École polytechnique fédérale de Lausanne (EPFL) Valais/Wallis

Institute of Chemical Sciences and Engineering (ISIC)
Basic Science Faculty (SB)
Energypolis, Rue de l'Industrie 17, CH-1950 Sion, Switzerland

ENERGYPOLIS SEMINAR

12. 11. 2015, 16:00 - 17:00, ENERGYPOLIS Sion, 4th floor, Seminar room

Mg₂Fe_xSi_{1-x} thin films: The interplay between the defects and magnetic structure properties of hydrogenation

Thu Trang Trinh¹, Frans Munnik²

¹Institute of Radiation Physics (FWK), Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Bautzner Landstrasse 400, 01328 Dresden, Germany.

²Institute of Ion Beam Physics and Materials Research (FWI), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden, Germany.

 Mg_2Fe hydride belongs to the most promising candidates for application as light weight storage material in a future hydrogen economy [1]. Recently, it has also been shown that due to chemochromism, Mg_2Fe is a low-cost and rare-earth-free candidate for switchable mirrors upon hydrogen loading [2]. Besides the Mg_2Fe hydride, a new compound of $Mg_2Fe_xSi_{1-x}$ will be presented. The additional content of Si promises an optimization of hydrogen absorption and desorption processes. Comprehensive investigations at the facilities of HZDR on $Mg_2Fe_xSi_{1-x}$ system showed that hydrogen induced changes in structure, electronic, optical and magnetic properties. I.e., volume magnetic properties transform from superparamagnetism to ferromagnetism with a high Curie temperature.

As a member of the Helmholtz Association, HZDR provides a unique infrastructure for researchers. Large scale research facilities, i.e. the ion beam center and the linear electron accelerator ELBE of the HZDR are also briefly presented. A suite of materials analysis techniques based on ion beams and the generated radiation of the electron beam is available. A few methods are introduced such as Rutherford Backscattering Spectrometry (RBS), Resonant Nuclear Reaction Analysis (NRA) and Positron annihilation spectroscopy (PAS), which enable the cross-disciplinary collaboration between researchers.

References:

- [1] "Microstructural characterization and hydrogenation study of extruded MgFe alloy". G.F. Lima, M.M. Peres, S. Garroni, M.D. Baró, S. Surinyach, C.S. Kiminami,
- T.T. Ishikawa, W.J. Botta, A.M. Jorge. Journal of Alloys and Compounds 504S (2010) S299-S301.
- [2] "Mixed metal films with switchable optical properties". T. J. Richardson, J. L. Slack, B. Farangis and M. D. Rubin. Applied Physics Letters 80 (8), (2002) 1349–1351.

M.Sc. TRINH, Thu Trang

CV: Thu Trang TRINH

Born 8th November 1987 in Hanoi, Vietnam.

(2007 - 2011) Bachelor of Science (B.Sc.) in physics at Humboldt University in Berlin. (2009 - 2011) Student assistant and Bachelor thesis at "E.ON Ruhrgas ", Thesis title: "Development of a LIDAR (light detecting and ranging) — Laser System for Helicopter Supported Methane Detection".

(2011 - 2014) Master of Science (M.Sc.) in physics at Technical University in Berlin, Institute of Optic and atomic physics, Thesis title: "Construction and Characterization of a Reflectron Time-of-Flight Mass (ReTOF) Spectrometer for Molecular and Ionic Clusters". (since 2014) PhD student at Helmholtz-Zentrum Dresden-Rossendorf, Activities: Developing an unique in-situ system for positron annihilation spectroscopy, Beamline scientist at LINAC electron beam, Fundamental research on thin films in the field of hydrogen induced magnetic properties.