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Magnetocrystalline anisotropy energy: MAE (K)

Bulk systems: the magnetic anisotropy energy

K depends on the crystal structure
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Free magnetic atom: spatially isotropic

K = 0 

Co atoms

Define the space direction/s along which the magnetic moment prefer to align

Direction 

independent



Orbital moment and anisotropic bonding: magnetization easy axis

-d electron in a free atom. For an external magnetic field aligned along z the lowest energy state is Lz=-2.

- atom bonded to four atoms in a plane. 

-a) in-plane orbital motion frozen by the formation of bonds with the neighbouring atoms -> The out-of-plane 

orbital moment is quenched

b) The orbital motion perpendicular to the bonding plane is less perturbed by the bonds -> in-plane orbital 

moment will stay unquenched -> symmetry braking implies anisotropic orbital moments

-The spin moment S is isotropic. However, due to the spin-orbit coupling the spin moment will be locked to 

the spatial direction along which L is maximum -> easy axis

Qualitative argument

A strong directional bonding 

generates a reduction in the 

component of L perpendicular 

to the bonding direction



Example: L10 phase in FePt alloy

Ordering by 

annealing to 

about 600°C

Low MAE High MAE D. Alloyeau et al., Nat Mater. 8, 940

(2009); Z.R. Day et al. Nano Lett. 1, 443

(2001); S. Sun et al., Science 287, 1989

(2000)

S. Ostanin et al. J. Appl. Phys. 93, 453 

(2003); S.S.A. Razee et al., Phys. Rev. 

Lett. 82, 5369 (1999); J. Lyubina et al., J. 

Phys.: Condens Matter 17, 4157 (2005)

CF tuning the MAE



Magnetocrystalline anisotropy in transition metals: theory

d band metal with eigenfunctions |k,n,s> and eigenvalues en,s(k)

where k is the electron wave vector,  represents the d orbitals, s

is the spin, and |k,,s> are the Bloch functions

The intra-atomic spin–orbit interaction is given by

c† and c are creation and 

annihilation operators



Magnetocrystalline anisotropy

Hso is a one-electron operator 

diagonal in k (k is conserved)

The only excited states are

In 3d metals Hso ≈ 50-100 meV << band width ≈ 1-5 eV (due to the Coulomb repulsion and crystal field)

Spin-orbit can be treated as a perturbation

The d orbitals have L = 0 -> first order correction < | Hso |> = 0

The second order correction is ≠ 0

majority to majority state

minority to minority state

Spin-flip transitions

The excited state is an 

unoccupied state



Magnetocrystalline anisotropy

Anisotropy of the spin moment (for ex. due to an 

anisotropy of the electron charge distribution)

DEex is the exchange splitting between majority and minority states

P. Bruno, PRB 39, 865 (1989); 

G. van der Laan, JPCM 10, 3239 (1998). 
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Actually J. Stöhr, J. Magn. Magn. Mater 200, 470 (1999); 

The factor  is necessary to find a good agreement between XMCD and other magnetometer measurements. 

Discrepancy probably due to spin-flip term and not perfectly spin-split bands

K = dE(H//z) - dE(H//x or y)



MAE vs. DL in complex systems

The magnetization easy axis does not always 

coincide with the largest orbital moment

c=(c/a)/sqrt(8/3)

C. Andersson et al. Phys. Rev. Lett.  99, 177207 (2007)

The MAE (between two magnetization directions n1 and 

n2) can be written as a sum over atomic species, q, and as 

a double sum over the spin indices, s (occupied), and s’ 

(unoccupied)

sum over all k points in the Brillouin zone, all occupied states i, all unoccupied states j, all sites in the unit 

cell q’ and magnetic quantum numbers {m}

sum over all sites gives off-site contributions (q ≠ q’)

through the spin-orbit scattering (or coupling) at other

sites.

Au is 5d10 6s1 -> negligible S and L ->

a) S and L can be not zero due to orbital

hybridization

b) very high spin-orbit constant z about 600 meV

LK  D

LK  D

Calculation as a function of the deformation parameter c



Magnetocrystalline anisotropy: band structure

Hso depends on the direction of the 

magnetization

z z
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Including Hso the magnetization rotation splits degenerate states -> change of the system energy ->

Easy axis = axis returning the lowest energy (x in the present case)

L -> quantization axis is due to the Crystal Field 

S -> quantization axis is due to the external field H

Majority spin (dashed) and minority spin (solid)

Free-standing Co monolayer

M // z (solid) and M // x (dashed)

Spin-orbit off Spin-orbit on

G.H.O. Daalderop al. Phys. Rev. B  50, 9989 (1994);



Magnetocrystalline anisotropy: degenerate case

When two or more states are degenerate the previous second order perturbation 

expression for Hso is not valid (you can find infinite value for dE)

The correct formula becomes dE=e  with e = <1|Hsoc|2>

Degenerate states close to EF

can give huge contributions 

to the MAE

Degenerate states see a much larger shift in energy than non

degenerate states:

- Degenerate split -> 2e

- Non degenerate split -> 2e2/DE (since DE=(Eex – Egr) >> e)

Spin-orbit splits the degenerate 

states in such a way that one state is 

shifted below EF and the second 

one is shifted above EF when H // x

H // z H // x

EF



Example: FeCo bulk

Calculated d-orbitals spin-down eigenvalues at the G

point as a function of c/a ratio. The Fermi energies of 

Fe, Co, and Fe0.5Co0.5 are indicated by dashed lines

Enhanced MAE for the composition and c/a distortion at which the dx2-y2 and dxy states cross.

T. Burkert et al. Phys. Rev. Lett.  93, 027203 (2004);

FeCo bcc -> K= 1-2 eV/atom

FeCo  bct -> K= 0.8 meV/atom

Spin orbit split these

two degenerate states:

maximum MAE for

c/a = 1.2 and x = 0.5



Example: FeCo monolayer

S. Ouazi et al. Nat. Commun. 3, 1313 (2012); G. Moulas et al. Phys. Rev. B, 78, 214424 (2008) 

M // z M // zM // x M // x

Co/Pt(111) Fe/Pt(111)

M // z M // x

Fe75Co25/Pt(111)

2) Splitting of the dxy and dx2-y2 orbitals -> gain in energy when M // z 

-> z is the easy axis with large MAE 

1) Degenerate dxy and dx2-y2 orbitals at

Fermi level for Fe75Co25 -> chance of

having large MAE



MAE modification by an external electric field

minority-spin band for an Fe(001) monolayer in 

an external electric field of zero (dotted lines) 

and 1 eV/Å (solid lines). 

E = 0 represent the Fermi energy. Arrows 

indicate band gaps induced by the electric field. 

dz2

dx2-y2

dxy

dxz dyz

K. Nakamura et al. Phys. Rev. Lett.  102, 187201 (2009); T. Maruyama et al., Nature Nanotech.. 4, 158 (2009)

Electric field -> Y0
1 symmetry

' ' 1

0l m Y lm 0 when l’= l+1 and m’= m



MAE: classic vs quantum object

Classic

Continuous magnetization rotation:

To reverse the magnetization must 

rotate and pass trough the hard axis 

direction

K K

Quantum

Only a discrete number of states 

are available



Quantum object: Spin Hamiltonian

Second order perturbation theory

Basis in a crystal field 

(G is the orbital part)

R. M. White, Quantum theory of magnetism, Springer (2007)

Ln

Transition metals H = He-e + HCF + HSOC + HZeeman



Lμν reflects the symmetry of the crystal. The spin Hamiltonian must also display this symmetry; 

for example, in a cubic crystal Lxx = Lyy = Lzz. Thus the anisotropy term reduces to a constant.

For axial symmetry Lxx = Lyy = L┴  and Lzz = L//

Neglecting

Ex: S=3/2 and H = (0,0,H) -> H = g||BHzSz + D Sz
2 D > 0

D contains all the information concerning the crystal field 

i.e. the orbital moment (phenomenological Hamiltonian)

Spin Hamiltonian: transition metals



In general Lxx , Lyy , and Lzz are different (distorted 

octahedral symmetry)

H = g||BHzSz + D[Sz
2-1/3 S(S+1)] + E (Sx

2-Sy
2)

D = -2/DE (-1/2 Lxx-1/2Lyy+Lzz) ~ 2/DE (L||-Lz)

E = -2/DE (1/2 Lxx-1/2Lyy) ~ 2/DE (Lx-Ly)

D and E parameters, which determine

the energy splitting, are proportional to:

a) orbital anisotropy

b) Spin-orbit constant

Spin Hamiltonian: transition metals

N.B.:

1) Actually L and S are not always good quantum numbers (J is better) . In addition hybridization

between different atoms can complicate things.

2) Thus, in the previous equations S should be considered as a sort of effective spin operator S*

to be determined by fitting the data.

3) However, assuming negligible hybridization and CF quenching the orbital moment -> S*~S

T. Schuh et al. Phys. Rev. B 84, 104401 (2011); D. Dai et al., J. Comput. Chem. 29, 2187 (2008)

a
b

c



Spin Hamiltonian: energy spectrum

e

B||z

e

B||z

D < 0, E = 0 e

B||z

D < 0, E ≠ 0

Energy spectrum: ex. S = 2

CF = 0 CF different from 0

Kr = DS2 (S integer)

Sz=+/-2

Sz=+/-1

Sz=0

Energy barrier for spin reversal (Kr): case E=0

D < 0

E = 0 

-5/2 -3/2 -1/2 1/2 3/2 5/2 m

E
n
er

g
y

Kr= D (S2 -1/4) (S half-integer)

D < 0

E = 0 



Quantum tunneling for E ≠ 0: integer vs. half integer spin

E ( Sx
2-Sy

2) = E ( S+
2+S-

2) -> quantum tunneling (QT)

S+
2 (S-

2) operator couples state Sz = 2 with Sz = 0 and

Sz = 0 with Sz = -2

No net magnetic 

moment

Eigenvalues

-6.93 meV

-6.74 meV

-3.08 meV

-0.58 meV

0.19 meV

D = –1.55 meV, and E = 0.31 meV

Ground state is 

twofold degenerate 

(Sz= +/- 5/2)

Can not be a bit

Can be a bit

F.Delgado et al., Phys. Rev. Lett. 108, 196602 (2012)

QT



Energy levels in different CF symmetries

C. Hubner et al., 

Phys. Rev.B 90, 155134 (2014)

C2v CF symmetry
C3v CF symmetry C4v CF symmetry

No QT -> magnetization preserved without external perturbation

No QT No QT No QT



QT

se

External perturbations

C2v CF symmetry + interaction with conduction electron

H2 = B Sz + D2 Sz
2 + E2 (S+

2 + S-
2) + J0 Sz sz 1/2 J0 ( S+ s- + S- s+)

The interaction with the conduction 

electrons can induce transitions 

with DS = +/- 1: single electron 

transition (se)

In this case we observe a rotation of the magnetization

Another source of destabilization are the phonons: 

DS = +/- 1, 2  

Magnetization is stable only if QT, electron and phonon transitions are forbidden



Read for exercise

I. Rau et al., Science 344, 988 (20014)

A. A. Khajetoorians and J. Wiebe, Science 

344, 976 (20014)

Free Co Co/Pt(111) Co/MgO



Spin Hamiltonian: rare earths

L and S are mixed by SOC -> CF acts on a 

basis |J,MJ>

Rare earths: H = He-e + HSOC + HCF + HZeeman

In the rare earth case the CF is only a 

perturbation

->  S* ~ J 

The CF removes the (2J + 1)-fold

degeneracy of the ground stateDy3+ (6s0 4f 9)

J. D. Rinehart et al., Chem. Sci. 2, 2078 (2011); L. Ungur et 

al., Phys. Chem. Chem. Phys 13, 20086 (2011)



Anisotropy of rare earth magnet

4f-shell electron distribution
(for Jz = J)

Anisotropy is due to the electrostatic 

interaction with the surrounding 

charges

J

J

J. D. Rinehart et al., Chem. Sci. 2, 2078 (2011); 



rare earth ground state

4f charge density for Jz states composing the lowest 

spin–orbit coupled (J) state. If CF = 0, all mJ states for 

each lanthanide ion are degenerate

CF determines the Jz ground state

PRL 113, 237201 (2014)

Gas phase On Pt(111) On Cu(111)

Jz = 8 Jz = 6 Jz = 7.5

Jz = 7.5 Jz = 6.5 Jz = 1.0

Jz

The arrow indicates the easy axis



Ground state and anisotropy of rare earth magnet

SmCo5

The prolate 4f electron distribution of Sm 

prefers to point the empty center of the hexagon 

TbPc2

The oblate 4f electron distribution of 

Tb prefers to stays in between the two 

Pc planes

J. D. Rinehart et al., Chem. 

Sci. 2, 2078 (2011); Ground state configurations 

for oblate and prolate 4f 

electron distribution



Spin Hamiltonian: rare earths

A.Abragam and B. Bleaney, Electron paramagnetic 

resonance of transitions ions, Clarendon press, Oxford 

(1970); J. D. Rinehart et al., Chem. Sci. 2, 2078 (2011); 

On
m and Wn

m with n = 6 for rare earth 

(n = 4 for transition metals)

They are the Stevens 

operators describing the CF in terms of 

Jz, J+ and J-

Ex: O2
0 = 3Jz

2- J(J+1); B2
0  D/3

O2
2 = ½(J+

2 + J-
2); B2

2  2E

O4
3 = ¼ [Jz(J+

3 + J-
3)+ (J+

3 + J-
3) Jz]; O4

4 = ½(J+
4 + J-

4);

Depending on the CF symmetry can exist terms coupling J and –J ground states via J+ (J-) 

operator -> quantum tunneling -> no stable magnetization

CF hamiltonian

We can increase the

single-ion anisotropy by judiciously choosing the 

coordination environment of the lanthanide ion.

Axial CF -> only O2
0 term ->

no quantum tunneling

Ex.: CF with a significant O4
3 (C3v) term is not 

convenient for Dy3+ (J = 15/2) because J+
3 links 

-15/2 -> -9/2 -> -3/2 -> 3/2 -> 9/2-> 15/2



Dipolar interaction
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m1 and m2 can be the magnetic moments of two atoms in a 

particle or the moments of two particles

Long range interaction between magnetic moments 

In out-of-plane configuration the 

dipolar interaction is reduced



The magnetic configurations are determined by the

competition, at a local scale, of four different energies:

Zeeman, exchange, magnetocrystalline anisotropy, and dipolar coupling.

Magnetic domains

exchange, magnetocrystalline energy -> short range

dipolar energy  -> long range

Structure of a domain wall between two 

ferromagnetic domains with opposite

orientation of the local magnetization (180° wall)

SP-STM of 1.3 monolayers Fe / stepped W(110)

M. Bode, Rep. Progr. Phys. 66, 523 (2003)



Magnetic phase diagram for ultrathin films with perpendicular

anisotropy (lex = 2nm)

R. Skomski et al. Phys.Rev. B 58, 3223 (1998)

A. Vaterlaus et al. J. Magn. Magn. Mater. 272-276, 1137 (2004)

magnetic domain pattern of perpendicularly magnetized 

ultra-thin Fe particles grown on Cu(0 0 1)

4 m 2 m 1 m

Nanoparticle magnetization state: staid state

Magnetic phase diagram for ultrathin particles with in-plane

anisotropy (Fe/W(001))

SP-STM Calculated vortex

R. Skomski et al. Phys.Rev. Lett. 91, 127201 (2003)

magnetic domain pattern of in-plane magnetized ultra-thin 

Fe particles grown on W(0 0 1)



Demagnetizing field: shape anisotropy
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thickness (ML)

Orientation and shape 

of Co magnetic domains

X-ray photoemission  electron microscopy, SIM beamline @ Swiss Light Source

Co/Pt(111)

20 m

Co wedge

Pt substrate

out-of-plane

in-plane

Pushes the magnetization M along 

the longer side of the nanostructure:

Cylinder -> M // axis 

Disk -> M // disk surface


