_{1} and m_{2} can be the magnetic moments of two atoms in a particle or the moments of two particles

$$
-2 m^{2} / r^{3} \quad-m^{2} / r^{3}
$$

In out-of-plane configuration the

dipolar interaction is reduced
\qquad
The magnetic configurations are determined by the competition, at a local scale, of four different energies:
Zeeman, exchange, magnetocrystalline anisotropy, and dipolar coupling.

$$
\begin{aligned}
E= & \left.-\mu_{0} \mu \mathbf{H} \sum_{i} \mathbf{m}_{i}-\overline{J \sum_{\langle i, j\rangle} \mathbf{m}_{i} \cdot \mathbf{m}_{j}}-\overline{\sum_{i} k_{i}\left(\mathbf{m}_{i} \cdot \mathbf{e}_{i}\right.}\right)^{2} & \text { exchange, magnetocrystalline energy } & \text {-> short range } \\
& -\frac{\mu_{0} \mu^{2}}{8 \pi} \sum_{i, j \neq i}\left[\frac{3\left(\mathbf{m}_{i} \cdot \mathbf{r}_{i j}\right)\left(\mathbf{m}_{j} \cdot \mathbf{r}_{i j}\right)}{r_{i j}^{5}}-\frac{\mathbf{m}_{i} \mathbf{m}_{j}}{r_{i j}^{3}}\right], & & \text { dipolar energy }
\end{aligned}
$$

SP-STM of 1.3 monolayers Fe / stepped W(110)
M. Bode, Rep. Progr. Phys. 66, 523 (2003)

Magnetic phase diagram for ultrathin films with perpendicular anisotropy ($1_{\mathrm{ex}}=2 \mathrm{~nm}$)

Magnetic phase diagram for ultrathin particles with in-plane anisotropy ($\mathrm{Fe} / \mathrm{W}(001)$)

R. Skomski et al. Phys.Rev. B 58, 3223 (1998)
A. Vaterlaus et al. J. Magn. Magn. Mater. 272-276, 1137 (2004)
magnetic domain pattern of perpendicularly magnetized ultra-thin Fe particles grown on $\mathrm{Cu}(001)$

magnetic domain pattern of in-plane magnetized ultra-thin Fe particles grown on W(0) 0 1)

SP-STM

Calculated vortex

R. Skomski et al. Phys.Rev. Lett. 91, 127201 (2003)

$$
\begin{aligned}
& E_{d i p}=-\frac{\mu_{0}}{2} \int \mathbf{M} \cdot \mathbf{H}_{d e m} d V \\
& \mathbf{H}_{d e m}=-\mathbf{D} \mathbf{M}
\end{aligned}
$$

Pushes the magnetization M along the longer side of the nanostructure:

Cylinder -> M // axis Disk -> M // disk surface

Sphere:
$D=\left[\begin{array}{ccc}\frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right]$

$$
\infty \text {-Cylinder: }
$$

$$
\infty \text {-Plane (thin film): }
$$

$$
D=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
D=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

in-plane
$\mathrm{Co} / \operatorname{Pt}(111)$

Orientation and shape of Co magnetic domains

Co wedge Pt substrate

$20 \mu \mathrm{~m}$
X-ray photoemission electron microscopy, SIM beamline @ Swiss Light Source

A bit is a binary system where 1 and 0 correspond to the magnetization being up or down

Magnetization along a defined axis: easy magnetization axis

Reversal energy barrier
assuming a coherent magnetization reversal (i.e. all spins turning at the same time) K is the MAE

$\mathrm{E}\left(\theta, \theta_{0}, \varphi\right)=-\boldsymbol{\mu} \cdot \mathbf{B}-K \cos ^{2}($ easy $\cdot \boldsymbol{\mu})$

Avg. time (relaxation time) taking to jump from one minimum to the other:

$$
\tau=\tau_{0} \exp (K / \mathrm{kT}) \quad \tau_{0} \approx 10^{-10} \mathrm{~s}
$$

$$
\begin{aligned}
& \tau=1 \text { year } \\
& \tau=1 \text { second }
\end{aligned} \longleftrightarrow \begin{aligned}
& K=40 \mathrm{kT} \\
& K=23 \mathrm{kT}
\end{aligned}
$$

The magnetic anisotropy energy determines the lifetime of the magnetic state

Blocking temperature T_{b}

Superparamagnetic: K / kT <<30

Single-domain particles: the Stoner-Wohlfart model

Magnetization of a single-domain particle in an external field.
$E=E_{\text {Zeeman }}+E_{m c}+E_{d m}$
Suppose $\mu=M V=$ const. for any H value (coherent rotation) and, for simplicity, $E_{d m}=0 . \mathrm{E}_{m c}=\mathrm{K}_{1} \mathrm{~V}$
$E=-\mu H \cos \theta-\mathrm{K}_{1} V \cos ^{2}(\theta-\phi)$
The magnetiic moment $\boldsymbol{\mu}=\boldsymbol{M} V$ will point along a direction that makes E a minimum:

$$
\begin{equation*}
\frac{\partial E}{\partial \vartheta}=\mu H \sin \vartheta+\mathrm{K}_{1} V \sin (2(\vartheta-\varphi))=0 \tag{2}
\end{equation*}
$$

Eq. 2 can be solved for θ and we can plot $M_{z}=$ $M \cos \theta$ (this is what one usually measures) as a function of H.

The reversal field is the field at which the energy minimum in eq. (1) vanishes ($\left.\partial^{2} E / \partial \vartheta^{2}=0 \quad\right)$

$$
\text { minumum in eq. (1) vanisnes (} \partial^{2} E / \partial \vartheta^{2}=0 \text {) }
$$

During the magnetization reversal all the atom spins in the particle stay aligned

Field orientations and sweep rate effects on magnetic switching

 of Stoner-Wohlfarth particles ${ }^{\text {a }}$Jing Ju Lu, Huei Li Huang, and I. Klik
Department of Physics, National Taiwan University, Taipei, Taiwan 10764, Republic of China

The hysteresis loop for an ensemble of noninteracting monodomain particles (containing s atoms each of them having magnetic moment m) and with uniaxial anisotropy represents the asymmetry in the number of particles pointing up $n \uparrow$ and down $n \downarrow$ changing over time with the applied field

$$
\begin{aligned}
& \frac{d n_{\uparrow}}{d t}=-\kappa_{\uparrow \downarrow} n_{\uparrow}+\kappa_{\downarrow \uparrow} n_{\downarrow} \\
& \quad \kappa_{\uparrow \downarrow}=\nu_{0} e^{-E_{\uparrow \downarrow} / k_{B} T}
\end{aligned}
$$

$$
\mathrm{E}_{\uparrow \downarrow}=\mathrm{K} \sin ^{2} \vartheta-\mathrm{smH} \cos (\vartheta-\varphi)
$$

J. J. Lu et al., J. Appl. Phys. 76, 1726 (1994)
1.1 ML Co/Au(11,12,12)

Two atomic layer high particles

$$
\mathrm{s}=600 \text { atoms }
$$

(c)

(d)

$200 \AA$
A. Lehnert et al., Rev. Sci. Inst. 80, 023902 (2009)

What is the smallest size of a ferromagnetic particle at room temperature?

$n K>1 \mathrm{eV}$

\rightarrow magnetic anisotropy energy per atom
\rightarrow number of atoms
$\mathrm{K}=$ magneto-crystalline anisotropy + shape anisotropy (usually small)

Co atoms on $\mathrm{Pt}(111)$ with 2-fold coordination: $K=3 \mathrm{meV} /$ atom, $\boldsymbol{n}=350$ atoms

1D chain

"labyrinth" lattice
$-$

Compared to pure Co islands:

1) same total MAE ($0.9 \mathrm{meV} /$ edge-atom)
2) reduced magnetic moment
S. Rusponi et al., Nature Mat. 2, 546 (2003).

In the mean the rim has a width of two atoms But....

Real island shape at $\theta_{\mathrm{s}}=0.04 \mathrm{ML}$

S. Ouazi et al., Nature Commun. 3, 1313 (2012).

Interline decreases T_{b} (similar to Pt case)

$$
\theta_{\mathrm{Pd}}(\mathrm{ML})
$$

Interface increases T_{b}
S. Ouazi et al., Nature Commun. 3, 1313 (2012).

Islands containing about 1300 atoms with T_{b} close to room T
\qquad
$\mathrm{Au}(788)$ vicinal surfaces
(a)

(c) [-211]
(111)-oriented terraces with reconstruction lines
perpendicular to step edges

Surface reconstructions on two consecutive terraces are coherent

Co nucleates in bi-layer dots where the reconstruction lines cross the step edges

MAE distribution narrower than size distribution

0.75 ML Co

For circular particle $\Delta \mathrm{N} / \mathrm{N}=2 \Delta \mathrm{p} / \mathrm{p}$

Negligible dipolar interaction at 26 Tdots/in ${ }^{2}$
0.75 ML Co

1.1 ML Co

Bimodal size
distribution

Switching field $\mathrm{H}_{\mathrm{sw}}=2 \mathrm{~K} / \mathrm{M}=4 \mathrm{~T}$
Dipolar field $<0.04 \mathrm{~T}$

Self-assembly via solvent evaporation

Particles with organic capping

Assembly onto functionalized substrate via ligand exchange

Tunable size in the range $1-10 \mathrm{~nm}$
Control of the particle volume:

$$
\mathrm{HWHM}=15-20 \%
$$

Organic capping used as a spacer to define the array density
$4 \mathrm{~nm} \mathrm{Fe} 5_{56} \mathrm{Pt}_{44}$ annealed particles ($\mathrm{L1}_{0}$ phase)

Stability criterion at room temperature: $\mathrm{MAE}=40 \mathrm{kT}$
S. Sun et al., Science 287, 1989 (2000)

$$
\mathrm{MAE} \approx 48 \mathrm{kT}
$$

Ordered, $L 1_{0}$

1) Randomly oriented easy axis

$\mathrm{T}=20^{\circ} \mathrm{C}$

$$
\mathrm{T}=530^{\circ} \mathrm{C}
$$

$$
\mathrm{T}=600^{\circ} \mathrm{C}
$$

Co particles in a CoO matrice

Scheme of a writing procedure: the bias field depends on the versus of the external field during cooling

$\sqrt{1-}-\mathrm{Co}$ in $\mathrm{Al2O} 3$ matrice
V. Skumryev et al., Nature 423, 850 (2003)

-
des nanostruc DES NANOSTRUCTURES

J.V. Barth et al., PRB 42, 9307 (1990)

The $\mathrm{Au}(111)$ herringbone reconstruction: 23 surface atoms on top of 22 second layer atoms result in partial dislocations that separate fcc and hcp regions.

(b)

O. Fruchart et al., PRL 83, 2769 (1999)
(a) 300×300 STM image after deposition of 0.2 ML of Co at 300 K on $\mathrm{Au}(111)$
(b) after deposition of Au up to the fourth ML, performed while raising the temperature from 425
to 475 K
(c) after another deposition of 0.2 ML of Co at 500 K .

Final result: 300×300 STM image after 0.2 ML of Co have been piled one on top of the other.

Pillar height adjusted to select the blocking temperature

Limitations

Domain deformation approaching a (100) step:

- Coherence lost at step edges
- Rotated domains coehist on the same terrace

Thermally Activated Magnetization Reversal in Elongated Ferromagnetic Particles
Hans-Benjamin Braun

Uniform reversal
Magnetic anisotropy (including the dipolar)

This solution is true in the limit of $\mathrm{H}_{\mathrm{ext}}->0$

Reversal by domain wall creation and displacement
-
Initial Path

Elongated islands switch faster than compact islands: different reversal mechanism

Spin Polarized-STM image of monolayer high Fe islands on $\mathrm{Mo}(110)$

$$
\mathrm{L}_{\text {crit }}=9 \mathrm{~nm} \text { for } \mathrm{Fe} / \mathrm{Mo}(110)
$$

$\mathrm{L}<\mathrm{L}_{\text {crit }}$-> Coherent rotation
$\mathrm{L}>\mathrm{L}_{\text {crit }}->$ domain wall motion

$$
L_{\text {crit }}=4 \operatorname{sqrt(J/K)} \text { if } K \gg \mu_{0} \mathrm{M}^{2}
$$

Micromagnetic simulation of Co islands on $\operatorname{Pt}(111)$

[^0]

Vortex structure
SP-STM image of a vortex structure

the out-of-plane polarization of the magnetic vortex core can be regarded as ' 0 ' or ' 1 ' of a bit element
B. Van Waeyenberge et al. Nature 444, 461 (2006) A. Wachowiak et al.. Science 298, 577 (2002)
O. Mosendz, et al. J. Appl. Phys. 111, 07B729 (2012); D.
E. Laughlin, et al. J. Appl. Phys. 105, 07B739 (2009); R. Araki, et al. IEEE Trans. Magn. 44, 3496 (2008).

FIG. 2. (Color online) (a) Plan-view TEM image showing granular FePtAg-C media. The inset shows a histogram of the grain size distribution. The solid line in the inset shows a lognormal fit to the grain size distribution, which results in an average grain diameter $\langle D\rangle=7.2 \mathrm{~nm}$ and a grain size distribution $\sigma_{D} /\langle D\rangle=16 \%$. A cross-sectional TEM image is shown in (b). Note that the grains have a spherical shape.

The inter-grain exchange interaction is stopped by the oxide layer

Tooth growth

CoCrPt-oxide Ru

FIG. 2. (Color online) (a) Plan-view TEM image showing granular FePtAg-C media. The inset shows a histogram of the grain size distribution. The solid line in the inset shows a lognormal fit to the grain size distribution, which results in an average grain diameter $\langle D\rangle=7.2 \mathrm{~nm}$ and a grain size distribution $\sigma_{D} /\langle D\rangle=16 \%$. A cross-sectional TEM image is shown in (b). Note that the grains have a spherical shape.
O. Mosendz, et al. J. Appl. Phys. 111, 07B729 (2012); D.
E. Laughlin, et al. J. Appl. Phys. 105, 07B739 (2009); R. Araki, et al. IEEE Trans. Magn. 44, 3496 (2008).

Constraints on the magnetic grain:

1) Size below 8 nm
2) Uniform size distribution
3) Well defined boundary
4) Magnetically decoupled

The grain size distribution results in a rather wide switching field distribution

FIG. 3. (Color online) Easy and hard axis VSM magnetization loops measured at room temperature are shown with black and grey (red online) lines, respectively. A high coercive field $H_{c}=4.85 \mathrm{~T}$ was obtained for this sample with remanent magnetization above 90% of the saturation value. Note that the hard axis is not saturated at 9 T applied field and its amplitude was normalized to that of the easy axis loop for the highest applied field.
s \qquad

Writing-reading head

Each bit is made of a few hundreds of grains. The bit size and shape is defined during writing by the head

The future: single particle per bit

[^0]: Vortex domain are potential candidate for magnetic storage devices

