
Magnetic and semiconducting nanostructures
Stefano Rusponi, Raphael Butte

Objectives :     Introduce students to the magnetic and electronic properties of nanostructures 

Content:    

1) Magnetism at the nanoscale :

a. Orbital and spin magnetic moment: from single atoms (0D) to thin films (2D) and bulk materials (3D)

b. Surface supported nanostructures: the effect of the supporting substrate on the cluster magnetic properties

c. magnetic anisotropy and the superparamagnetic limit in magnetic data storage

d. Exchange energy

e. Single atoms at surface

2) Electronics vs. spintronics :

a. 2D electron gas at heterogeneous semiconductor interfaces

b. A new 2D material: the electronic properties of graphene

c. Spin transport: spin valve, GMR and TMR

3)       Epitaxial growth of metallic 2D nanostructures :

a. Cluster nucleation and aggregation: the importance of kinetics

b. Controlling shape and composition of 2D clusters grown by self assembly methods

c. Building clusters with specific magnetic properties

4) Semiconductor Materials for Photonics 

a. Physical properties

b. Applications

5) Fabrication and Structural Properties of quantum dots 

a. Epitaxial growth (Stranski-Krastanov and pyramidal quantum dots)

b. Chemically synthesized nanoparticles (CdSe quantum dots)

6) Electronic Properties of quantum dots 

a. Quantum confinement effects (from 2D to 0D)

b. Electronic states: excitonic complexes (excitons, biexcitons, trions), dipole moment (Stark effect)

c. Exciton-phonon interactions (temperature dependent exciton linewidth), phonon wings, polaron complexes 

d. Light-matter interaction in quantum dots  (Purcell effect and strong-light-matter coupling)
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Magnetism of nanostructures

 Back to basics: magnetization sources and 

intrinsic parameters

 Understanding and controlling the 

magnetic properties of the nano world

Copy of the slides can be found at the address

lns.epfl.ch -> Lectures -> Magnetic and semiconducting nanostructures



Magnetotactic bacteria synthesize

magnetic particles between 30

and 100 nm, big enough to have a

permanent magnetic moment, but

small enough to be a single

domain.

[images by R. James, University

of Western Australia; see also R.

Blakemore. "Magnetotactic

Bacteria." Science 190, 377

(1975)].

Nano-magnetism everywhere

MRAM: Magnetic Random Access Memory
Nature 432, 508 (2004)



High density magnetic recording: the rush to the nano

2015



Magnetic recording technology

The writing-reading head is flying over the continuous 

magnetic media



Magnetic recording media

Each bit is made of a few hundreds of 

grains (to have a good signal to noise 

ratio). The bit size and shape is defined 

during writing by the writing head

The future: single particle per bit



Magnetic recording technology

The grain (particle) can be described 

as a single macrospin m = Si mi

All spins (mi) in the grain are 

ferromagnetically aligned

Exchange length  5 - 10 nm

TEM images of the magnetic 

layer in a MRAM. Each bit is 

made of a few hundreds of 

grains

grain

The macrospin direction change from grain to grain -> magnetization easy axis 

(magnetic anisotropy) 

To have a net signal (magnetization) in one direction we have to mean over several grains 



Exchange energy

All spins in the grain must be

ferromagnetically aligned

ij i jexc

i j

H J


=   S S

Hexc << kT

Coupling is destroyed and the net 

magnetic moment is zero

Domain formation -> cluster magnetic 

moment is strongly reduced

exchange energy J coupling spins

Gain in the magnetostatic 

(shape) energy at the expenses 

of the exchange energy



Magnetic recording technology

The grain (particle) can be described 

as a single macrospin m = Si mi

All spins (mi) in the grain are 

ferromagnetically aligned

Exchange length  5 - 10 nm

TEM images of the magnetic 

layer in a MRAM. Each bit is 

made of a few hundreds of 

grains

grain

The macrospin direction change from grain to grain -> magnetization easy axis 

(magnetic anisotropy) 

-To have a net signal (magnetization) in one direction we have to mean over several grains

-To write the bit we have to define (up or down) the magnetization direction 



Easy axis and magnetic anisotropy energy

2

0E( , , ) cos ( )K   =    μ B easy μ

K

m ·B

Magnetization along a defined axis:

easy magnetization axis 

Magnetic anisotropy energy (MAE)

The MAE is the energy one needs to spend to reverse the 

magnetization (assuming a coherent magnetization reversal 

i.e. all spins turn at the same time)

m

Free atom: the magnetic moment can point everywhere

Surface supported atom or cluster: due to the interaction 

with the neighbors the magnetic moment prefers to point 

along a specific direction



Superparamagnetic limit

If K << kT the 

magnetization vector 

isotropically fluctuates in 

the space. 


E K << kT

K >>kT



E
If K >> kT  the 

magnetization vector can 

not switch the versus

B = 0

 = 1 year

 = 1 second

K = 40 kT

K = 23 kT

Avg. time (relaxation time) taking to 

jump from one minimum to the other:
s10 10

0

 = 0 exp(K/kT)

2

0E( , , ) cos ( )K   =  easy μ

The MAE determines the thermal 

stability of the magnetization direction

Information can not

be stored

Information can be 

stored

Superparamagnetic limit: the particle MAE must be high enough to dominate the thermal 

fluctuations in order to be able to store information in the bit



Intra-atomic exchange, 

electron correlation effects:

LOCAL (ATOMIC) MAGNETIC MOMENTS

Inter-atomic exchange:

MAGNETIC ORDER

Spin-Orbit Coupling:

MAGNETOCRYSTALLINE ANISOTROPY: 

K

Dipolar Interaction:

SHAPE ANISOTROPY

m
d or f electrons
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J12 J23 J34

Hund’s rules

r

m1

m2

Driving forces in the nano-magnetism world



ConclusionsMagnetization dynamics

100 ps

10 ps

1 ps

100 fs

10 fs

1 ns
B

M

M x B > 0

M x B = 0

Thermally-activated 

magnetization reversal

Time

S

L Spin-orbit coupling

Magnetic anisotropy

B = 1 T

spin 

precession

damping

t = h/E where E is a characteristic energy

For example: 

Spin-orbit coupling (SOC)  

SOC = 10 meV

t = 100 fs

electrons Magnetization

(spin)

phonons

Spin-electron

Interactions

Not in this course
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Isolated atom

In terms of the spherical coordinates r, , and f the wave 

function takes the form Y(r, , f) = R(r) Q() F(f) which gives 

three equations. The equation for each of the three variables 

gives rise to a quantum number and the quantized energy states 

of the atom can be specified in terms of these quantum numbers. 

A fourth quantum number arises from electron spin. Two 

electrons can not have an identical set of quantum numbers 

according to the Pauli exclusion principle.

Example: the electron in a H atom ->Vcoulomb = -e2/4pe0r
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R(r) -> principal quantum number  n = 1, 2, 3,.. (K, L, M,..)

Q() -> orbital quantum number l = 0, 1, 2, …, n-1

F(f) -> magnetic quantum number m = -l, -(l-1), …. l-1, l

-> spin quantum number mS =  1/2
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Isolated atom in a magnetic field

Orbital magnetism: mL = -L mB

Spin Magnetism: mS = -ge S mB = -2 S mB

Atomic magnetic moment: mat = -mB(L+ ge S)

mB -> Bohr magneton; mB=0.058 meV/T; g = 3/2 + [S(S+1) –L(L+1)]/(2J(J+1)) is the Landé g-factor

Spin-orbit interaction:

Interaction of the spin of an electron with the magnetic 

field generated by its own orbital motion 

Jz

The expectation value of mat in the field direction is

mJ = (1/B) <LSJJz| ( mL + mS) . B |LSJJz> =

= mB<LSJJz| Lz + 2Sz |LSJJz> = mBgJJz

High magnetic field limit (mJ B >  LS): Paschen-Back effect

mat = (1/B) <LSMLMS| -( mL + mS) . B |LSMLMS> =

= mB<LSMLMS| Lz + 2Sz |LSMLMS> = mB(ML+2MS)

3d transition metals

=50 – 100 meV -> B > 50 T



Magnetism of an isolated atom

m

Hund's rules:

1) Total spin S = Sisi maximized

2) Total orbital momentum L = Sili maximized

3) L and S couple parallel (J=|L+S|) if band more than half filled

L and S couple antiparallel (J=|L-S|) if band less than half filled

Magnetism is given by:

1) The spin moments of the electrons

2) The orbital moments of the electrons

3) The filling of the atomic orbital

+2 +1 0 -1 -2

Ground state of Co (3d7 4s2)

L = 3, S = 3/2, J = 9/2
mL = L mB = 3 mB , 

mS = ge S mB = 3 mB ,

mat = g J mB = 6 mB

3d

4s

Spin-orbit interaction

+2 +1 0 -1 -2

3d

4s

L = 3, S = 1, J = 2
mL = L mB = 3 mB , 

mS = ge S mB = 2 mB ,

mat = g J mB = 1 mB

Ground state of Ti (3d2 4s2)



Magnetism of an isolated atom

Multiplets terms: 2S+1XJ with X= S, P, D, F, G, H, I, … for L= 0, 1, 2, 3, 4, 5, 6, …

S=0

S=1

Singlets

Triplets
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3P

3F

3F4

3F3

3F2
3F4

3F3

3F2

max. S max. L min. J
(band less than half filled)

max. J
(band more than half filled)

Energy spectrum (3d metals)

4.6 eV

0.8 eV
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0.2 eV
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mB=0.058 meV/T



From single atom to bulk structure

Stern-Gerlach experiment on Ag atoms

I.M.L. Billas, A. Châtelain, W.A. de Heer, Science 265, 1682 (1994).

Ag: 4d10 5s1 L=0; S=1/2

Stern-Gerlach experiment on clusters



t2geg

m

Isolated atom vs. bulk state

+2 +1 0 -1 -2

Ground state of Co (3d7 4s2)

L = 3, S = 3/2, J = 9/2
mL = L mB = 3 mB , 

mS = ge S mB = 3 mB ,

mat = g J mB = 6 mB

3d

4s

+2 +1 0 -1 -2

3d

4s

L = 3, S = 1, J = 2
mL = L mB = 3 mB , 

mS = ge S mB = 2 mB ,

mat = g J mB = 1 mB

Ground state of Ti (3d2 4s2)
d wave-functions in cubic symmetry -> L  0

atom Field

Field

H H H

H e (r)f

= 

= 
2) Crystal field

1) Band formation

The crystal electric field produced by surrounding ions in a

solid defines a particular set of (real) wave-functions for

which the mean value of the orbital moment is zero



Bulk state: band structure

In band theory combining orbitals on different atoms corresponds to the formation of Bloch functions which, 

for the case of a linear chain of n atoms, are written as:

2 2

inka

j j j xy xz x y
n

(k) d (n)e d d ,d ,d ,....f


= =
For k=0 j j

n

(0) d (n)f = 

in n

j j j

n n

( / a) d (n)e ( 1) d (n)pf p = =  For k=p/a 

The periodic potential of a crystal breaks up the atom states and redistributes the valence 

electrons in Bloch states -> the quantum numbers nlm are replaced by the band index n and the 

wave vector k (and of course the spin)

Ideal chain Cu crystal
[Stö06] 



Itinerant vs. localized magnetism

Only the external 6s electrons are delocalized but 

they contribute only marginally to the Gd 

magnetism !!!!!

Magnetism quantum theory has been developed from two opposite starting points: 

a) The localized model: each electron remains localized or correlated with a determined atom. The intra-

atomic e- - e- interactions are large and determine the magnitude of the localized magnetic moment on 

each lattice site. In contrast, the inter-atomic e- - e- interactions are much smaller and compete with the 

thermal disorder to establish the magnetic ordering

b) The band model (itinerant): each magnetic carrier is itinerant through the solid (due to the wave 

function overlapping), moving in the average potential of the other electrons and ions. In this case, the 

electron levels form energy bands and the weak e- - e- interactions stabilize the ordered magnetic 

moments

f states in rare earth are well localized but d states in metals are poorly localized !!!!!! 

[Stö06] 



The Hubbard model

U -> coulomb repulsion for electrons on 

the same atoms

t -> hopping energy

U/t << 1 ->  independent and delocalized electrons 

U/t >> 1 ->  localized electrons

1 1

* *

1 2 2Hub 21 2
U(n nH t (c c c c n) n )   

 =
   

 =  

Hopping from atom 1 to atom 2 

conserving the spin
Coulomb repulsion U of electrons with 

opposite spin on the same atom

c*
i creates an electron with spin  on atom i ni gives the number of electron with spin  on atom i

example



The Anderson impurity model

The Anderson impurity model describes a localized state, the 3d-state, interacting with 

delocalized electrons in  a conduction band. 

These four terms represent, respectively, the 3d-state, the correlation of the 3d-state, 

the valence band and the coupling of the 3d-states with the valence band

P.W. Anderson, Phys. Rev. 124, 41 (1961)

Ground state Y0 and operators a+ annihilate or a create a specific electron. 

For example, an electron can hop from the 3d-states to a state in the (empty) conduction band, 

i.e. | Y0 a+
3d ack>, where ack indicates an electron in the conduction band with reciprocal-space 

vector k. 



Band structure magnetism: Stoner model

Fe is magnetic Os is non-magnetic

St&Sie-2006; S. Blugel Phys. Rev. Lett. 68, 851 (1992)

Fe -> 3d6 4s2 Os -> 5d6 46s2

d-band

z e e

z z

B z

s (N N )
2

s ; s
2 2

m 2 s /m

 

 

= 

=  = 

= 

Stoner Exchange interaction D: 

Is the energy necessary to reverse the spin of one 

electron in the sea of all the other electrons -> 

spin up – spin down bands are shifted by D = 1-2 eV



Band structure magnetism: Stoner model

Magnetic statenon magnetic state

- s, p bands are extended (band width about 10 

eV)-> contribute by about 5%

- d bands are narrow (band width about 3 eV)-

> their splitting determines the magnetism

St&Sie-2006

s band

d band



Cluster magnetism

Two atomic layer high Co island 

on Cu(111)

J. Izquierdo et al. Phys. Rev. B 55, 445 (1997)

The magnetic moment of the atoms in the island 

depends on the local coordination

Interface atoms

Surface atoms



Hybridization: Co clusters on Pt(111)

Co monomer interaction with the substrate

Asymmetry in the Pt LDOS at EF when 

covered by Co-> 

induced magnetic moment in the Pt(111)

Size dependence

Reduced asymmetry by 

increasing the cluster size -> 

reduced magnetic moment

O. Sipr et al. J. Phys.: Condens. Matter. 19, 096203 (2007)

Co atom

Pt atom



Ligand (crystal) field theory

CF atom Field

Field

H H H

H e (r)f

= 

= 

In the ligand (crystal) field theory the effect of the 

surrounding atoms is described by an effective potential
(localized electrons)

6

i i

i 1

(r) eZ / rf
=

= 
For example for an octahedral 

crystal field we get

HField can be developed in series of the spherical harmonics -> because HField does not depend on 

the spin, the 3d wave functions (or a linear combination of them) are eigenfunctions of HCF

The interaction of the atomic electronic shell with the surrounding atoms (crystal field) locks 

the atomic orbital moment to the crystal structure (symmetry)

Rare earths

Transition 

metals

3d

4d-5d LS < Ve-e < Hfield

 LS < Hfield < Ve-e

Hfield <  LS < Ve-e

In general, the way in which H Field is treated 

depends on the element



Ligand field

Qualitative arguments: the central atom orbitals pointing toward the ligand positions are higher in energy 

than those orbitals avoiding the ligand positions (Coulomb repulsion).

The t2g orbitals point towards the centres of the cube faces while the eg orbitals point towards the centres of 

the cube edges.

In Td symmetry the latter points are closer to the ligands by a factor sqrt(2)

10Dq gives the strength of the 

CF (historical notation)

d

e

t2



Ligand field vs. electron-electron interaction (Ve-e)

The orbital occupation (and then the spin S) depends on the relative strength of the 

electron-electron interaction Ve-e and the crystal field 10 Dq

Ve-e > 10 Dq Ve-e < 10 Dq

+ 6 Dq

- 4 Dq



Example: Co ions in Octahedral field

Possible valences and spin states of the

Co ion in octahedral symmetry. The d

shell is split into a t2g and eg sub-shell.

HS -> 10 electron pairs (-10 JH ), 2 electrons in eg (+2*6Dq) 

and 4 electrons in t2g (-4*4Dq) -> EHS= -10 JH -4Dq

LS -> 2 times (up and down) 3 electron pairs (-6 JH ), and 6 

electrons in t2g (-6*4Dq) -> ELS= -6 JH -24Dq

The simplest approximation to describe the electron-electron interaction:

- U is the repulsive Coulomb energy between each pair of electrons

- JH is the attractive Hund's rule exchange interaction between each pair of electrons with parallel spin (1st Hund’s rule) .

JH = 0.8 eV

Maurits W. Haverkort, PhD thesis (2005)

Co3+

For high CF the low spin state becomes favorable

The electron-electron repulsion energy is U times the number of electron pairs 

found minus JH times the number of pairs of electrons with parallel spin



Jahn-Teller effect 

Mn3+ in the centre of an 

oxygen octahedron

The system lower the total energy by a 

tetragonal distortion

This orbital reduces the energy because 

is pointing toward the oxygen atoms



3d bulk spin and orbital moments

J. Stöhr and R. Nakajima, IBM J. Res. Develop. 42, 1998; O. Eriksson et al., Phys. Rev. B 42, 2707 (1990).

n3d+n4s n3d(↓) n3d(↑) n4s(↓) n4s(↑) h3d(↓) h3d(↑) m (mB)

Cr 6 2.7 2.7 0.3 0.3 2.3 2.3 0

Mn 7 3.2 3.2 0.3 0.3 1.8 1.8 0

Fe 8 4.8 2.6 0.3 0.3 0.2 2.4 2.2

Co 9 5.0 3.3 0.35 0.35 0.0 1.7 1.7

Ni 10 5.0 4.4 0.3 0.3 0.0 0.6 0.6

Cu 11 5.0 5.0 0.3 0.3 0.0 0.0 0

Filling of the ↓ and ↑ bands for 3d elements (n – electrons, h – holes)

Material N holes

Fe 3.4

Co 2.5

Ni 1.5

ms
tot ms

d ms
sp

2.19 2.26 -0.07

1.57 1.64 -0.07

0.62 0.64 -0.02

morb

0.09

0.14

0.07



Quenching (L ~ 0) of the orbital moment in bulk 

- Qualitative argument: in an isolated atom, the electrons can freely rotate about the core -> 

the orbital moment arises from this processional motion (Yl
m) -> bond formation stops the 

processional motion

- Formal argument: the orbital moment associated to the d orbitals is zero

For ex.: dxz=2-1/2 (Y2
-1 - Y2

+1) or dyz=i 2-1/2 (Y2
-1 + Y2

+1) 

2 2

* *

xz z yz xy z x y
d L d d ; d L d d 2 


= = However

A rotation by 2p/8 about the z axis transforms dx2-y2 in dxy (and vice versa), and a rotation of 2p/4 transforms dxz in dyz . d3z2-r2

cannot be transformed in any other orbitals by a rotation about the z axis, thus no contribution to orbital moment in z direction

Orbital moment is associated to transformation by rotation of pairs of orbitals.  This holds only if:

a) the two states of the pair are degenerate

b) There must no be an electron in the second orbital with the same spin as that in the first orbital

Ex:

- in the tetrahedral or octahedral symmetry the dx2-y2 in dxy

are split and hence do not contribute to the orbital moment

(as a consequence of point a)

- in octahedral symmetry the 3d3 or 3d5 configurations

have L=0 (as a consequence of point b one can not rotate dxz onto dyz)



Orbital moment and anisotropic bonding: magnetization easy axis

-d electron in a free atom. For an external magnetic field aligned along z the lowest energy state is Lz=-2.

- atom bonded to four atoms in a plane. 

-a) The d electron will form a standing wave with a spatial shape depending on the distribution of the 

electronic charge on the neighbouring atoms (i.e. orbital motion frozen by the formation of bonds with the 

neighbouring atoms) -> The out-of-plane orbital moment is quenched

b) The orbital motion perpendicular to the bonding plane is less perturbed by the bonds -> in-plane orbital 

moment will stay unquenched -> symmetry braking implies anisotropic orbital moments

-The spin moment S is isotropic. However, due to the spin-orbit coupling the spin moment is locked to the 

spatial direction along which L is maximum -> easy axis

Qualitative argument

A strong directional bonding 

generates a reduction in the 

component of L perpendicular 

to the bonding direction



Spin orbit coupling restores a non zero orbital moment 

J. Stohr JMMM 200, 470 (1999)

Orbital resolved L

Example: Co monolayer on Cu(100)

L = 0 because:

- d3z2-r2 gives no contribution to L

- dxy and dx2-y2 can not transform one in

the other because not degenerate

- dxz and dyz can not transform one in the

other because have the same spin

Co is a transition metal with electronic configuration given by 4s2 3d7

Assuming no charge transfer between Co and Cu the crystal field splitting gives the following 

energy scheme 



Spin orbit coupling restores a non zero orbital moment 

- Pure d orbitals are split 

(about 1 eV) by crystal field -> L=0

- Spin-orbit coupling (about 50 meV) 

mixes the pure d-orbitals creating 

new (first-order) states with non zero 

(but small) orbital moment

Theoretical basis

Spin-orbit is a perturbation: 

(assuming the spin down band 

completely full) 

Matrix elements <dn | e·L|dm>

J. Stohr JMMM 200, 470 (1999)
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example

Orbital resolved L
for spin-up (or down) statesCrystal field splitting for a Co 

monolayer on Cu(100)

2

n mn

m n m

d L d 0.05 eV
L 0.05

E E 1eV
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Orbital moment and band width

The band width is correlated to the crystal field strength
-b) free-standing monolayer: only the in-plane d-orbitals feel the bonding and then show splitting and 

dispersion in the (E,k) space while the out-of-plane d-orbitals stay mostly unperturbed

-c) in a multilayer with stronger out-of-plane than in-plane bonds the situation is reversed

-a) in a cubic structure in-plane and out-of-plane bonds have similar strength and then the dispersion of   

the d-orbitals is similar



Co monolayer

Co/Pt(111) -> for ml=1 and ml=0 the DOS widths are about 3 and 4 eV larger 

than in the free-standing Co monolayer; for ml=2 there is no sizeable difference.

Co/Pt(111) Free-standing

Ligand field: larger DOS width -> stronger bonding -> smaller L perpendicularly to the bond

ml=1 and ml=0 correspond to out-of-plane orbitals (bonds) -> stronger out-of-plane bonds in 

Co/Pt(111) -> reduced in plane orbital moment in comparison with the free-standing case

G.H.O. Daalderop et al., Phys. Rev. B 50, 9989 (1994); G. Moulas et al., Phys. Rev. B 78, 214424 (2008).

1 Ryd=13.6 eV



Fe: bulk vs monolayer

minority state (solid line), majority 

states (dashed line)

Bulk Fe
monolayer

Bulk Fe is a soft magnet (majority states are not completely full) while is a strong magnet in 

the monolayer -> low dimensionality increased the band splitting 

R.H. Victora et al., Phys. Rev. B 30, 3896 (1984); G. Moulas et al., Phys. Rev. B 78, 214424 (2008).

Fe spin magnetic moment is larger in monolayer (about 3 mB) than in bulk (about (2.2 mB)

Peak in the majority states is missing and minority states are shifted 

at higher energy (the largest fraction of minority states is above 

Fermi level)

majority

minority



Slater-Pauling curve for FeCo bulk alloy

L. Pauling, Phys. Rev. 54, 899 (1938); H.H. Hamdeh et al., Phys. Rev. B 

39, 11233 (1989); R.H. Victora et al., Phys. Rev. B 30, 259 (1984); G. 

Moulas et al., Phys. Rev. B 78, 214424 (2008).

Redistribution of 3d↓ electrons to the 3d↑ states at the Fe sites 

while adding Co up to a concentration of about 30%. After the 

maximum magnetization value, the total number of 3d↑ electrons 

remains constant, whereas the number of 3d↓ electrons increases in 

order to accommodate the additional electrons coming from Co

FeCo

Bulk Fe is a 

soft magnet
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bulk

monolayer

Bulk Co is a 

strong magnet

In monolayer regime both Fe and Co are strong 

magnets: moment increase linearly with 3d 

electrons  



Rare earth bulk metals

Electronic configuration: Xe 6s2 4fN

(exception for Gd 6s1 5d1 4f7 )

4f states are strongly localized -> 

do not participate to bonding 

CF ~ 10 meV

SOC ~ 200 meV

Coulomb repulsion ~ 1-10 eV

- Magnetic moment defined by the 4f states

- L unquenched (small CF for the 4f, 

Hund’s rules hold)

St&Sie-2006 J.D. Rinehart, et al. Chem. Sci., 2, 2078 (2011)

Dy3+ (6s0 4f 9)

+3 +2 +1 0 -1 -2 -3

L= 5; S=5/2 -> ground state 6H15/2

8000 cm-1 ~ 1 eV



Rare earths vs. 3d transition metals

Bonding = CF


