École polytechnique fédérale de Lausanne (EPFL) Valais/Wallis

Institute of Chemical Sciences and Engineering (ISIC)
Basic Science Faculty (SB)
Energypolis, Rue de l'Industrie 17, CH-1950 Sion, Switzerland

EPFL Valais/Wallis SEMINAR

11. 11. 2020, 18:00 - 18:15, EPFL Valais/Wallis ZOOM

Steady-state Study on Hydrogenation of the Intermediate of CO₂ methanation

Kun ZHAO EPFL Valais/Wallis, Sion, Switzerland

Carbon dioxide (CO_2) hydrogenation over transition metal catalysts is a method to produce synthetic fuels from renewable energy in a CO_2 neutral cycle. The methanation reaction, which is the primarily fully hydrogenated carbon reaction, proceeds in multiple reaction paths on a solid catalyst. It is crucial to understand the active sites and the related reaction mechanisms of CO_2 hydrogenation in order to improve the efficiency and selectivity of the reaction. Recently, we have unraveled the relationship between activity and metal/metal oxide composition, and the pathway of CO_2 methanation reaction on transition metal based catalysts. The results showed the metal oxide play important roles in CO_2 adsorption and activation. The pathway after CO_2 activation is to form adsorbed CO^* species on the metal site. This CO^* is the main intermediate of CH_4 formation. However, the observation of the intermediates between CO^* and CH_4 has been missing over decades. Here, we present the newest discovery of intermediates on the pathway of CO^* to CH_4 through a steady-state study in operando using diffuse reflectance infrared Fourier transform spectroscopy-mass spectroscopy.

References:

- 1. Zhao, K. et al. In Situ Control of the Adsorption Species in CO₂ Hydrogenation: Determination of Intermediates and Byproducts. J. Phys. Chem. C 2018, 112, 20888.
- 2. Zhao, K. *et al.* Identifying Reaction Species by Evolutionary Fitting and Kinetic Analysis: An Example of CO₂ Hydrogenation in DRIFTS. *J. Phys. Chem. C* **2019**, *123*, 8785.
- 3. Zhao, K. et al. Unraveling and optimizing the metal-metal oxide synergistic effect in a highly active Co_x(CoO)_{1-x} catalyst for CO₂ hydrogenation. J. Enegry Chem. **2021**, 53,241.
- Zhao, K.; et al. A Combined Diffuse Reflectance Infrared Fourier Transform Spectroscopy-Mass Spectroscopy-Gas Chromatography for the Operando Study of the Heterogeneously Catalyzed CO₂ Hydrogenation over Transition Metal-Based Catalysts. Rev. Sci. Instrum. 2020, 91, 074102.
- 5. Zhao, K. et al. Hydrogen storage by reduction of CO_2 to synthetic hydrocarbons. Chinima 2021, under prep.

CV: Kun ZHAO

2012 BS Chemistry and Physics, Central China Normal University, Wuhan, China.

2015 MS Physical Chemistry, Central China Normal University, Wuhan, China. Maser thesis on photocatalysis of molecular oxygen activation.

2020 PhD Physical Chemistry, École Polytechnique Fédérale de Lausanne, Sion, Switzerland. Doctoral thesis on catalyzed CO₂ hydrogenation reaction.

2020.07-08 Working on DFT calculations of the transition states of electrochemical $\rm CO_2$ reduction on Cu single crystalline surface in Prof. Hannes Jonsson's group at Iceland University. 2020.07-11 Postdoc at EPFL working on microkinetics of heterogeneously catalyzed $\rm CO_2$ hydrogenation