

High temperature (~1700 °C) furnace

What is it used for?

- \Box C₃S, C₂S, C₃A and C₄AF synthesis
- □ Solid reaction kinetics
- □ Glass synthesis

Synthesize C_3S on the kilogram scale*

- □ Use cast green cylinders less labor consuming and increased capacity of the Pt crucible
- □ Amorphous silica and reduced PSD of CaCO₃ improved the burnability

Procedure of the C₃S synthesis

Sintering using dried green cylinder in the furnace

Sample during quenching, a mock sampling at room temperature.

Contour plot of (a) f-CaO and (b) C_3S content (%). A sample with ~96 wt% C_3S and ~0.3 wt% f-CaO can be sintered at point P_1 , P_2 or P_3 depends on the temperature the furnace can reach

