Meet the team!

MANAGEMENT
- DIRECTOR: Lyesse Laloui
- ATTACHED PROFESSOR: Vulliet Laurent
- SENIOR RESEARCHER: Alessio Ferrari

POST-DOCTORAL RESEARCHERS
- Patrycja Baryla
- Patrick Hicher
- Aldo Madaschi
- Alberto Minardi
- Alessandro Rotta Loria
- Melis Sültman
- Dimitrios Terzis

PHD STUDENTS
- Jose Bosch
- Etienne Cassini
- Eleonora Crisci
- Ariadni Elmaloglou
- Barnaby Fryer
- Cristiano Garbellini
- Ray Harran
- Taehoon Kim
- Jinwoo Kim
- Elena Ravera
- Gianluca Speranza
- Angelica Tottolomondo
- Jacopo Zannin

RESEARCH ASSISTANTS
- Sarah Dornberger
- Benoît Cousin
- Margaux Peltier
- Wioletta Kucharska
- Barbara Tinguely
- Rosa Ana Turielle

TECHNICAL STAFF
- Patrick Dubey
- Erwan Romann
- Luc Morier-Genoud

ADMINISTRATIVE STAFF
- Laurent Vulliet

ATTACHED FOUNDATIONS FOR THE FUTURE
The Soil Mechanics Laboratory gives priority to the protection from geo-hazards and industrial damage to the environment, landforms and structures. Our experimental and modelling resources are mobilised to understand, investigate and predict the environmental impact of the new technologies such as nuclear waste disposal, and to provide tools for the up-to-date design of the geo-structures. In addition, in the context of the Chair “Gaz Naturel”, we focus our activities on the geo-engineering and the CO2 storage. Our scientific and technological developments are permanently transferred to education and industry.
CO₂ STORAGE

CO₂ sequestration in deep geological formations is one of the most suitable solutions for CCS (Carbon Capture and Storage). The interplay between transport, reaction, and mechanics is tackled through innovative interdisciplinary research both experimentally and numerically. Our research focuses on experimental investigation of the behaviour of shale caprocks as well as on the quantitative risk prediction of large earthquakes occurring in the basement rocks below fluid injection intervals.

Contact us:
EPFL - ENA C - LMS
Station 18
CH-1015 Lausanne
https://lms.epfl.ch/
lms@epfl.ch
+41 21 693 23 15
@geomecha_EPFL

Theoretical and applied aspects in geomechanics, geo-energy, and geo-engineering aiming for the practical application of the obtained results.

NUCLEAR WASTE STORAGE

Disposal in deep clay geological formations is the most promising way for disposing of high level wastes. The laboratory works as well as numerical modelling are being conducted taking into account complex thermo-hydro-mechanical (THM) behaviour of materials. Involved materials are deeply analyzed in order to provide reliable predictions for the behaviour of storage facilities.

ENERGY GEOSTRUCTURES

The basis of our work consists of observing, measuring, understanding and predicting how energy geostructures behave from a multiphysical perspective. Special attention is put on cyclic thermo-mechanical behavior as well as heat extraction in crystalline rocks at high depths. The work is targeted to develop practical tools for design and conception.

This technology meets 70% of the energy needs of buildings.

SOIL BIOIMPROVEMENT

We investigate a novel soil improvement strategy, inspired by the natural process of biologically driven crystal mineralization. The research aims to develop the conception of a geo-mechanical model to describe the enhanced behavior of the bio-treated soil, optimize the improvement process and enhance the practical applicability of this technique. The works are carried out from laboratory to field scales.
CO₂ STORAGE

CO₂ sequestration in deep geological formations is one of the most suitable solutions for CCS (Carbon Capture and Storage). The interplay between transport, reaction and mechanics is tackled through innovative interdisciplinary research both experimentally and numerically. Our research focuses on the experimental investigation of the behaviour of shale caprocks as well as on the quantitative risk prediction of large earthquakes occurring in the basement rocks below fluid injection intervals.

GAS SHALE EXTRACTION

Shales are extremely complex geomaterials and many challenges are associated with the extraction of shale gas. Geomechanics is the key to achieving a better understanding and a deeper knowledge of shales’ behaviour when subjected to engineering practices. Our laboratory and numerical work is targeted to develop practical tools aiding in better productivities, larger flowback percentages, and a general better understanding of the shale gas reservoirs.

NUCLEAR WASTE STORAGE

Disposal in deep clay geological formations is the most promising way for disposing of high level wastes. The laboratory works as well as numerical modelling are being conducted taking into account complex thermo-hydro-mechanical (THM) behaviour of materials. Involved materials are deeply analyzed in order to provide reliable predictions for the behaviour of storage facilities.

Contact us:

EPFL - ENAC - LMS
Station 18
CH-1015 Lausanne

https://lms.epfl.ch/
lms@epfl.ch
+41 21 693 23 15
@geomecha_EPFL

Find further information in our Annual Reports by scanning the QR code: