Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 8: From variance reduction to deep learning...
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2023)

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

An observation of GD vs. SGD step

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} \nabla f\left(\mathbf{x}^{k}\right) \quad \text { (GD) }
$$

Lemma

Assume f is Lipschitz smooth with constant L. Then,

$$
f\left(\mathbf{x}^{k+1}\right)-f\left(\mathbf{x}^{k}\right) \leq\left(\frac{\gamma_{k}^{2} L}{2}-\gamma_{k}\right)\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2} .
$$

An observation of GD vs. SGD step

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right) \quad(\mathrm{SGD})
$$

Lemma

Assume f is Lipschitz smooth with constant L. Then,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k+1}\right)-f\left(\mathbf{x}^{k}\right)\right] \leq\left(\frac{\gamma_{k}^{2} L}{2}-\gamma_{k}\right) \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]+\frac{L \gamma_{k}^{2}}{2} \mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]
$$

An observation of GD vs. SGD step

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right) \quad \text { (SGD) }
$$

Lemma

Assume f is Lipschitz smooth with constant L. Then,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k+1}\right)-f\left(\mathbf{x}^{k}\right)\right] \leq\left(\frac{\gamma_{k}^{2} L}{2}-\gamma_{k}\right) \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]+\frac{L \gamma_{k}^{2}}{2} \mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]
$$

Observations: \quad The variance of gradient estimate dominates as $\nabla f\left(\mathbf{x}^{k}\right) \rightarrow 0$.

- To ensure convergence we need to control variance.

$$
\gamma_{k} \rightarrow 0 \Longrightarrow \text { Slow convergence! }
$$

Can we decrease the variance while using a constant step-size?

An observation of GD vs. SGD step

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right) \quad \text { (SGD) }
$$

Lemma

Assume f is Lipschitz smooth with constant L. Then,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k+1}\right)-f\left(\mathbf{x}^{k}\right)\right] \leq\left(\frac{\gamma_{k}^{2} L}{2}-\gamma_{k}\right) \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]+\frac{L \gamma_{k}^{2}}{2} \mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)-\nabla f\left(\mathbf{x}^{k}\right)\right\|^{2}\right]
$$

Observations: $\quad \circ$ The variance of gradient estimate dominates as $\nabla f\left(\mathbf{x}^{k}\right) \rightarrow 0$.

- To ensure convergence we need to control variance.

$$
\gamma_{k} \rightarrow 0 \Longrightarrow \text { Slow convergence! }
$$

Can we decrease the variance while using a constant step-size?
Choose a stochastic gradient, s.t. $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k} ; \theta_{k}\right)\right\|^{2}\right] \rightarrow 0$.

A simple approach: Mini-batch SGD

- More samples imply a better estimate for full gradient.

SGD with mini batches

Let $G(\mathbf{x}, \theta)$ be an unbiased gradient estimate $(\mathbb{E}[G(\mathbf{x}, \theta)]=\nabla f(\mathbf{x}))$ and B_{k} be the batch size. Then, we have

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \frac{1}{B_{k}} \sum_{j=1}^{B_{k}} G\left(\mathbf{x}^{k}, \theta_{k, j}\right)
$$

Theorem

Let $B_{k}>0$ be the batch size and $G(\mathbf{x}, \theta)$ be an unbiased gradient estimate with bounded variance, i.e., $\mathbb{E}\left[\|G(\mathbf{x}, \theta)-\nabla f(\mathbf{x})\|^{2} \mid \mathbf{x}\right] \leq \sigma^{2}$. Then, the mini-batch estimate has the following properties:

$$
\mathbb{E}\left[\frac{1}{B_{k}} \sum_{j=1}^{B_{k}} G\left(\mathbf{x}, \theta_{k, j}\right)\right]=\nabla f(\mathbf{x}) \quad \text { and } \quad \mathbb{E}\left[\left.\left\|\frac{1}{B_{k}} \sum_{j=1}^{B_{k}} G\left(\mathbf{x}, \theta_{k, j}\right)-\nabla f(\mathbf{x})\right\|^{2} \right\rvert\, \mathbf{x}\right] \leq \frac{\sigma^{2}}{B_{k}}
$$

Remarks: $\quad \circ$ We might need to increase the batch size over time to take variance to 0 .

- We can come up with a "smarter" estimate for $\nabla f(\mathbf{x})$.

How to construct a new estimate $G\left(\mathbf{x}^{k} ; \theta_{k}\right)$? [6]

Finite sum structure:	SGD update rule:
$f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}$	$\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} \nabla f_{j}\left(\mathbf{x}^{k}\right)$

- Let $X=\nabla f_{j}\left(\mathbf{x}^{k}\right)$ be a random variable (due to $j \sim \operatorname{Uniform}(\{1, \cdots, n\})$).
- Let $Y=\nabla f_{j}(\tilde{\mathbf{x}})$ be another random variable, and $\tilde{\mathbf{x}}$ is a particularly selected point.

Remarks: $\quad \circ$ We want X and Y to be correlated (we will see why!).

- Given Y, we should be able to estimate $\mathbb{E}[X]$ with more confidence.

Observations: ○ Choice of $\tilde{\mathbf{x}}$ affects how correlated X and Y are.

- We can compute $\mathbb{E}[Y]=\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}(\tilde{\mathbf{x}})=\nabla f(\tilde{\mathbf{x}})$.

Goal:

$$
\text { - Find a good estimate of } \mathbb{E}[X]=\frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}\left(\mathbf{x}^{k}\right)=\nabla f\left(\mathbf{x}^{k}\right) \text {. }
$$

How to construct a new estimate $G\left(\mathbf{x}^{k} ; \theta_{k}\right)$? [6]

Finite sum structure:	SGD update rule:
$f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}$	$\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} \nabla f_{j}\left(\mathbf{x}^{k}\right)$

- Let $X=\nabla f_{j}\left(\mathbf{x}^{k}\right)$ be a random variable (due to $j \sim \operatorname{Uniform}(\{1, \cdots, n\})$).
- Let $Y=\nabla f_{j}(\tilde{\mathbf{x}})$ be another random variable, and $\tilde{\mathbf{x}}$ is a particularly selected point.

A generalized estimator: $R_{\alpha}=\alpha(X-Y)+\mathbb{E}[Y]$

- $\mathbb{E}\left[R_{\alpha}\right]=\alpha \mathbb{E}[X]+(1-\alpha) \mathbb{E}[Y]$
- $\operatorname{Var}\left(R_{\alpha}\right)=\alpha^{2}(\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y))$

Observations: \quad When $\alpha=1, R_{\alpha}$ becomes unbiased, i.e., $\mathbb{E}\left[R_{\alpha}\right]=\mathbb{E}[X]$.

- If $\operatorname{Cov}(X, Y)$ is large enough (X and Y are correlated enough), $\operatorname{Var}\left(R_{\alpha}\right) \leq \operatorname{Var}(X)$.

How could we use this information to construct our estimate?

Variance reduction techniques: SVRG

- Select the stochastic gradient $\nabla f_{i_{k}}$, and compute a gradient estimate

$$
\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\tilde{\mathbf{x}})+\nabla f(\tilde{\mathbf{x}}) .
$$

- As $\tilde{\mathbf{x}} \rightarrow \mathrm{x}^{\star}$ and $\mathbf{x}^{k} \rightarrow \mathrm{x}^{\star}$, we have

$$
\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\tilde{\mathbf{x}})+\nabla f(\tilde{\mathbf{x}}) \rightarrow 0
$$

- As a result, we can ensure the following

$$
\mathbb{E}\left[\left\|\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\tilde{\mathbf{x}})+\nabla f(\tilde{\mathbf{x}})\right\|^{2}\right] \rightarrow 0
$$

Remarks: $\quad \circ$ Remember the generalized estimator: $R_{\alpha}=\alpha(X-Y)+\mathbb{E}[Y]$.

- For SVRG, $\alpha=1, X=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)$ and $Y=\nabla f_{i_{k}}(\tilde{\mathbf{x}})$.
- We will see how $\tilde{\mathbf{x}}$ is computed!

Stochastic gradient algorithm with variance reduction

Stochastic gradient with variance reduction (SVRG) [11, 21]

1. Choose $\widetilde{\mathbf{x}}^{0} \in \mathbb{R}^{p}$ as a starting point and $\gamma>0$ and $q \in \mathbb{N}_{+}$.
2. For $s=0,1,2 \cdots$, perform:

2a. $\widetilde{\mathbf{x}}=\widetilde{\mathbf{x}}^{s}, \quad \widetilde{\mathbf{v}}=\nabla f(\widetilde{\mathbf{x}}), \quad \mathbf{x}^{0}=\widetilde{\mathbf{x}}$.
2b. For $k=0,1, \cdots q-1$, perform:

$$
\left\{\begin{array}{l}
\text { Pick } i_{k} \in\{1, \ldots, n\} \text { uniformly at random } \tag{1}\\
\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\widetilde{\mathbf{x}})+\widetilde{\mathbf{v}} \\
\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\gamma \mathbf{r}_{k},
\end{array}\right.
$$

2c. Update $\widetilde{\mathbf{x}}^{s+1}=\frac{1}{m} \sum_{j=0}^{q-1} \mathbf{x}^{j}$.

Features

- The SVRG method uses a multistage scheme to reduce the variance of the stochastic gradient r_{k}.
- Learning rate γ does not necessarily tend to 0 while \mathbf{x}^{k} and $\widetilde{\mathbf{x}}^{s}$ tend to \mathbf{x}_{\star}.
- Each stage, SVRG uses $n+2 q$ component gradient evaluations.
- n for the full gradient at the beginning of each stage, and $2 q$ for each of the q stochastic gradient steps.

Convergence analysis

Assumption A5.

(i) f is μ-strongly convex
(ii) The learning rate $0<\gamma<1 /\left(4 L_{\max }\right)$, where $L_{\max }=\max _{1 \leq j \leq n} L_{j}$.
(iii) q is large enough such that

$$
\kappa=\frac{1}{\mu \gamma\left(1-4 \gamma L_{\max }\right) q}+\frac{4 \gamma L_{\max }(q+1)}{\left(1-4 \gamma L_{\max }\right) q}<1 .
$$

Theorem

Assumptions:

- The sequence $\left\{\widetilde{\mathbf{x}^{s}}\right\}_{k \geq 0}$ is generated by SVRG.
- Assumption A5 is satisfied.

Conclusion: Linear convergence is obtained:

$$
\mathbb{E} f\left(\widetilde{\mathbf{x}}^{s}\right)-f\left(\mathbf{x}^{\star}\right) \leq \kappa^{s}\left(f\left(\widetilde{\mathbf{x}}^{0}\right)-f\left(\mathbf{x}^{\star}\right)\right)
$$

Choice of γ and q, and complexity

Chose γ and q such that $\kappa \in(0,1)$:

For example

$$
\gamma=0.1 / L_{\max }, q=100\left(L_{\max } / \mu\right) \Longrightarrow \kappa \approx 5 / 6
$$

Complexity

$$
\mathbb{E} f\left(\widetilde{\mathbf{x}}^{s}\right)-f\left(\mathbf{x}^{\star}\right) \leq \varepsilon, \quad \text { when } s \geq \log \left(\left(f\left(\widetilde{\mathbf{x}}^{0}\right)-f\left(\mathbf{x}^{\star}\right)\right) / \epsilon\right) / \log \left(\kappa^{-1}\right)
$$

- Each stage needs $n+2 q$ component gradient evaluations
- With $q=\mathcal{O}\left(L_{\max } / \mu\right)$, we obtain an overall complexity of

$$
\mathcal{O}\left(\left(n+L_{\max } / \mu\right) \log (1 / \epsilon)\right)
$$

Comparison: GD vs. SGD vs. SVRG

- GD update:

$$
\left\{\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\gamma \nabla f\left(\mathbf{x}^{k}\right)\right.
$$

- SGD update:

$$
\left\{\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\gamma \nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)\right.
$$

- SVRG update:

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\widetilde{\mathbf{x}})+\nabla f(\tilde{\mathbf{x}}) \\
\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\gamma \mathbf{r}_{k},
\end{array}\right.
$$

	SGD	SVRG	GD
Requires gradient storage?	no	no	no
Epoch-based	no	yes	no
Parameters	stepsize	stepsize \& epoch length	stepsize
Gradient evaluations	1 per iteration	$n+2 q$ per epoch	n per iteration

Table: Comparisons of SGD, SVRG and GD [6]

- Recall that $q=\mathcal{O}\left(L_{\text {max }} / \mu\right)$ is the epoch length for SVRG.

Example: ℓ_{2}-regularized least squares with synthetic data

Taxonomy of algorithms

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

- $f(\mathbf{x})=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x}): \mu$-strongly convex with L-Lipschitz continuous gradient.

SVRG	GD	SGD
Linear	Linear	Sublinear

Table: Rate of convergence.

- $\kappa=L / \mu$.

SVRG	GD	SGD
$\mathcal{O}((n+\kappa) \log (1 / \varepsilon))$	$\mathcal{O}((n \kappa) \log (1 / \varepsilon))$	$1 / \varepsilon$

Table: Complexity to obtain ε-solution.

The variance reduction zoo: convex

Setting	Algorithm	Lower bound	Complexity bound
L-smooth f_{i} 's with bounded variance	$\begin{gathered} \text { Gradient descent } \\ \text { SVRG }\left(B_{k}=1\right)[16] \\ \text { SVRG }\left(B_{k}=\Omega\left(n^{2 / 3}\right)\right)[16] \\ \text { SAGA }\left(B_{k}=1\right)[16] \\ \text { SAGA }\left(B_{k}=\Omega\left(n^{2 / 3}\right)\right)[16] \\ \text { SpiderBoost [19] } \\ \text { SpiderBoost-M }[19] \\ \text { Spider [10] } \\ \text { PAGE [15] } \\ \hline \end{gathered}$	$L \Delta_{0} \min \left\{\sigma / \epsilon^{3}, \sqrt{n} / \epsilon^{2}\right\}$ [10]	$\begin{gathered} n L \Delta_{0} / \epsilon^{2} \\ n L \Delta_{0} / \epsilon^{2} \\ n^{2 / 3} L \Delta_{0} / \epsilon^{2} \\ n L \Delta_{0} / \epsilon^{2} \\ n^{2 / 3} L \Delta_{0} / \epsilon^{2} \\ \sqrt{n} L \Delta_{0} / \epsilon^{2} \\ \sqrt{n} L \Delta_{0} / \epsilon^{2} \\ L \Delta_{0} \min \left\{\sigma / \epsilon^{3}, \sqrt{n} / \epsilon^{2}\right\} \\ L \Delta_{0} \min \left\{\sigma / \epsilon^{3}, \sqrt{n} / \epsilon^{2}\right\} \\ \hline \end{gathered}$
f is μ-SCVX and L-smooth f_{i} 's are average L-smooth	KatyushaX [3]	$\left(n+n^{3 / 4} \sqrt{\frac{L}{\mu}}\right) \log \frac{\Delta_{0}}{\epsilon}$ [22]	$\left(n+n^{3 / 4} \sqrt{\frac{L}{\mu}}\right) \log \frac{\Delta_{0}}{\epsilon}$
f is CVX and L-smooth f_{i} 's are average L-smooth	KatyushaX [3]	$n+n^{3 / 4} \sqrt{\frac{L D_{0}^{2}}{\epsilon}} \text { [23] }$	$n+n^{3 / 4} \sqrt{\frac{L D_{0}^{2}}{\epsilon}}$

Remarks: ○ Complexity $((S) C V X f)$: total number of stochastic first-order oracle calls to find $\mathbf{x}_{\epsilon}^{\star}$ with $\mathbb{E}\left[f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \epsilon$.

- $\Delta_{0}=f\left(\mathbf{x}^{0}\right)-f^{\star}, D_{0}=\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|$.
- Bounded variance: $\mathbb{E}_{i}\left[\left\|\nabla f_{i}(\mathbf{x})-\nabla f(\mathbf{x})\right\|^{2}\right] \leq \sigma^{2} \quad \forall \mathbf{x}$.
- Average L-smooth: $\mathbb{E}_{i}\left[\left\|\nabla f_{i}(\mathbf{x})-\nabla f_{i}(\mathbf{y})\right\|^{2}\right] \leq L^{2}\|\mathbf{x}-\mathbf{y}\|^{2} \forall \mathbf{x}, \mathbf{y}$.

Variance-reduction for non-convex problems

SVRG estimator vs. a recursive estimator

- SVRG update:

$$
\left\{\begin{array}{l}
\mathbf{r}_{1}=\nabla f(\tilde{\mathbf{x}}) \\
\mathbf{r}_{k}:=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\widetilde{\mathbf{x}})+\nabla f(\tilde{\mathbf{x}}) \\
\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\gamma \mathbf{r}_{k}
\end{array}\right.
$$

Spider [10]

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ as a starting point and $\gamma=\epsilon / L$.
2. For $k=0,1,2, \ldots$, perform:

2a. If $k \bmod n=0$, do:

$$
\mathbf{r}_{k}=\nabla f\left(\mathbf{x}^{k}\right)
$$

else:
Pick $i_{k} \in\{1, \ldots, n\}$ uniformly at random

$$
\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}\left(\mathbf{x}^{k-1}\right)+\mathbf{r}_{k-1}
$$

2b. Update $\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\frac{\gamma}{\left\|\mathbf{r}_{k}\right\|} \mathbf{r}_{k}$
3. Return \mathbf{x}^{k}

- Spider [10] update:

$$
\left\{\begin{array}{l}
\mathbf{r}_{1}=\nabla f(\tilde{\mathbf{x}}) \\
\mathbf{r}_{k}:=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}(\widetilde{\mathbf{x}})+\mathbf{r}_{k-1} \\
\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\gamma \mathbf{r}_{k}
\end{array}\right.
$$

Remarks:

- Sample complexity: $O\left(n+\sqrt{n} \frac{\Delta L}{\epsilon^{2}}\right)$.
- Sets the final accuracy apriori.
- Step-size depends on ϵ and L.

Adaptive variance-reduction for non-convex problems

AdaSpider [13]

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ as a starting point.
2. For $k=0,1,2 \cdots$, perform:

2a. If $k \bmod n=0$, do:

$$
\mathbf{r}_{k}=\nabla f\left(\mathbf{x}^{k}\right)
$$

else:
Pick $i_{k} \in\{1, \ldots, n\}$ uniformly at random

$$
\mathbf{r}_{k}=\nabla f_{i_{k}}\left(\mathbf{x}^{k}\right)-\nabla f_{i_{k}}\left(\mathbf{x}^{k-1}\right)+\mathbf{r}_{k-1}
$$

2b. Compute $\gamma_{k}:=1 /\left(n^{1 / 4} \sqrt{n^{1 / 2}+\sum_{i=0}^{k}\left\|\mathbf{r}_{i}\right\|^{2}}\right)$
2c. Update $\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\gamma_{k} \mathbf{r}_{k}$
3. Return \mathbf{x}^{k}

Theorem

Let $\Delta_{0}=f\left(\mathbf{x}^{0}\right)-\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x})$. The sequence $\mathbf{x}^{0}, \cdots, \mathbf{x}^{k}$ generated by AdaSpider satisfies:
$\frac{1}{k} \sum_{i=0}^{k-1} \mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{i}\right)\right\|\right] \leq O\left(n^{1 / 4} \frac{\Delta_{0}+L^{2}}{\sqrt{k}} \log (k)\right), \quad$ with sample complexity $\tilde{O}\left(n+\sqrt{n} \frac{\Delta_{0}^{2}+L^{4}}{\varepsilon^{2}}\right)$.

Performance of AdaSpider

- Image classification with neural networks (spoiler alert!) trained with cross entropy loss.
- AdaGrad [8], KatyushaXw [2], AdaSVRG[7], Spider [10], SpiderBoost [20].

The variance reduction zoo: non-convex

Setting	Algorithm	Lower bound	Complexity bound
f is α-weakly CVX and L-smooth	Spider [10]	$\frac{\Delta_{0}}{\epsilon^{2}} \min \left\{n^{3 / 4} \sqrt{\alpha L}, \sqrt{n} L\right\}[23]$	$\frac{\Delta_{0}}{f^{2}} \min \left\{n^{3 / 4} \sqrt{\alpha L}, \sqrt{n} L\right\}$
f_{i} 's are α-weakly CVX and L-smooth	Natasha [1]	$\frac{\Delta_{0}}{\epsilon^{2}} \min \{\sqrt{n \alpha L}, L\}[23]$	$\frac{\Delta_{0}}{\epsilon^{2}} \min \{\sqrt{n \alpha L}, \sqrt{n} L\}$
f is non-CVX f_{i} 's are non-CVX and L-smooth	AdaSpider [13]	$\frac{\Delta_{0} L}{\epsilon^{2}} \sqrt{n}[23,10]$	$\tilde{O}\left(n+\frac{\Delta_{0}^{2}+L^{4}}{\epsilon^{2}} \sqrt{n}\right)$

Remarks: \circ Complexity (nonCVX f): total number of stochastic first-order oracle calls to find $\mathbf{x}_{\epsilon}^{\star}$ with $\mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}_{\epsilon}^{\star}\right)\right\|^{2}\right] \leq \epsilon^{2}$.

- $\Delta_{0}=f\left(\mathbf{x}^{0}\right)-f^{\star}, D_{0}=\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|$.
- Bounded variance: $\mathbb{E}_{i}\left[\left\|\nabla f_{i}(\mathbf{x})-\nabla f(\mathbf{x})\right\|^{2}\right] \leq \sigma^{2} \quad \forall \mathbf{x}$.
- L-smooth: $\left\|\nabla f_{i}(\mathbf{x})-\nabla f_{i}(\mathbf{y})\right\| \leq L\|\mathbf{x}-\mathbf{y}\| \forall \mathbf{x}, \mathbf{y}$.
- $f(\mathbf{x})$ is α-weakly convex if $f(\mathbf{x})+\frac{\alpha}{2}\|\mathbf{x}\|^{2}$ is convex $\forall \mathbf{x}$.

Deep learning outline

- In the sequel,
- Introduction to deep learning
- The deep learning paradigm
- Challenges in deep learning theory and applications
- Next class
- Generalization in deep learning

Remark about notation

The Deep Learning literature might use a different notation:

	Our lectures	DL literature
data/sample	\mathbf{a}	\mathbf{x}
label	b	y
bias	μ	b
weight	\mathbf{x}, \mathbf{X}	\mathbf{w}, \mathbf{W}

Power of linear classifiers-I

Problem (Recall: Logistic regression)

Given a sample vector $\mathbf{a}_{i} \in \mathbb{R}^{d}$ and a binary class label $b_{i} \in\{-1,+1\}(i=1, \ldots, n)$, we define the conditional probability of b_{i} given \mathbf{a}_{i} as follows:

$$
\mathbb{P}\left(b_{i} \mid \mathbf{a}_{i}, \mathbf{x}\right) \propto 1 /\left(1+e^{-b_{i}\left\langle\mathbf{x}, \mathbf{a}_{i}\right\rangle}\right)
$$

where $\mathrm{x} \in \mathbb{R}^{d}$ is some weight vector.

Figure: Linearly separable versus nonlinearly separable dataset

Power of linear classifiers-II

- Lifting dimensions to the rescue
- Convex optimization objective
- Side effect: The curse-of-dimensionality
- Possible to avoid via kernel methods, such as SVMs

0^{N}

Figure: Non-linearly separable data (left). Linearly separable in \mathbb{R}^{3} via $\mathbf{a}_{z}=\sqrt{\mathbf{a}_{x}^{2}+\mathbf{a}_{y}^{2}}$ (right).

An important alternative for non-linearly separable data

1-hidden-layer neural network with m neurons (fully-connected architecture):

- Parameters: $\mathbf{X}_{1} \in \mathbb{R}^{m \times d}, \mathbf{X}_{2} \in \mathbb{R}^{c \times m}$ (weights), $\mu_{1} \in \mathbb{R}^{m}$, $\mu_{2} \in \mathbb{R}^{c}$ (biases)
- Activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$

$$
h_{\mathbf{x}}(\mathbf{a}):=
$$

An important alternative for non-linearly separable data

1-hidden-layer neural network with m neurons (fully-connected architecture):

- Parameters: $\mathbf{X}_{1} \in \mathbb{R}^{m \times d}, \mathbf{X}_{2} \in \mathbb{R}^{c \times m}$ (weights), $\mu_{1} \in \mathbb{R}^{m}$, $\mu_{2} \in \mathbb{R}^{c}$ (biases)
- Activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$

An important alternative for non-linearly separable data

1-hidden-layer neural network with m neurons (fully-connected architecture):

- Parameters: $\mathbf{X}_{1} \in \mathbb{R}^{m \times d}, \mathbf{X}_{2} \in \mathbb{R}^{c \times m}$ (weights), $\mu_{1} \in \mathbb{R}^{m}, \mu_{2} \in \mathbb{R}^{c}$ (biases)
- Activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$

An important alternative for non-linearly separable data

1-hidden-layer neural network with m neurons (fully-connected architecture):

- Parameters: $\mathbf{X}_{1} \in \mathbb{R}^{m \times d}, \mathbf{X}_{2} \in \mathbb{R}^{c \times m}$ (weights), $\mu_{1} \in \mathbb{R}^{m}, \mu_{2} \in \mathbb{R}^{c}$ (biases)
- Activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$

An important alternative for non-linearly separable data

1-hidden-layer neural network with m neurons (fully-connected architecture):

- Parameters: $\mathbf{X}_{1} \in \mathbb{R}^{m \times d}, \mathbf{X}_{2} \in \mathbb{R}^{c \times m}$ (weights), $\mu_{1} \in \mathbb{R}^{m}$, $\mu_{2} \in \mathbb{R}^{c}$ (biases)
- Activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$

$$
h_{\mathbf{x}}(\mathbf{a}):=\left[\mathbf{X}_{2}\right] \underbrace{\left[\mathbf{X}_{1}\right]}_{\text {hidden layer }=\text { learned features }}
$$

An important alternative for non-linearly separable data

1-hidden-layer neural network with m neurons (fully-connected architecture):

- Parameters: $\mathbf{X}_{1} \in \mathbb{R}^{m \times d}, \mathbf{X}_{2} \in \mathbb{R}^{c \times m}$ (weights), $\mu_{1} \in \mathbb{R}^{m}$, $\mu_{2} \in \mathbb{R}^{c}$ (biases)
- Activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$

An important alternative for non-linearly separable data

1-hidden-layer neural network with m neurons (fully-connected architecture):

- Parameters: $\mathbf{X}_{1} \in \mathbb{R}^{m \times d}, \mathbf{X}_{2} \in \mathbb{R}^{c \times m}$ (weights), $\mu_{1} \in \mathbb{R}^{m}$, $\mu_{2} \in \mathbb{R}^{c}$ (biases)
- Activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$

An important alternative for non-linearly separable data

1-hidden-layer neural network with m neurons (fully-connected architecture):

- Parameters: $\mathbf{X}_{1} \in \mathbb{R}^{m \times d}, \mathbf{X}_{2} \in \mathbb{R}^{c \times m}$ (weights), $\mu_{1} \in \mathbb{R}^{m}, \mu_{2} \in \mathbb{R}^{c}$ (biases)
- Activation function: $\sigma: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
h_{\mathbf{x}}(\mathbf{a}):= & \underbrace{}_{\text {hidden layer }=\text { learned features }} \mathbf{X}_{2} \sigma\left[\mathbf{X}_{1}\right][\mathrm{a}]+\left[\mu_{1}\right]
\end{aligned}+\left[\mu_{2}\right], \quad \mathbf{x}:=\left[\mathbf{X}_{1}, \mathbf{X}_{2}, \mu_{1}, \mu_{2}\right]
$$

Why neural networks?: An approximation theoretic motivation

Theorem (Universal approximation [5])

Let $\sigma(\cdot)$ be a nonconstant, bounded, and increasing continuous function. Let $I_{d}=[0,1]^{d}$. The space of continuous functions on I_{d} is denoted by $\mathcal{C}\left(I_{d}\right)$.

Given $\epsilon>0$ and $g \in \mathcal{C}\left(I_{d}\right)$ there exists a 1-hidden-layer network h with m neurons such that h is an ϵ-approximation of g, i.e.,

$$
\sup _{\mathbf{a} \in I_{d}}|g(\mathbf{a})-h(\mathbf{a})| \leq \epsilon
$$

Caveat

The number of neurons m needed to approximate some function g can be arbitrarily large!

Figure: networks of increasing width

Why were NNs not popular before 2010?

- too big to optimize!
- did not have enough data
o could not find the optimum via algorithms

Why were NNs not popular before 2010?

- too big to optimize!
- did not have enough data
- could not find the optimum via algorithms

Supervised learning: Multi-class classification

Figure: CIFAR10 dataset: 6000032×32 color images (3 channels) from 10 classes

Figure: Imagenet dataset: 14 million color images (varying resolution, 3 channels) from 21 K classes

Goal
Image-label pairs $(\mathbf{a}, b) \subseteq \mathbb{R}^{d} \times\{1, \ldots, c\}$ follow an unknown distibution \mathbb{P}. Find $h: \mathbb{R}^{d} \rightarrow\{1, \ldots, c\}$ with minimum misclassification probability

$$
\min _{h \in \mathcal{H}} \mathbb{P}(h(\mathbf{a}) \neq b)
$$

2010-today: Deep Learning becomes popular again

Figure: Error rate on the ImageNet challenge, for different network architectures.

2010-today: Deep Learning becomes popular again

Figure: Error rate on the ImageNet challenge, for different network architectures [17, 12].

Convolutional architectures in Computer Vision tasks

Figure: "Locality" structure of a 2D deep convolutional neural network.

Inductive Bias: Why convolution works so well in Computer Vision tasks?

Features

The era of model scaling

From: https://informationisbeautiful.net/visualizations/the-rise-of-generative-ai-large-language-models-llms-like-chatgpt/

The landscape of ERM with multilayer networks

Recall: Empirical risk minimization (ERM)

Let $h_{\mathbf{x}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be network and let $\left\{\left(\mathbf{a}_{i}, b_{i}\right)\right\}_{i=1}^{n}$ be a sample with $b_{i} \in\{-1,1\}$ and $\mathbf{a}_{i} \in \mathbb{R}^{n}$. The empirical risk minimization (ERM) is defined as follows

$$
\begin{equation*}
\min _{\mathbf{x}}\left\{R_{n}(\mathbf{x}):=\frac{1}{n} \sum_{i=1}^{n} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), b_{i}\right)\right\} \tag{2}
\end{equation*}
$$

where $L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), b_{i}\right)$ is the loss on the sample $\left(\mathbf{a}_{i}, b_{i}\right)$ and \mathbf{x} are the parameters of the network.

Some frequently used loss functions

- $L\left(h_{\mathbf{x}}(\mathbf{a}), b\right)=\log \left(1+\exp \left(-b \cdot h_{\mathbf{x}}(\mathbf{a})\right)\right)$ (logistic loss)
- $L\left(h_{\mathbf{x}}(\mathbf{a}), b\right)=\left(b-h_{\mathbf{x}}(\mathbf{a})\right)^{2}$ (squared error)
- $L\left(h_{\mathbf{x}}(\mathbf{a}), b\right)=\max \left(0,1-b \cdot h_{\mathbf{x}}(\mathbf{a})\right)$ (hinge loss)

The landscape of ERM with multilayer networks

Figure: convex (left) vs non-convex (right) optimization landscape [14]

Conventional wisdom in ML until 2010:
Simple models + simple errors

The landscape of ERM with multilayer networks

1. Liu, Chaoyue, et al. Loss landscapes and optimization in over-parameterized non-linear systems and neural networks, in Applied and Computational Harmonic Analysis, 2022.
2. Zhang, Yaoyu, et al. Embedding Principle of Loss Landscape of Deep Neural Networks, in Advances in Neural Information Processing Systems (NeurIPS), 2021.
3. Simsek, Berfin, et al. Geometry of the loss landscape in overparameterized neural networks: Symmetries and invariances, inInternational Conference on Machine Learning, 2021.
4. Foret, Pierre, et al. Sharpness-aware minimization for efficiently improving generalization. arXiv preprint arXiv:2010.01412, 2020.
5. Jiang, Yiding, et al. Fantastic generalization measures and where to find them. arXiv preprint arXiv:1912.02178, 2019.
6. Dziugaite, Gintare Karolina, and Daniel M. Roy. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data. arXiv preprint arXiv:1703.11008, 2017.
7. Keskar, Nitish Shirish, et al. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836, 2016.

The deep learning paradigm

(a) Massive datasets

(b) Inductive bias from large and complex architectures

(c) ERM using stochastic non-convex first-order optimization algorithms (SGD)

Figure: Most common components in a Deep Learning Pipeline

Challenges in DL/ML applications: Robustness (I)

(a) Turtle classified as rifle [4].

(b) Stop sign classified as 45 mph sign [9].

Figure: Natural or human-crafted modifications that trick neural networks used in computer vision tasks

Challenges in DL/ML applications: Robustness (II)

Figure: Understanding the robustness of a classifier in high-dimensional spaces [18]

Challenges in DL/ML applications: Robustness (References I)

1. Dominguez-Olmedo Ricardo et al., On the Adversarial Robustness of Causal Algorithmic Recourse, International Conference on Machine Learning, 2022.
2. Wang Yunjuan et al., Adversarial Robustness is at Odds with Lazy Training, in Advances in Neural Information Processing Systems (NeurIPS), 2022.
3. Zhu Zhenyu et al., Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization), in Advances in Neural Information Processing Systems (NeurIPS), 2022.
4. Xing Yue et al., Why Do Artificially Generated Data Help Adversarial Robustness, Advances in Neural Information Processing Systems (NeurIPS), 2022.
5. D. Krueger et al., Out-of-Distribution Generalization via Risk Extrapolation, in International Conference on Machine Learning, 2021.
6. R. Bhattacharjee, S. Jha, and K. Chaudhuri, Sample Complexity of Robust Linear Classification on Separated Data, in International Conference on Machine Learning, 2021.

Challenges in DL/ML applications: Robustness (References II)

1. F. Tramèr, N. Carlini, W. Brendel, and A. Ma, On Adaptive Attacks to Adversarial Example Defenses, in Advances in Neural Information Processing Systems, 2020.
2. A. D'Amour et al., Underspecification Presents Challenges for Credibility in Modern Machine Learning, arXiv:2011.03395, 2020.
3. L. Chen, Y. Min, M. Zhang, and A. Karbasi, More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models, in International Conference on Machine Learning, 2020.
4. F. Tramer, J. Behrmann, N. Carlini, N. Papernot, and J.-H. Jacobsen, Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturbations, in International Conference on Machine Learning, 2020.
5. E. Rosenfeld, P. K. Ravikumar, and A. Risteski, The Risks of Invariant Risk Minimization, in International Conference on Learning Representations, 2020.
6. T. Li, A. Beirami, M. Sanjabi, and V. Smith, Tilted Empirical Risk Minimization, in International Conference on Learning Representations, 2020.
7. T. Pang, K. Xu, Y. Dong, C. Du, N. Chen, and J. Zhu, Rethinking Softmax Cross-Entropy Loss For Adversarial Robustness, in International Conference on Learning Representations, 2020.
8. Y. Min, L. Chen, and A. Karbasi, The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization, arXiv:2002.11080, 2020.
9. R. Geirhos et al., Shortcut Learning in Deep Neural Networks, in Nature Machine Intelligence, 2020.

Challenges in DL/ML applications: Robustness (References III)

1. A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry, Adversarial Examples Are Not Bugs, They Are Features, in Advances in Neural Information Processing Systems, 2019.
2. J. Gilmer, N. Ford, N. Carlini, and E. Cubuk, Adversarial Examples Are a Natural Consequence of Test Error in Noise, in International Conference on Machine Learning, 2019.
3. Shafahi A., Ronny Huang, W., Studer, C., Feizi, S. and Goldstein, T. Are adversarial examples inevitable?, in International Conference on Learning Representations. 2019.
4. C. Xie and A. Yuille, Intriguing Properties of Adversarial Training at Scale, in International Conference on Learning Representations, 2019.
5. Z. Charles, H. Rosenberg, and D. Papailiopoulos, A Geometric Perspective on the Transferability of Adversarial Directions, in International Conference on Artificial Intelligence and Statistics, 2019.

Challenges in DL/ML applications: Robustness (References IV)

1. A. Fawzi, H. Fawzi, and O. Fawzi, Adversarial vulnerability for any classifier, in Advances in Neural Information Processing Systems, 2018.
2. Raghunathan, A., Steinhardt, J., and Liang, P. S. Semidefinite relaxations for certifying robustness to adversarial examples, in Advances in Neural Information Processing Systems, 2018.
3. L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Ma, Adversarially Robust Generalization Requires More Data, in Advances in Neural Information Processing Systems, 2018.
4. Wong, E. and Kolter, Z. (2018). Provable defenses against adversarial examples via the convex outer adversarial polytope, in International Conference on Machine Learning, 2018.
5. Athalye, A., et al. Synthesizing robust adversarial examples, in International Conference on Machine Learning, 2018.
6. Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., and Song, D. Robust physical-world attacks on deep learning visual classification, in IEEE Conference on Computer Vision and Pattern Recognition, 2018.
7. J.-H. Jacobsen, J. Behrmann, R. Zemel, and M. Bethge, Excessive Invariance Causes Adversarial Vulnerability, in International Conference on Learning Representations, 2018.
8. Madry, Aleksander and Makelov, Aleksandar and Schmidt, Ludwig and Tsipras, Dimitris and Vladu, Adrian. Towards Deep Learning Models Resistant to Adversarial Attacks, in International Conference on Learning Representations, 2018.
9. Huang, X., Kwiatkowska, M., Wang, S., and Wu, M. Safety verification of deep neural networks, in Computer Aided Verification 2017.

Challenges in DL/ML applications: Surveillance/Privacy/Manipulation

Psychographics: the behavioural analysis that helped Cambridge Analytica know voters' minds

Prof. Michael Wade

Figure: Political and societal concerns about some DL/ML applications

Challenges in DL/ML applications: Surveillance/Privacy/Manipulation (References)

1. Ganev Georgi et al. Robin Hood and Matthew Effects: Differential Privacy Has Disparate Impact on Synthetic Data, in International Conference on Machine Learning, 2022.
2. Xu, D., Du, W., Wu, X. Removing disparate impact on model accuracy in differentially private stochastic gradient descent, in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2021.
3. Tran, C., Fioretto, F., Van Hentenryck, P. Differentially private and fair deep learning: A lagrangian dual approach, arXiv:2009.12562, 2020.
4. Pujol, D., McKenna, R., Kuppam, S., Hay, M., Machanavajjhala, A., Miklau, G. (textitFair decision making using privacy-protected data, in Proceedings of Fairness, Accountability, and Transparency (FAT), 2020.
5. Bu, Z., Dong, J., Long, Q., Su, W. J. Deep learning with Gaussian differential privacy, Harvard data science review, 2020.
6. Bagdasaryan, E., Poursaeed, O., Shmatikov, V. Differential privacy has disparate impact on model accuracy, in Neural Information Processing Systems (NeurIPS), 2019.
7. Sreenu, G., Saleem Durai, M.A. Intelligent video surveillance: a review through deep learning techniques for crowd analysis, J Big Data 6, 48. 2019.
8. Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L. Deep learning with differential privacy, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016.
9. O'Neil, C., Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy, Broadway Books, 2016.
10. Dwork, C., and Roth, A. The Algorithmic Foundations of Differential Privacy, in Foundations and Trends in Theoretical Computer Science, 9, 2013.

Challenges in DL/ML applications: Fairness

(a) Racist classifier

Figure: Unfair classifiers due to biased or unbalanced datasets/algorithms

Challenges in DL/ML applications: Fairness (References I)

1. Nilforoshan Hamed et al. Causal Conceptions of Fairness and their Consequences, in International Conference on Machine Learning (ICML), 2022.
2. Jacobs, A. Z., Wallach, H. Measurement and fairness, in Proceedings of Fairness, Accountability, and Transparency (FAT), 2021.
3. Ramaswamy, V. V., Kim, S. S., Russakovsky, O. Fair attribute classification through latent space de-biasing, in Proceedings of the Conference on Computer Vision and Pattern Recognition, 2021.
4. Jalal, A., Karmalkar, S., Hoffmann, J., Dimakis, A., Price, E. Fairness for Image Generation with Uncertain Sensitive Attributes, in International Conference on Machine Learning (ICML), 2021.
5. Rolf, E., Simchowitz, M., Dean, S., Liu, L. T., Bjorkegren, D., Hardt, M., Blumenstock, J. Balancing competing objectives with noisy data: Score-based classifiers for welfare-aware machine learning, in International Conference on Machine Learning (ICML), 2021.
6. Wang, A., Russakovsky, O. Directional bias amplification, in International Conference on Machine Learning (ICML), 2021.
7. Jia, S., Meng, T., Zhao, J., Chang, K. W. Mitigating gender bias amplification in distribution by posterior regularization, in Annual Meeting of the Association for Computational Linguistics (ACL), 2020.
8. Mitchell, M., Baker, D., Moorosi, N., Denton, E., Hutchinson, B., Hanna, A., Morgenstern, J. Diversity and inclusion metrics in subset selection, in Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 2020.
9. Yang, K., Qinami, K., Fei-Fei, L., Deng, J., Russakovsky, O. Towards fairer datasets: Filtering and balancing the distribution of the people subtree in the imagenet hierarchy, in Proceedings of Fairness, Accountability, and Transparency (FAT), 2020.
10. Hanna, A., Denton, E., Smart, A., Smith-Loud, J. Towards a critical race methodology in algorithmic fairness, in Proceedings of Fairness, Accountability, and Transparency (FAT), 2020.

Challenges in DL/ML applications: Fairness (References II)

1. Barocas, S. Hardt, M. Narayanan, Arvind. Fairness in Machine Learning Limitations and Opportunities. https://fairmlbook.org/pdf/fairmlbook.pdf, 2020.
2. Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science, 2019.
3. Hoyle, A., Wallach, H., Augenstein, I., Cotterell, R. Unsupervised discovery of gendered language through latent-variable modeling, arXiv:1906.04760, 2019.
4. Noble, S.U. Algorithms of Oppression: How Search Engines Reinforce Racism, NYU Press, 2018.
5. Campolo, A., Sanfilippo, M., Whittaker, M., Crawford, K. Al Now 2017 Report. AI Now Institute at New York University, 2017.
6. Munoz, C., Smith, M., and Patil, D. Big Data: A Report on Algorithmic Systems, Opportunity, and Civil Rights. Executive Office of the President. The White House, 2016.
7. Hardt, M. How Big Data Is Unfair. https://medium.com/@mrtz/how-big-data-is-unfair-9aa544d739de 2014.
8. Pedreshi, D., Ruggieri, S. and Turini, F. Discrimination-Aware Data Mining. Proc. 14th SIGKDD. ACM 2008.
9. Friedman, B. and Nissenbaum, H. Bias in Computer Systems. ACM Transactions on Information Systems (TOIS), 1996.

Challenges in DL/ML applications: Interpretability

Figure: Performance vs Interpretability trade-offs in DL/ML

Challenges in DL/ML applications: Interpretability (References I)

1. Yin Kayo et al Interpreting Language Models with Contrastive Explanations, arXiv:2202.10419, 2022.
2. C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong, Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges, arXiv:2103.11251, 2021.
3. F. Poursabzi-Sangdeh, D. G. Goldstein, J. M. Hofman, J. W. Wortman Vaughan, and H. Wallach, Manipulating and Measuring Model Interpretability, in Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, New York, NY, USA: Association for Computing Machinery, 2021, pp. 1-52.
4. J. Lee, S. Park, and J. Shin, Learning Bounds for Risk-sensitive Learning, arXiv:2006.08138. 2020.
5. H. Kaur, H. Nori, S. Jenkins, R. Caruana, H. Wallach, and J. Wortman Vaughan, Interpreting Interpretability: Understanding Data Scientists' Use of Interpretability Tools for Machine Learning, in Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 2020.
6. P. Hase and M. Bansal, Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?, in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020.
7. L. Semenova, C. Rudin, and R. Parr, A study in Rashomon curves and volumes: A new perspective on generalization and model simplicity in machine learning, arXiv:1908.01755, 2019.
8. C. Rudin and J. Radin, Why Are We Using Black Box Models in AI When We Don't Need To? A Lesson From An Explainable AI Competition, in Harvard Data Science Review, 2019.

Challenges in DL/ML applications: Interpretability (References II)

1. C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, in Nat Mach Intell, 2019.
2. S. Hooker, D. Erhan, P.-J. Kindermans, and B. Kim, A Benchmark for Interpretability Methods in Deep Neural Networks, 2018.
3. S. Barocas, M. Hardt, and A. Narayanan, Fairness in machine learning, in Nips tutorial, 2017.
4. Sundararajan, Mukund and Taly, Ankur and Yan, Qiqi. Axiomatic Attribution for Deep Networks, in International Conference on Machine Learning (ICML), 2017.
5. Shrikumar, Avanti and Greenside, Peyton and Kundaje, Anshul. Learning Important Features Through Propagating Activation Differences, in International Conference on Machine Learning (ICML), 2017.
6. Ribeiro, Marco and Singh, Sameer and Guestrin, Carlos. Why Should I Trust You?": Explaining the Predictions of Any Classifier., KDD 2016.
7. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, arXiv:1312.6034, 2013.
8. Baehrens, David and Schroeter, Timon and Harmeling, Stefan and Kawanabe, Motoaki and Hansen, Katja and Mueller, Klaus-Robert. Simonyan, Karen and Vedaldi, Andrea and Zisserman, Andrew. How to Explain Individual Classification Decisions, JMLR, 2010.

Challenges in DL/ML applications: Energy efficiency and cost

Figure: Efficiency and Scalability concerns in DL/ML

Challenges in DL/ML applications: Energy efficiency and cost (References)

1. Gutiérrez María et al. Analysing the energy impact of different optimisations for machine learning models, in International Conference on ICT for Sustainability (ICT4S), 2022.
2. E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?, in Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 2021.
3. J. Launay et al. Hardware Beyond Backpropagation: a Photonic Co-Processor for Direct Feedback Alignment, arXiv:2012.06373, 2020.
4. J. Launay, I. Poli, F. Boniface, and F. Krzakala, Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures, in Advances in Neural Information Processing Systems (NeurIPS), 2020.
5. Goel, A., Tung, C., Lu, Y. H., and Thiruvathukal, G. K. A Survey of Methods for Low-Power Deep Learning and Computer Vision, arXiv preprint arXiv:2003.11066, 2020.
6. Conti, F., Rusci, M., and Benini, L. The Memory Challenge in Ultra-Low Power Deep Learning, in NANO-CHIPS 2030, 2020.
7. García-Marín, E., Rodrigues, C. F., Riley, G., and Grahn, H. Estimation of energy consumption in machine learning, in Journal of Parallel and Distributed Computing, 2019.
8. Strubell, E., Ganesh, A., and McCallum, A. Energy and policy considerations for deep learning in NLP, arXiv preprint arXiv:1906.02243, 2019.

Wrap up!

- Learning deep continues!

References I

[1] Zeyuan Allen-Zhu.
Natasha: Faster non-convex stochastic optimization via strongly non-convex parameter.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 89-97. PMLR, 06-11 Aug 2017.
(Cited on page 21.)
[2] Zeyuan Allen-Zhu.
Katyusha x : Practical momentum method for stochastic sum-of-nonconvex optimization.
In ICML, 2018.
(Cited on page 20.)
[3] Zeyuan Allen-Zhu.
Katyusha x: Simple momentum method for stochastic sum-of-nonconvex optimization.
In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 179-185. PMLR, 10-15 Jul 2018. (Cited on page 17.)
[4] Anish Athalye, Nicholas Carlini, and David Wagner.
Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples.
In International Conference on Machine Learning, pages 274-283. PMLR, 2018.
(Cited on page 47.)

References II

[5] George Cybenko.
Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303-314, 1989.
(Cited on page 34.)
[6] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.
Saga: A fast incremental gradient method with support for non-strongly convex composite objectives.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 1646-1654. Curran Associates, Inc., 2014.
(Cited on pages 8, 9, and 14.)
[7] Benjamin Dubois-Taine, Sharan Vaswani, Reza Babanezhad, Mark Schmidt, and Simon Lacoste-Julien. Svrg meets adagrad: Painless variance reduction, 2021.
(Cited on page 20.)
[8] John Duchi, Elad Hazan, and Yoram Singer.
Adaptive subgradient methods for online learning and stochastic optimization.
J. Mach. Learn. Res., 12:2121-2159, July 2011.
(Cited on page 20.)

References III

[9] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song.
Robust physical-world attacks on deep learning visual classification.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1625-1634, 2018.
(Cited on page 47.)
[10] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang.
SPIDER: near-optimal non-convex optimization via stochastic path-integrated differential estimator.
In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 687-697, 2018.
(Cited on pages 17, 18, 20, and 21.)
[11] Rie Johnson and Tong Zhang.
Accelerating stochastic gradient descent using predictive variance reduction.
In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 315-323. Curran Associates, Inc., 2013.
(Cited on page 11.)

References IV

[12] Andrej Karpathy.
What I learned from competing against a ConvNet on ImageNet.
(Cited on page 39.)
[13] Ali Kavis, Stratis Skoulakis, Kimon Antonakopoulos, Leello Tadesse Dadi, and Volkan Cevher.
Adaptive stochastic variance reduction for non-convex finite-sum minimization.
Advances In Neural Information Processing Systems 36 (NeurIPS 2022), (CONF), 2022.
(Cited on pages 19 and 21.)
[14] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the Loss Landscape of Neural Nets.
In Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. (Cited on page 44.)
[15] Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtarik.
Page: A simple and optimal probabilistic gradient estimator for nonconvex optimization.
In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 6286-6295. PMLR, 18-24 Jul 2021.
(Cited on page 17.)

References V

[16] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola.
Stochastic frank-wolfe methods for nonconvex optimization.
arXiv preprint arXiv:1607.08254, 2016.
(Cited on page 17.)
[17] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. 115(3):211-252, 2015.
(Cited on page 39.)
[18] Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are adversarial examples inevitable? In 7th International Conference on Learning Representations (ICLR 2019), 2019. (Cited on page 48.)
[19] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh.
Spiderboost and momentum: Faster stochastic variance reduction algorithms. In Advances in Neural Information Processing Systems, 2019. (Cited on page 17.)

References VI

[20] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh.
Spiderboost and momentum: Faster variance reduction algorithms.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alche Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
(Cited on page 20.)
[21] Lin Xiao and Tong Zhang.
A proximal stochastic gradient method with progressive variance reduction.
SIAM Journal on Optimization, 24, 032014.
(Cited on page 11.)
[22] Guangzeng Xie, Luo Luo, and Zhihua Zhang.
A general analysis framework of lower complexity bounds for finite-sum optimization, 2019.
(Cited on page 17.)
[23] Dongruo Zhou and Quanquan Gu.
Lower bounds for smooth nonconvex finite-sum optimization.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 7574-7583. PMLR, 09-15 Jun 2019.
(Cited on pages 17 and 21.)

