

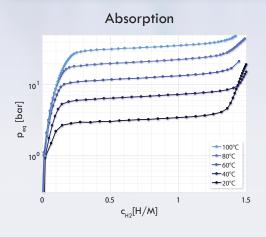
What is AGAS Mano

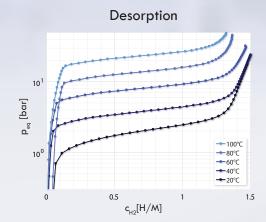
AGAS is an advanced gas sorption analysis system

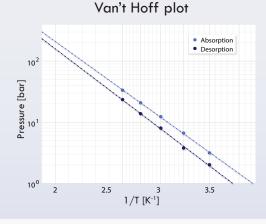
AGAS is simple and user-friendly

AGAS combines the quasi-static (Sieverts) and dynamic measurement modes in a single device

AGAS comes with an integrated data analysis software

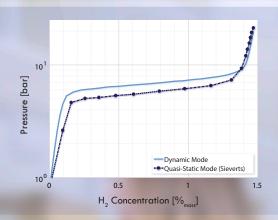

Specifications


- Measuring Pressure Range: 0-100 bar
- Measuring Temperature Range: 298K 473K (standard), 77K 773K (optional)
- Pressure measurement accuracy: ±0.35% of the full range
- Hydrogen flow rate in dynamic mode: 0 5 Nml/min (customizable)


Measurement Capabilities

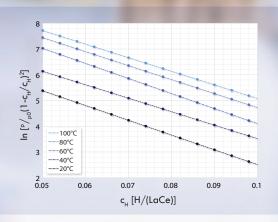
- Dynamic pressure composition isotherms
- Pressure-composition quasi-static equilibrium isotherms (Sieverts)
- Kinetic Sorption Measurement (Arrhenius)
- Desorbed Gas Analysis (Mass Spectrometer)

Dynamic Pressure-Composition Isotherms (pcl) Measurement and Determination of the Enthalpy and Entropy of Reaction



The pcl are measured at a constant flow rate of 1 Nml/min-g and allow determining the enthalpy and entropy of reaction of (LaCe)(NiCoMn)₅

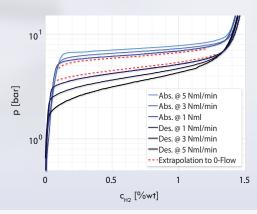
- Reaction Enthalpy:
- -26.7 \pm 1.7 kJ/mol (Abs.), 28.2 \pm 1.7 kJ/mol (Des.)
- Reaction Entropy:

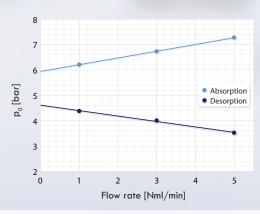

101.0 \pm 5.1 kJ/mol (Abs.), 101.8 \pm 5.1 kJ/mol (Des.)

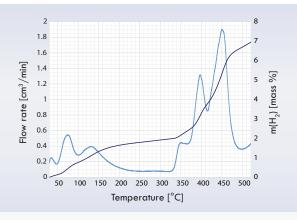
Measurement Results

Comparison of the Quasi-Static (Sieverts) with the Dynamic (Mass Flow) pcl Measurement

Comparison of the quasi-static (Sieverts) method with the dynamic (Mass-Flow) method for the pcl (Absorption) measurement of (LaCe)(NiCoMn)₅ at 40°C.

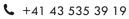

Determination of the Critical Tempearture and H-H Interaction Energy Using the Lattice Gas Model


The lattice gas model allows determining the interaction energy between two hydrogen atoms in the metal lattice and the critical temperature at which the two-phase mixture no longer exists.


- H-H interaction energy: ϵ_0 =2.12 eV
- Critical temperature: T_c=542°C

Determination of the "True" Equilibrium Pressure by Extrapolation to Zero Flow Rate

The measurement of pcl curves at different flow rates allow determining the "true" equilibrium pressure by extrapolation to zero-flow.


Thermo-Desorption of Complex Hydrides

Measurement of the hydrogen desorption flow as a function of the different temperatures.

♥ GRZ Technologies

Energypolis Rue de l'industrie 17 CH-1951 Sion Switzerland

