Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 7: Introduction to proximal-operators. Conditional gradient methods.
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2023)

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- Composite minimization
- Proximal gradient methods
- Introduction to Frank-Wolfe method

Recall sparse regression in generalized linear models (GLMs)

Problem (Sparse regression in GLM)

Our goal is to estimate $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ given $\left\{b_{i}\right\}_{i=1}^{n}$ and $\left\{\mathbf{a}_{i}\right\}_{i=1}^{n}$, knowing that the likelihood function at y_{i} given \mathbf{a}_{i} and \mathbf{x}^{\natural} is given by $L\left(\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle, b_{i}\right)$, and that \mathbf{x}^{\natural} is sparse.

Optimization formulation

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\{\underbrace{-\sum_{i=1}^{n} \log L\left(\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle, b_{i}\right)}_{f(\mathbf{x})}+\underbrace{\rho_{n}\|\mathbf{x}\|_{1}}_{g(\mathbf{x})}\}
$$

where $\rho_{n}>0$ is a parameter which controls the strength of sparsity regularization.

Theorem (cf. [13] for details)

Under some technical conditions, there exists $\left\{\rho_{i}\right\}_{i=1}^{\infty}$ such that with high probability, the following holds

$$
\left\|\mathbf{x}^{\star}-\mathbf{x}^{\natural}\right\|_{2}^{2}=\mathcal{O}\left(\frac{s \log p}{n}\right), \quad \operatorname{supp} \mathbf{x}^{\star}=\operatorname{supp} \mathbf{x}^{\natural}
$$

$$
\text { Recall } M L:\left\|\mathbf{x}_{M L}-\mathbf{x}^{\natural}\right\|_{2}^{2}=\mathcal{O}\left(\frac{p}{n}\right) .
$$

Sparse inverse covariance estimation

Problem (Graphical model selection)

Given a data set $\mathcal{D}:=\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{n}\right\}$, where \mathbf{x}_{i} is a Gaussian random variable. Let Σ be the covariance matrix corresponding to the graphical model of the Gaussian Markov random field. Our goal is to learn a sparse precision matrix X (i.e., the inverse covariance matrix Σ^{-1}) that captures the Markov random field structure.

Optimization formulation [16]

$$
\begin{equation*}
\min _{X \succ 0}\{\underbrace{\operatorname{tr}(\Sigma X)-\log \operatorname{det}(X)}_{f(\mathbf{x})}+\underbrace{\rho_{n}\|\operatorname{vec}(X)\|_{1}}_{g(\mathbf{x})}\} \tag{1}
\end{equation*}
$$

where $X \succ 0$ means that X is symmetric and positive definite and $\rho_{n}>0$ is a regularization parameter and vec is the vectorization operator. Let X^{\star} be the minimizer of (1), under some technical conditions, there exists a ρ_{n} such that $\left\|X^{\star}-\Sigma^{-1}\right\|_{2}^{2}=\mathcal{O}\left(\min \frac{1}{n}\left\{d^{2} \log p,(s+p) \log p\right\}\right)$ where d is the maximum node degree.

Composite convex minimization

Problem (Composite convex minimization)

$$
\begin{equation*}
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=f(\mathbf{x})+g(\mathbf{x})\} \tag{2}
\end{equation*}
$$

- f and g are both proper, closed, and convex.
- $\operatorname{dom}(F):=\operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$ and $-\infty<F^{\star}<+\infty$.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(F): F\left(\mathrm{x}^{\star}\right)=F^{\star}\right\}$ is nonempty.

Remarks: $\quad \circ$ Without loss of generality, f is smooth and g is non-smooth in the sequel.

- By Moreau-Rockafellar Theorem, we have $\partial F=\partial(f+g)=\partial f+\partial g=\nabla f+\partial g$.
- Subgradient method attains a $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ rate.
- Without g, accelerated gradient method attains a $\mathcal{O}\left(\frac{1}{T^{2}}\right)$ rate.

Composite convex minimization

Problem (Composite convex minimization)

$$
\begin{equation*}
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=f(\mathbf{x})+g(\mathbf{x})\} \tag{2}
\end{equation*}
$$

- f and g are both proper, closed, and convex.
- $\operatorname{dom}(F):=\operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$ and $-\infty<F^{\star}<+\infty$.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(F): F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\}$ is nonempty.

Remarks: $\quad \circ$ Without loss of generality, f is smooth and g is non-smooth in the sequel.

- By Moreau-Rockafellar Theorem, we have $\partial F=\partial(f+g)=\partial f+\partial g=\nabla f+\partial g$.
- Subgradient method attains a $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$ rate.
- Without g, accelerated gradient method attains a $\mathcal{O}\left(\frac{1}{T^{2}}\right)$ rate.

Can we design algorithms that achieve a faster convergence rate for composite convex minimization?

Designing algorithms for finding a solution x^{\star}

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$

$$
f(\mathbf{x}) \leq f(\mathbf{y})+\nabla f(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}
$$

Designing algorithms for finding a solution x^{\star}

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$

$$
f(\mathbf{x}) \leq f(\mathbf{y})+\nabla f(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}
$$

Quadratic majorizer for $f+g$

When f has L-Lipschitz continuous gradient, we have, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$

$$
f(\mathbf{x})+g(\mathbf{x}) \leq f(\mathbf{y})+\nabla f(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}+g(\mathbf{x}):=P_{L}(\mathbf{x}, \mathbf{y})
$$

Designing algorithms for finding a solution x^{\star}

Quadratic majorizer for f
When f has L-Lipschitz continuous gradient, we have, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$

$$
f(\mathbf{x}) \leq f(\mathbf{y})+\nabla f(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}
$$

Quadratic majorizer for $f+g$

When f has L-Lipschitz continuous gradient, we have, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$

$$
f(\mathbf{x})+g(\mathbf{x}) \leq f(\mathbf{y})+\nabla f(\mathbf{y})^{T}(\mathbf{x}-\mathbf{y})+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|_{2}^{2}+g(\mathbf{x}):=P_{L}(\mathbf{x}, \mathbf{y})
$$

Majorization-minimization for $f+g$

$$
\begin{aligned}
\mathbf{x}^{k+1} & =\arg \min _{\mathbf{x} \in \mathbb{R}^{p}} P_{L}\left(\mathbf{x}, \mathbf{x}^{k}\right) \\
& =\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{g(\mathbf{x})+\frac{L}{2}\left\|\mathbf{x}-\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)\right\|^{2}\right\}
\end{aligned}
$$

Geometric illustration

A short detour: Proximal-point operators

Definition (Proximal operator [18])
Let $g \in \mathcal{F}\left(\mathbb{R}^{p}\right), \mathbf{x} \in \mathbb{R}^{p}$ and $\lambda>0$. The proximal operator (or prox-operator) of g is defined as:

$$
\begin{equation*}
\operatorname{prox}_{\lambda g}(\mathbf{y}) \equiv \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{g(\mathbf{x})+\frac{1}{2 \lambda}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}\right\} \tag{3}
\end{equation*}
$$

A short detour: Proximal-point operators

Definition (Proximal operator [18])

Let $g \in \mathcal{F}\left(\mathbb{R}^{p}\right), \mathbf{x} \in \mathbb{R}^{p}$ and $\lambda>0$. The proximal operator (or prox-operator) of g is defined as:

$$
\begin{equation*}
\operatorname{prox}_{\lambda g}(\mathbf{y}) \equiv \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{g(\mathbf{x})+\frac{1}{2 \lambda}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}\right\} \tag{3}
\end{equation*}
$$

Remarks:

- The proximal operator of $\frac{1}{L} g$ evaluated at $\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)$ is given by

$$
\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{g(\mathbf{x})+\frac{L}{2}\left\|\mathbf{x}-\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)\right\|^{2}\right\} .
$$

- This prox-operator minimizes the majorizing bound:

$$
f(\mathbf{x})+g(\mathbf{x}) \leq f\left(\mathbf{x}^{k}\right)+\nabla f\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)+\frac{L}{2}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{2}^{2}+g(\mathbf{x})
$$

- Rule of thumb: Replace gradient steps with proximal gradient steps!

Tractable prox-operators

Processing non-smooth terms in (2)

- We handle the nonsmooth term g in (2) using its proximal operator.
- However, computing proximal operator prox $_{g}$ of a general convex function g

$$
\operatorname{prox}_{g}(\mathbf{y}) \equiv \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{g(\mathbf{x})+\frac{1}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}\right\} .
$$

can be computationally demanding.

Definition (Tractable proximity)

- Given $g \in \mathcal{F}\left(\mathbb{R}^{p}\right)$. We say that g is proximally tractable if prox_{g} defined by (3) can be computed efficiently.
- "efficiently" $=$ \{closed form solution, low-cost computation, polynomial time\}.

Tractable prox-operators

Example

- For separable functions, the prox-operator can be efficient. When $g(\mathbf{x}):=\|\mathbf{x}\|_{1}=\sum_{i=1}^{p}\left|\mathbf{x}_{i}\right|$, we have

$$
\operatorname{prox}_{\lambda g}(\mathbf{x})=\operatorname{sign}(\mathbf{x}) \otimes \max \{|\mathbf{x}|-\lambda, 0\}
$$

- Sometimes, we can compute the prox-operator via basic algebra. When $g(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}$, we have

$$
\operatorname{prox}_{\lambda g}(\mathbf{x})=\left(\mathbb{I}+\lambda \mathbf{A}^{T} \mathbf{A}\right)^{-1}\left(\mathbf{x}+\lambda \mathbf{A}^{T} \mathbf{b}\right)
$$

F For the indicator functions of simple sets, e.g., $g(\mathbf{x}):=\delta \mathcal{X}(\mathbf{x})$, the prox-operator is the projection operator

$$
\operatorname{prox}_{\lambda g}(\mathbf{x}):=\pi_{\mathcal{X}}(\mathbf{x})
$$

where $\pi_{\mathcal{X}}(\mathbf{x})$ denotes the projection of \mathbf{x} onto \mathcal{X}. For instance, when $\mathcal{X}=\left\{\mathbf{x}:\|\mathbf{x}\|_{1} \leq \lambda\right\}$, the projection can be obtained efficiently.

Computational efficiency - Example

Proximal operator of quadratic function

The proximal operator of a quadratic function $g(\mathbf{x}):=\frac{1}{2}\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}$ is defined as

$$
\begin{equation*}
\operatorname{prox}_{\lambda g}(\mathbf{x}):=\arg \min _{\mathbf{y} \in \mathbb{R}^{p}}\left\{\frac{1}{2}\|\mathbf{A y}-\mathbf{b}\|_{2}^{2}+\frac{1}{2 \lambda}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}\right\} . \tag{4}
\end{equation*}
$$

How do we compute $\operatorname{prox}_{\lambda g}(\mathbf{x})$?
The derivation: \circ The optimality condition implies that the solution of (4) should satisfy the following:

$$
\mathbf{A}^{T}(\mathbf{A} \mathbf{y}-\mathbf{b})+\lambda^{-1}(\mathbf{y}-\mathbf{x})=0
$$

- Setting $\mathbf{y}=\operatorname{prox}_{\lambda g}(\mathbf{x})$, we obtain

$$
\operatorname{prox}_{\lambda g}(\mathbf{x})=\left(\mathbb{I}+\lambda \mathbf{A}^{T} \mathbf{A}\right)^{-1}\left(\mathbf{x}+\lambda \mathbf{A}^{T} \mathbf{b}\right)
$$

Remarks: $\quad \circ$ The Woodbury matrix identity can be useful: $\left(\mathbb{I}+\lambda \mathbf{A}^{T} \mathbf{A}\right)^{-1}=\mathbb{I}-\mathbf{A}^{T}\left(\lambda^{-1} \mathbb{I}+\mathbf{A} \mathbf{A}^{T}\right)^{-1} \mathbf{A}$

- When $\mathbf{A}^{T} \mathbf{A}$ is efficiently diagonalizable, i.e., $\mathbf{A}^{T} \mathbf{A}:=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{T}$, such that
- \mathbf{U} is a unitary matrix, i.e., $\mathbf{U U}^{T}=\mathbf{U}^{T} \mathbf{U}=\mathbb{I}$, and $\boldsymbol{\Lambda}$ is a diagonal matrix.
- $\operatorname{prox}_{\lambda g}(\mathbf{x})=\mathbf{U}(\mathbb{I}+\lambda \boldsymbol{\Lambda})^{-1} \mathbf{U}^{T}(\mathbf{x}+\lambda \mathbf{A} \mathbf{b})$.

A non-exhaustive list of proximal tractability functions

Name	Function	Proximal operator	Complexity				
ℓ_{1}-norm	$f(\mathbf{x}):=\\|\mathbf{x}\\|_{1}$	$\operatorname{prox}_{\lambda f}(\mathbf{x})=\operatorname{sign}(\mathbf{x}) \otimes[\|\mathbf{x}\|-\lambda]_{+}$	$\mathcal{O}(p)$				
ℓ_{2}-norm	$f(\mathbf{x}):=\\|\mathbf{x}\\|_{2}$	$\operatorname{prox}_{\lambda f}(\mathbf{x})=\left[1-\frac{\lambda}{\\|\mathbf{x}\\|_{2}}\right]_{+} \mathbf{x}$	$\mathcal{O}(p)$				
Support function Box indicator	$\begin{aligned} & f(\mathbf{x}):=\max _{\mathbf{y} \in \mathcal{C}} \mathbf{x}^{T} \mathbf{y} \\ & f(\mathbf{x}):=\delta_{[\mathbf{a}, \mathbf{b}]}(\mathbf{x}) \end{aligned}$	$\begin{aligned} & \operatorname{prox}_{\lambda f}(\mathbf{x})=\mathbf{x}-\lambda \pi_{\mathcal{C}}(\mathbf{x}) \\ & \operatorname{prox}_{\lambda f}(\mathbf{x})=\pi_{[\mathbf{a}, \mathbf{b}]}(\mathbf{x}) \end{aligned}$	$\mathcal{O}(p)$				
Positive semidefinite cone indicator	$f(\mathbf{X}):=\delta_{\mathbb{S}_{+}^{p}}(\mathbf{X})$	$\begin{aligned} & \operatorname{prox}_{\lambda f}(\mathbf{X})=\mathbf{U}[\Sigma]+\mathbf{U}^{T}, \text { where } \mathbf{X}= \\ & \mathbf{U} \Sigma \mathbf{U}^{T} \end{aligned}$	$\mathcal{O}\left(p^{3}\right)$				
Hyperplane indicator	$\begin{aligned} & f(\mathbf{x}):=\delta_{\mathcal{X}}(\mathbf{x}), \mathcal{X}:= \\ & \left\{\mathbf{x}: \mathbf{a}^{T} \mathbf{x}=b\right\} \end{aligned}$	$\begin{aligned} & \operatorname{prox}_{\lambda f}(\mathbf{x})=\pi_{\mathcal{X}}(\mathbf{x})=\mathbf{x}+ \\ & \left(\frac{b-\mathbf{a}^{T} \mathbf{x}}{\\|\mathbf{a}\\|_{2}}\right) \mathbf{a} \end{aligned}$	$\mathcal{O}(p)$				
Simplex indicator	$\begin{aligned} & f(\mathbf{x})=\delta \mathcal{X}(\mathbf{x}), \mathcal{X}:= \\ & \left\{\mathbf{x}: \mathbf{x} \geq 0, \mathbf{1}^{T} \mathbf{x}=1\right\} \end{aligned}$	$\operatorname{prox}_{\lambda f}(\mathbf{x})=(\mathbf{x}-\nu \mathbf{1})$ for some $\nu \in \mathbb{R}$, which can be efficiently calculated	$\tilde{\mathcal{O}}(p)$				
Convex quadratic	$f(\mathbf{x}):=\frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}$	$\operatorname{prox}_{\lambda f}(\mathbf{x})=(\lambda \mathbb{I}+\mathbf{Q})^{-1} \mathbf{x}$	$\begin{aligned} & \mathcal{O}(p \log p) \rightarrow \\ & \mathcal{O}\left(p^{3}\right) \end{aligned}$				
Square ℓ_{2}-norm	$f(\mathbf{x}):=\frac{1}{2}\\|\mathbf{x}\\|_{2}^{2}$	$\operatorname{prox}_{\lambda f}(\mathbf{x})=\frac{1}{1+\lambda} \mathbf{x}$	$\mathcal{O}(p)$				
log-function	$f(\mathbf{x}):=-\log (x)$	$\operatorname{prox}_{\lambda f}(x)=\frac{1}{2}\left(\sqrt{x^{2}+4 \lambda}+x\right)$	$\mathcal{O}(1)$				
log det-function	$f(\mathbf{x}):=-\log \operatorname{det}(\mathbf{X})$	$\operatorname{prox}_{\lambda f}(\mathbf{X})$ is the log-function prox applied to the individual eigenvalues of \mathbf{X}	$\mathcal{O}\left(p^{3}\right)$				

Remarks:

- Here: $[\mathbf{x}]_{+}:=\max \{0, \mathbf{x}\}$ and $\delta \mathcal{X}$ is the indicator function of the convex set \mathcal{X}.
- sign is the sign function, \mathbb{S}_{+}^{p} is the cone of symmetric positive semidefinite matrices.
- For more functions, see $[5,15]$.

Solution methods

Composite convex minimization

$$
\begin{equation*}
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=f(\mathbf{x})+g(\mathbf{x})\} . \tag{5}
\end{equation*}
$$

Choice of numerical solution methods

- Solve (5) = Find $\mathbf{x}^{k} \in \mathbb{R}^{p}$ such that

$$
F\left(\mathbf{x}^{k}\right)-F^{\star} \leq \varepsilon
$$

for a given tolerance $\varepsilon>0$.

- Oracles: We can use one of the following configurations (oracles):

1. $\partial f(\cdot)$ and $\partial g(\cdot)$ at any point $\mathbf{x} \in \mathbb{R}^{p}$.
2. $\nabla f(\cdot)$ and $\operatorname{prox}_{\lambda g}(\cdot)$ at any point $\mathbf{x} \in \mathbb{R}^{p}$.
3. $\operatorname{prox}_{\lambda f}$ and $\operatorname{prox}_{\lambda g}(\cdot)$ at any point $\mathbf{x} \in \mathbb{R}^{p}$.
4. $\nabla f(\cdot)$, inverse of $\nabla^{2} f(\cdot)$ and $\operatorname{prox}_{\lambda g}(\cdot)$ at any point $\mathbf{x} \in \mathbb{R}^{p}$.

Remark: Using different oracle leads to different types of algorithms.

Proximal-gradient algorithm

Basic proximal-gradient scheme (ISTA)

1. Choose $\mathbf{x}^{0} \in \operatorname{dom}(F)$ arbitrarily as a starting point. 2. For $k=0,1, \cdots$, generate a sequence $\left\{\mathbf{x}^{k}\right\}_{k>0}$ as:

$$
\mathbf{x}^{k+1}:=\operatorname{prox}_{\alpha g}\left(\mathbf{x}^{k}-\alpha \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

where $\alpha:=\frac{1}{L}$.

Proximal-gradient algorithm

Basic proximal-gradient scheme (ISTA)

1. Choose $\mathbf{x}^{0} \in \operatorname{dom}(F)$ arbitrarily as a starting point.
2. For $k=0,1, \cdots$, generate a sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ as:

$$
\mathbf{x}^{k+1}:=\operatorname{prox}_{\alpha g}\left(\mathbf{x}^{k}-\alpha \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

where $\alpha:=\frac{1}{L}$.

Theorem (Convergence of ISTA [2])

Let $\left\{\mathrm{x}^{k}\right\}$ be generated by ISTA. Then:

$$
F\left(\mathbf{x}^{k}\right)-F^{\star} \leq \frac{L_{f}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}^{2}}{2(k+1)}
$$

The worst-case complexity to reach $F\left(\mathbf{x}^{k}\right)-F^{\star} \leq \varepsilon$ of (ISTA) is $\mathcal{O}\left(\frac{L_{f} R_{0}^{2}}{\varepsilon}\right)$, where $R_{0}:=\max _{\mathbf{x}^{\star} \in \mathcal{S}^{\star}}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}$.

- Oracles: $\operatorname{prox}_{\alpha g}(\cdot)$ and $\nabla f(\cdot)$.
- Compared to the subgradient gradient method, the rate improves at the cost of prox-computation.

Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)

1. Choose $\mathbf{x}^{0} \in \operatorname{dom}(F)$ arbitrarily as a starting point.
2. Set $\mathbf{y}^{0}:=\mathbf{x}^{0}$ and $t_{0}:=1, \alpha:=L^{-1}$.
3. For $k=0,1, \ldots$, generate two sequences $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ and $\left\{\mathbf{y}^{k}\right\}_{k \geq 0}$ as:

$$
\begin{cases}\mathbf{x}^{k+1} & :=\operatorname{prox}_{\alpha g}\left(\mathbf{y}^{k}-\alpha \nabla f\left(\mathbf{y}^{k}\right)\right) \\ t_{k+1} & :=\frac{1}{2}\left(1+\sqrt{4 t_{k}^{2}+1}\right) \\ \mathbf{y}^{k+1} & :=\mathbf{x}^{k+1}+\frac{t_{k}-1}{t_{k+1}}\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)\end{cases}
$$

Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)

1. Choose $\mathbf{x}^{0} \in \operatorname{dom}(F)$ arbitrarily as a starting point.
2. Set $\mathbf{y}^{0}:=\mathbf{x}^{0}$ and $t_{0}:=1, \alpha:=L^{-1}$.
3. For $k=0,1, \ldots$, generate two sequences $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ and $\left\{\mathbf{y}^{k}\right\}_{k \geq 0}$ as:

$$
\left\{\begin{aligned}
\mathbf{x}^{k+1} & :=\operatorname{prox}_{\alpha g}\left(\mathbf{y}^{k}-\alpha \nabla f\left(\mathbf{y}^{k}\right)\right) \\
t_{k+1} & :=\frac{1}{2}\left(1+\sqrt{4 t_{k}^{2}+1}\right) \\
\mathbf{y}^{k+1} & :=\mathbf{x}^{k+1}+\frac{t_{k}-1}{t_{k+1}}\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)
\end{aligned}\right.
$$

Theorem (Convergence of FISTA [2])

Let $\left\{\mathrm{x}^{k}\right\}$ be generated by FISTA. Then:

$$
F\left(\mathbf{x}^{k}\right)-F^{\star} \leq \frac{2 L_{f}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}^{2}}{(k+1)^{2}}
$$

The worst-case complexity to reach $F\left(\mathbf{x}^{k}\right)-F^{\star} \leq \varepsilon$ of (FISTA) is $\mathcal{O}\left(R_{0} \sqrt{\frac{L_{f}}{\varepsilon}}\right), R_{0}:=\max _{\mathbf{x}^{\star} \in \mathcal{S}^{\star}}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}$.

Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)

1. Choose $\mathbf{x}^{0} \in \operatorname{dom}(F)$ arbitrarily as a starting point.
2. Set $\mathbf{y}^{0}:=\mathbf{x}^{0}$ and $t_{0}:=1, \alpha:=L^{-1}$.
3. For $k=0,1, \ldots$, generate two sequences $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ and $\left\{\mathbf{y}^{k}\right\}_{k \geq 0}$ as:

$$
\begin{cases}\mathbf{x}^{k+1} & :=\operatorname{prox}_{\alpha g}\left(\mathbf{y}^{k}-\alpha \nabla f\left(\mathbf{y}^{k}\right)\right) \\ t_{k+1} & :=\frac{1}{2}\left(1+\sqrt{4 t_{k}^{2}+1}\right) \\ \mathbf{y}^{k+1} & :=\mathbf{x}^{k+1}+\frac{t_{k}-1}{t_{k+1}}\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)\end{cases}
$$

Remark: From $\mathcal{O}\left(\frac{L_{f} R_{0}^{2}}{\epsilon}\right)$ to $\mathcal{O}\left(R_{0} \sqrt{\frac{L_{f}}{\epsilon}}\right)$ iterations at almost no additional cost!.

Complexity per iteration

- One gradient $\nabla f\left(\mathbf{y}^{k}\right)$ and one prox-operator of g;
- 8 arithmetic operations for t_{k+1} and γ_{k+1};
- 2 more vector additions, and one scalar-vector multiplication.

The cost per iteration is almost the same as in gradient scheme if proximal operator of g is efficient.

Example 1: ℓ_{1}-regularized least squares

Problem (ℓ_{1}-regularized least squares)

Given $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$, solve:

$$
\begin{equation*}
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{F(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\lambda\|\mathbf{x}\|_{1}\right\} \tag{6}
\end{equation*}
$$

where $\lambda>0$ is a regularization parameter.

Complexity per iterations

- Evaluating $\nabla f\left(\mathbf{x}^{k}\right)=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right)$ requires one $\mathbf{A x}$ and one $\mathbf{A}^{T} \mathbf{y}$.
- One soft-thresholding operator $\operatorname{prox}_{\lambda g}(\mathbf{x})=\operatorname{sign}(\mathbf{x}) \otimes \max \{|\mathbf{x}|-\lambda, 0\}$.
- Optional: Evaluating $L=\left\|\mathbf{A}^{T} \mathbf{A}\right\|$ (spectral norm) - via power iterations

Synthetic data generation

- A $:=\operatorname{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, \mathbb{I})$.
- \mathbf{x}^{\star} is a k-sparse vector generated randomly.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\star}+\mathcal{N}\left(0,10^{-3}\right)$.

Example 1: Theoretical bounds vs practical performance

Theoretical bounds

We have the following guarantees for FISTA $:=\frac{2 L_{f} R_{0}^{2}}{(k+2)^{2}}$ and for ISTA $:=\frac{L_{f} R_{0}^{2}}{2(k+2)}$. In the figure below, ISTA's practical behavior outperforms the theoretical bound for FISTA.

Example 1: Theoretical bounds vs practical performance

Theoretical bounds

We have the following guarantees for FISTA $:=\frac{2 L_{f} R_{0}^{2}}{(k+2)^{2}}$ and for ISTA $:=\frac{L_{f} R_{0}^{2}}{2(k+2)}$. In the figure below, ISTA's practical behavior outperforms the theoretical bound for FISTA.

descent directions

restricted descent directions

Example 1: Theoretical bounds vs practical performance

Theoretical bounds

We have the following guarantees for FISTA $:=\frac{2 L_{f} R_{0}^{2}}{(k+2)^{2}}$ and for ISTA $:=\frac{L_{f} R_{0}^{2}}{2(k+2)}$. In the figure below, ISTA's practical behavior outperforms the theoretical bound for FISTA.

Remarks: $\quad \circ \ell_{1}$-regularized least squares formulation has restricted strong convexity.

- The proximal-gradient method can automatically exploit this structure.

Example 2: Sparse logistic regression

Problem (Sparse logistic regression)

Given $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in\{-1,+1\}^{n}$, solve:

$$
F^{\star}:=\min _{\mathbf{x}, \beta}\left\{F(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} \log \left(1+\exp \left(-\mathbf{b}_{j}\left(\mathbf{a}_{j}^{T} \mathbf{x}+\beta\right)\right)\right)+\rho\|\mathbf{x}\|_{1}\right\} .
$$

Real data

- Real data: w8a with $n=49^{\prime} 749$ data points, $p=300$ features
- Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters

- $\rho=10^{-4}$.
- Number of iterations 5000, tolerance 10^{-7}.
- Ground truth: Solve problem up to 10^{-9} accuracy by TFOCS to get a high accuracy approximation of \mathbf{x}^{\star} and F^{\star}.

Example 2: Sparse logistic regression - numerical results

	ISTA	LS-ISTA	FISTA	FISTA-R	LS-FISTA	LS-FISTA-R
Number of iterations	5000	5000	4046	2423	447	317
CPU time (s)	26.975	61.506	21.859	18.444	10.683	6.228
Solution error $\left(\times 10^{-7}\right)$	29370	2.774	1.000	0.998	0.961	0.985

When f is strongly convex: Algorithms

Proximal-gradient scheme (ISTA ${ }_{\mu}$)

1. Given $\mathbf{x}^{0} \in \mathbb{R}^{p}$ as a starting point.
2. For $k=0,1, \cdots$, generate a sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ as:

$$
\mathbf{x}^{k+1}:=\operatorname{prox}_{\alpha_{k} g}\left(\mathbf{x}^{k}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

where $\alpha_{k}:=\frac{2}{L_{f}+\mu}$ is the optimal step-size.

Fast proximal-gradient scheme (FISTA ${ }_{\mu}$)

1. Given $\mathbf{x}^{0} \in \mathbb{R}^{p}$ as a starting point. Set $\mathbf{y}^{0}:=\mathbf{x}^{0}$.
2. For $k=0,1, \cdots$, generate sequences $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ and $\left\{\mathbf{y}^{k}\right\}_{k \geq 0}$ as:

$$
\left\{\begin{array}{l}
\mathbf{x}^{k+1}:=\operatorname{prox}_{\alpha_{k} g}\left(\mathbf{y}^{k}-\alpha_{k} \nabla f\left(\mathbf{y}^{k}\right)\right) \\
\mathbf{y}^{k+1}:=\mathbf{x}^{k+1}+\left(\frac{\sqrt{C_{f}}-1}{\sqrt{C_{f}}+1}\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)
\end{array}\right.
$$

where $c_{f}:=\frac{L_{f}}{\mu}$ and $\alpha_{k}:=L_{f}^{-1}$ is the optimal step-size.

When f is strongly convex: Convergence

Assumption

f is strongly convex with parameter $\mu>0$, i.e., $f \in \mathcal{F}_{L, \mu}^{1,1}\left(\mathbb{R}^{p}\right)$.
Condition number: $c_{f}:=\frac{L_{f}}{\mu} \geq 0$.

Theorem (ISTA ${ }_{\mu}$ [14])

$$
F\left(\mathbf{x}^{k}\right)-F^{\star} \leq \frac{L_{f}}{2}\left(\frac{c_{f}-1}{c_{f}+1}\right)^{2 k}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}^{2} .
$$

Convergence rate: Linear with contraction factor: $\omega:=\left(\frac{c_{f}-1}{c_{f}+1}\right)^{2}=\left(\frac{L_{f}-\mu}{L_{f}+\mu}\right)^{2}$.

Theorem (FISTA ${ }_{\mu}$ [14])

$$
F\left(\mathbf{x}^{k}\right)-F^{\star} \leq \frac{L_{f}+\mu}{2}\left(1-\sqrt{\frac{\mu}{L_{f}}}\right)^{k}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}^{2}
$$

Convergence rate: Linear with contraction factor: $\omega_{f}=\frac{\sqrt{L_{f}}-\sqrt{\mu}}{\sqrt{L_{f}}}<\omega$.

Summary of the worst-case complexities

Comparison

Complexity	Proximal-gradient scheme	Fast scheme
Complexity $[\mu=0]$	$\mathcal{O}\left(R_{0}^{2} \frac{L_{f}}{\varepsilon}\right)$	$\mathcal{O}\left(R_{0} \sqrt{\frac{L_{f}}{\varepsilon}}\right)$
Per iteration	1-gradient, 1-prox, 1-sv, 1- $v+$	1-gradient, 1-prox, 2-sv, 3- $v+$
Complexity $[\mu>0]$	$\mathcal{O}\left(\kappa \log \left(\varepsilon^{-1}\right)\right)$	$\mathcal{O}\left(\sqrt{\kappa} \log \left(\varepsilon^{-1}\right)\right)$
Per iteration	1-gradient, 1-prox, 1-sv, 1- $v+$	1-gradient, 1-prox, 1-sv, 2- $v+$

Here: $s v=$ scalar-vector multiplication, $v+=$ vector addition.
$R_{0}:=\max _{\mathbf{x}^{\star} \in \mathcal{S}^{\star}}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|$ and $\kappa=\frac{L_{f}}{\mu_{f}}$ is the condition number.

Summary of the worst-case complexities

Comparison

Complexity	Proximal-gradient scheme	Fast scheme
Complexity $[\mu=0]$	$\mathcal{O}\left(R_{0}^{2} \frac{L_{f}}{\varepsilon}\right)$	$\mathcal{O}\left(R_{0} \sqrt{\frac{L_{f}}{\varepsilon}}\right)$
Per iteration	1-gradient, 1-prox, 1-sv, 1- $v+$	1-gradient, 1-prox, 2-sv, 3- $v+$
Complexity $[\mu>0]$	$\mathcal{O}\left(\kappa \log \left(\varepsilon^{-1}\right)\right)$	$\mathcal{O}\left(\sqrt{\kappa} \log \left(\varepsilon^{-1}\right)\right)$
Per iteration	1-gradient, 1-prox, 1-sv, 1- $v+$	1-gradient, 1-prox, 1-sv, 2- $v+$

Here: $s v=$ scalar-vector multiplication, $v+=$ vector addition. $R_{0}:=\max _{\mathbf{x}^{\star} \in \mathcal{S}^{\star}}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|$ and $\kappa=\frac{L_{f}}{\mu_{f}}$ is the condition number.

Need alternatives when

- computing $\nabla f(\mathbf{x})$ is much costlier than computing prox $_{g}$

Summary of the worst-case complexities

Comparison

Complexity	Proximal-gradient scheme	Fast scheme
Complexity $[\mu=0]$	$\mathcal{O}\left(R_{0}^{2} \frac{L_{f}}{\varepsilon}\right)$	$\mathcal{O}\left(R_{0} \sqrt{\frac{L_{f}}{\varepsilon}}\right)$
Per iteration	1-gradient, 1-prox, 1-sv, 1- $v+$	1-gradient, 1-prox, 2-sv, 3- $v+$
Complexity $[\mu>0]$	$\mathcal{O}\left(\kappa \log \left(\varepsilon^{-1}\right)\right)$	$\mathcal{O}\left(\sqrt{\kappa} \log \left(\varepsilon^{-1}\right)\right)$
Per iteration	1-gradient, 1-prox, 1-sv, 1- $v+$	1-gradient, 1-prox, 1-sv, 2- $v+$

Here: $s v=$ scalar-vector multiplication, $v+=$ vector addition. $R_{0}:=\max _{\mathbf{x}^{\star} \in \mathcal{S}^{\star}}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|$ and $\kappa=\frac{L_{f}}{\mu_{f}}$ is the condition number.

Need alternatives when

- computing $\nabla f(\mathbf{x})$ is much costlier than computing prox $_{g}$

Software

TFOCS is a good software package to learn about first order methods.

Composite minimization: Non-convex case

Problem (Unconstrained composite minimization)

$$
\begin{equation*}
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=f(\mathbf{x})+g(\mathbf{x})\} \tag{CM}
\end{equation*}
$$

- $g: \mathbb{R}^{p} \rightarrow \mathbb{R} \cup\{\infty\}$ is proper, closed, convex, and (possibly) nonsmooth.
- $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is proper and closed, $\operatorname{dom}(f)$ is convex, and f is L_{f}-smooth.
- $\operatorname{dom}(F):=\operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$ and $-\infty<F^{\star}<+\infty$.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(F): F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\}$ is nonempty.

A different quantification of convergence: Gradient mapping

Definition (Gradient mapping)

Let prox_{g} denote the proximal operator of g and $\lambda>0$ some real constant. Then, the gradient mapping operator is defined as

$$
\mathcal{G}_{\lambda}(\mathbf{x}):=\frac{1}{\lambda}\left(\mathbf{x}-\operatorname{prox}_{\lambda g}(\mathbf{x}-\lambda \nabla f(\mathbf{x}))\right) .
$$

Properties [1]

- $\left\|\mathcal{G}_{\lambda}(\mathbf{x})\right\|=0 \Longleftrightarrow \mathbf{x}$ is a stationary point.
- Lipschitz continuity: $\left\|\mathcal{G}_{\frac{1}{L}}(\mathbf{x})-\mathcal{G}_{\frac{1}{L}}(\mathbf{y})\right\| \leq\left(2 L+L_{f}\right)\|\mathbf{x}-\mathbf{y}\|$

Why do we care about gradient mapping?

- It is the generalization of the gradient of $f, \nabla f(\mathbf{x})$
- Recall prox-gradient update: $\mathbf{x}^{t+1}=\operatorname{prox}_{\lambda g}\left(\mathbf{x}^{t}-\lambda \nabla f\left(\mathbf{x}^{t}\right)\right)$, which is equivalent to $\mathbf{x}^{t+1}=\mathbf{x}^{t}-\lambda \mathcal{G}_{\lambda}\left(\mathbf{x}^{t}\right)$.
- In fact, when $\operatorname{prox}_{g}=\mathbb{I}$, then, $\mathcal{G}_{\lambda}(\mathbf{x})=\frac{1}{\lambda}(\mathbf{x}-(\mathbf{x}-\lambda \nabla f(\mathbf{x})))=\nabla f(\mathbf{x})$.

Sufficient Decrease property for proximal-gradient

Assumption

- f is L_{f}-smooth.
- g is proper, closed, convex, and (possibly) nonsmooth. g is proximally tractable.

$$
\mathbf{x}^{k+1}:=\operatorname{prox}_{\frac{1}{L} g}\left(\mathbf{x}^{k}-\frac{1}{L} \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

Lemma (Sufficient decrease [1])
For any $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$ and $L \in\left(\frac{L_{f}}{2}, \infty\right)$, it holds that

$$
\begin{equation*}
F\left(\mathbf{x}^{k+1}\right) \leq F\left(\mathbf{x}^{k}\right)-\frac{L-\frac{L_{f}}{2}}{L^{2}}\left\|\mathcal{G}_{\frac{1}{L}}\left(\mathbf{x}^{k}\right)\right\|_{2}^{2} \tag{7}
\end{equation*}
$$

Corollary

$$
F\left(\mathbf{x}^{k+1}\right) \leq F\left(\mathbf{x}^{k}\right)-\frac{1}{2 L_{f}}\left\|\mathcal{G}_{\frac{1}{L_{f}}}\left(\mathbf{x}^{k}\right)\right\|_{2}^{2}, \quad \text { for } L=L_{f}
$$

Non-convex case: Convergence

Basic proximal-gradient scheme

1. Choose $\mathbf{x}^{0} \in \operatorname{dom}(F)$ arbitrarily as a starting point.
2. For $k=0,1, \cdots$, generate a sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ as:

$$
\mathbf{x}^{k+1}:=\operatorname{prox}_{\alpha g}\left(\mathbf{x}^{k}-\alpha \nabla f\left(\mathbf{x}^{k}\right)\right)
$$

where $\alpha:=\left(0, \frac{2}{L_{f}}\right)$.

Theorem (Convergence of proximal-gradient method: Non-convex [1])

Let $\left\{\mathbf{x}^{k}\right\}$ be generated by proximal-gradient scheme above. Then, we have

$$
\min _{i=0,1, \ldots, k}\left\|\mathcal{G}_{\alpha}\left(\mathbf{x}^{i}\right)\right\|_{2}^{2} \leq \frac{F\left(\mathbf{x}^{0}\right)-F\left(\mathbf{x}^{\star}\right)}{M(k+1)}, \quad \text { where } M:=\alpha^{2}\left(\frac{1}{\alpha}-\frac{L_{f}}{2}\right)
$$

- When $\alpha=\frac{1}{L_{f}}, M=\frac{1}{2 L_{f}}$.
- The worst-case complexity to reach $\min _{i=0,1, \cdots, k}\left\|\mathcal{G}_{\alpha}\left(\mathbf{x}^{i}\right)\right\|_{2}^{2} \leq \varepsilon$ is $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$.

Stochastic convex composite minimization

Problem (Mathematical formulation)

Consider the following composite convex minimization problem:

$$
F^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{F(\mathbf{x}):=\mathbb{E}_{\theta}[F(\mathbf{x}, \theta)]:=\mathbb{E}_{\theta}[f(\mathbf{x}, \theta)+g(\mathbf{x}, \theta)]\right\}
$$

- θ is a random vector whose probability distribution is supported on set Θ.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(F): F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\}$ is nonempty.
- Oracles: (sub)gradient of $f(\cdot, \theta), \nabla f(\mathbf{x}, \theta)$, and stochastic prox operator of $g(\cdot, \theta), \operatorname{prox}_{g(\cdot, \theta)}(\mathbf{x})$.

Remark

- In this setting, we replace $\nabla f(\cdot)$ with its stochastic estimates.
- It is possible to replace $\operatorname{prox}_{g}(\cdot)$ with its stochastic estimate (advanced material).

Stochastic proximal gradient method

Stochastic proximal gradient method (SPG)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\gamma_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty\left[^{\mathbb{N}}\right.$.
2. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\operatorname{prox}_{\gamma_{k} g(\cdot, \theta)}\left(\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right)\right) .
$$

Definitions:

- $\operatorname{prox}_{\lambda g(\cdot, \theta)}:=\arg \min _{\mathbf{y} \in \mathbb{R}^{p}}\left\{g(\mathbf{y}, \theta)+\frac{1}{2 \lambda}\|\mathbf{y}-\mathbf{x}\|^{2}\right\}$
- $\left\{\theta_{k}\right\}_{k=0,1, \ldots}$: sequence of independent random variables.
- $G\left(\mathbf{x}^{k}, \theta_{k}\right) \in \partial f\left(\mathbf{x}^{k}, \theta_{k}\right)$: an unbiased estimate of the deterministic (sub)gradient:

$$
\mathbb{E}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right)\right] \in \partial f\left(\mathbf{x}^{k}\right) .
$$

Stochastic proximal gradient method

Stochastic proximal gradient method (SPG)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\gamma_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty\left[^{\mathbb{N}}\right.$.
2. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\operatorname{prox}_{\gamma_{k} g(\cdot, \theta)}\left(\mathbf{x}^{k}-\gamma_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right)\right) .
$$

Definitions:

- $\operatorname{prox}_{\lambda g(\cdot, \theta)}:=\arg \min _{\mathbf{y} \in \mathbb{R}^{p}}\left\{g(\mathbf{y}, \theta)+\frac{1}{2 \lambda}\|\mathbf{y}-\mathbf{x}\|^{2}\right\}$
- $\left\{\theta_{k}\right\}_{k=0,1, \ldots}$: sequence of independent random variables.
- $G\left(\mathbf{x}^{k}, \theta_{k}\right) \in \partial f\left(\mathbf{x}^{k}, \theta_{k}\right)$: an unbiased estimate of the deterministic (sub)gradient:

$$
\mathbb{E}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right)\right] \in \partial f\left(\mathbf{x}^{k}\right) .
$$

Remark

Cost of computing $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ is usually much cheaper than $\nabla f\left(\mathbf{x}^{k}\right)$.

Convergence analysis

Assumptions for the problem setting

- $f(\cdot, \theta)$ and $g(\cdot, \theta)$ are convex functions in the first argument, g is proximally-tractable.
- (Sub)gradients of F satisfy stochastic bounded gradient condition: $\exists C \geq 0, B \geq 0$ such that

$$
\mathbb{E}_{\theta}\left[\|\partial F(\mathbf{x}, \theta)\|^{2}\right] \leq B^{2}+C\left(F(\mathbf{x})-F\left(\mathbf{x}^{\star}\right)\right) .
$$

- $\mathbb{E}\left[\left\|\mathbf{x}^{t}-\mathbf{x}^{\star}\right\|^{2}\right] \leq R^{2}$ for all $t \geq 0$.

Implications of the assumptions

- None of the above assumptions enforce that f is smooth.
- Stochastic bounded gradient condition holds with $C=0$ when both $f(\cdot, \theta)$ and $g(\cdot, \theta)$ are Lipschitz continuous.
- The same condition holds when $f(\cdot, \theta)$ is L_{f}-smooth and $g(\cdot, \theta)$ is Lipschitz continuous.
- However, for the upcoming theorem, we will take $C>0$, which rules out the case when both functions are only Lipschitz continuous.

Convergence analysis

Assumptions for the problem setting

- $f(\cdot, \theta)$ and $g(\cdot, \theta)$ are convex functions in the first argument, g is proximally-tractable.
- (Sub)gradients of F satisfy stochastic bounded gradient condition: $\exists C \geq 0, B \geq 0$ such that

$$
\mathbb{E}_{\theta}\left[\|\partial F(\mathbf{x}, \theta)\|^{2}\right] \leq B^{2}+C\left(F(\mathbf{x})-F\left(\mathbf{x}^{\star}\right)\right)
$$

- $\mathbb{E}\left[\left\|\mathbf{x}^{t}-\mathbf{x}^{\star}\right\|^{2}\right] \leq R^{2}$ for all $t \geq 0$.

Theorem (Ergodic convergence [12])

- Assume the above assumptions hold with $C>0$.
- Let the sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ be generated by SPG.
- Set $\gamma_{k}=\frac{1}{C \sqrt{k}}$.

Conclusion:

- Define $\overline{\mathbf{x}}^{k}=\frac{1}{k} \sum_{i=0}^{k-1} \mathbf{x}^{i}$, then

$$
\mathbb{E}\left[F\left(\overline{\mathbf{x}}^{k}\right)-F\left(\mathbf{x}^{\star}\right)\right] \leq \frac{1}{\sqrt{k}}\left(R^{2} C+\frac{B^{2}}{C}\right), \quad \forall k \geq 1
$$

Revisiting a special composite structure

A basic constrained problem setting

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x})+\delta_{\mathcal{X}}(\mathbf{x})\right\}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\} \tag{8}
\end{equation*}
$$

Assumptions

- \mathcal{X} is nonempty, convex and compact (closed and bounded) where $\delta_{\mathcal{X}}$ is its indicator function.
- $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{p}\right)$ (i.e., convex with Lipschitz gradient).

Recall proximal gradient algorithm

Basic proximal-gradient scheme (ISTA)
1. Choose $\mathbf{x}^{0} \in \operatorname{dom}(F)$ arbitrarily as a starting point.
2. For $k=0,1, \cdots$, generate a sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ as:
$\qquad \mathbf{x}^{k+1}:=\operatorname{prox}_{\alpha g}\left(\mathbf{x}^{k}-\alpha \nabla f\left(\mathbf{x}^{k}\right)\right)$
where $\alpha:=\frac{1}{L}$.

- Prox-operator of indicator of \mathcal{X} is projection onto $\mathcal{X} \Longrightarrow$ ensures feasibility

How else can we ensure feasibility?

Frank-Wolfe's approach - I

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\}
$$

Conditional gradient method (CGM, see [10] for review)

A plausible strategy which dates back to 1956 [6]. At iteration k :

1. Consider the linear approximation of f at \mathbf{x}^{k}

$$
\phi_{k}(\mathbf{x}):=f\left(\mathbf{x}^{k}\right)+\nabla f\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)
$$

2. Minimize this approximation within constraint set

$$
\hat{\mathbf{x}}^{k} \in \min _{x \in \mathcal{X}} \phi_{k}(\mathbf{x})=\min _{x \in \mathcal{X}} \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{x}
$$

3. Take a step towards $\hat{\mathbf{x}}^{k}$ with step-size $\gamma_{k} \in[0,1]$

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\gamma_{k}\left(\hat{\mathbf{x}}^{k}-\mathbf{x}^{k}\right)
$$

- x^{k+1} is feasible since it is convex combination of two other feasible points.

Frank-Wolfe's approach - II

where $\gamma_{k}:=\frac{2}{k+2}$.

On the linear minimization oracle

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\}
$$

Definition (Linear minimization oracle)

Let \mathcal{X} be a convex, closed and bounded set. Then, the linear minimization oracle of \mathcal{X} (lmo \mathcal{X}) returns a vector $\hat{\mathbf{x}}$ such that

$$
\begin{equation*}
\operatorname{lmo} \mathcal{X}(\mathbf{x}):=\hat{\mathbf{x}} \in \arg \min _{\mathbf{y} \in \mathcal{X}} \mathbf{x}^{T} \mathbf{y} \tag{9}
\end{equation*}
$$

- lmo \mathcal{X} returns an extreme point of \mathcal{X}.
- $\operatorname{lmo} \mathcal{X}$ is arguably cheaper than projection.
- $1 m o_{\mathcal{X}}$ is not single valued, note \in in the definition.

Convergence guarantees of CGM

Problem setting

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\}
$$

Assumptions

- \mathcal{X} is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{p}\right)$ (i.e., convex with Lipschitz gradient).

Theorem

Under assumptions listed above, CGM with step size $\gamma_{k}=\frac{2}{k+2}$ satisfies

$$
\begin{equation*}
f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right) \leq \frac{4 L D_{\mathcal{X}}^{2}}{k+1} \tag{10}
\end{equation*}
$$

where $D_{\mathcal{X}}:=\max _{\mathbf{x}, \mathbf{y} \in \mathcal{X}}\|\mathbf{x}-\mathbf{y}\|_{2}$ is diameter of constraint set.

*Convergence guarantees of CGM: A faster rate

Problem setting

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\},
$$

Assumptions

- \mathcal{X} is nonempty, α-strongly convex, closed and bounded.
- $f \in \mathcal{F}_{L, \mu}^{1,1}\left(\mathbb{R}^{p}\right)$ (i.e., strongly convex with Lipschitz gradient).

Definition (α-strongly convex set) [7]

A convex set $\mathcal{X} \in \mathbb{R}^{p \times p}$ is α-strongly convex with respect to $\|\cdot\|$ if for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, any $\gamma \in[0,1]$ and any vector $\mathbf{z} \in \mathbb{R}^{p \times p}$ such that $\|\mathbf{z}\|=1$, it holds that

$$
\gamma \mathbf{x}+(1-\gamma) \mathbf{y}+\gamma(1-\gamma) \frac{\alpha}{2}\|\mathbf{x}-\mathbf{y}\|^{2} \mathbf{z} \in \mathcal{X}
$$

That is, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, the ball centered at $\gamma \mathbf{x}+(1-\gamma) \mathbf{y}$ with radius $\gamma(1-\gamma) \frac{\alpha}{2}\|\mathbf{x}-\mathbf{y}\|^{2}$ is contained in \mathcal{X}.

*CGM for strongly convex objective + strongly convex set

Conditional gradient method - CGM2

1. Choose $\mathbf{x}^{0} \in \mathcal{X}$.
2. For $k=0,1, \ldots$ perform:

$$
\begin{cases}\hat{\mathbf{x}}^{k} & :=\arg \min _{\mathbf{x} \in \mathcal{X}} \nabla f\left(\mathbf{x}^{k}\right)^{T} \mathbf{x} \\ \gamma_{k} & :=\arg \min _{\gamma \in[0,1]} \gamma\left\langle\hat{\mathbf{x}}^{k}-\mathbf{x}^{k}, \nabla f\left(\mathbf{x}^{k}\right)\right\rangle+\gamma^{2} \frac{L}{2}\left\|\hat{\mathbf{x}}^{k}-\mathbf{x}^{k}\right\|^{2} \\ \mathbf{x}^{k+1} & :=\left(1-\gamma_{k}\right) \mathbf{x}^{k}+\gamma_{k} \hat{\mathbf{x}}^{k},\end{cases}
$$

Theorem ([7])

Under assumptions listed previously, CGM2 satisfies

$$
\begin{equation*}
f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)=\mathcal{O}\left(\frac{1}{k^{2}}\right) . \tag{11}
\end{equation*}
$$

Example: lmo of nuclear-norm bal

Consider $\delta_{\mathcal{X}}$, the indicator of nuclear-norm ball $\mathcal{X}:=\left\{\mathbf{X}: \mathbf{X} \in \mathbb{R}^{p \times p},\|\mathbf{X}\|_{*} \leq \alpha\right\}$

lmo of nuclear-norm ball

$$
\operatorname{lmo}_{\mathcal{X}}(\mathbf{X}):=\hat{\mathbf{X}} \in \arg \min _{\mathbf{Y} \in \mathcal{X}}\langle\mathbf{Y}, \mathbf{X}\rangle
$$

This can be computed as follows:

- Compute top singular vectors of $\mathbf{X} \quad \Longrightarrow \quad\left(\mathbf{u}_{1}, \sigma_{1}, \mathbf{v}_{1}\right)=\operatorname{svds}(\mathbf{X}, 1)$.
- Form the rank-1 output $\Longrightarrow \mathbf{X}=-\mathbf{u}_{1} \alpha \mathbf{v}_{1}^{T}$

We can efficiently approximate top singular vectors by power method!

Proximal gradient vs. Frank-Wolfe

Definitions:

- Here: $s v=$ scalar-vector multiplication, $v+=$ vector addition.
- $R_{0}:=\max _{\mathbf{x}^{\star} \in \mathcal{S}^{\star}}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|$ is the maximum initial distance.
- $D_{\mathcal{X}}:=\max _{\mathbf{x}, \mathbf{y} \in \mathcal{X}}\|\mathbf{x}-\mathbf{y}\|_{2}$ is diameter of constraint set \mathcal{X}.

Algorithm	Proximal-gradient scheme	Frank-Wolfe method
Rate	$\mathcal{O}\left(\frac{L_{f} R_{0}^{2}}{k}\right)$	$\mathcal{O}\left(\frac{L_{f} D_{\mathcal{X}}^{2}}{k}\right)$
Complexity	$\mathcal{O}\left(R_{0}^{2} \frac{L_{f}}{\varepsilon}\right)$	$\mathcal{O}\left(D_{\mathcal{X}}^{2} \frac{L_{f}}{\varepsilon}\right)$
Per iteration	1-gradient, 1-prox, 1-sv, 1- $v+$	1-gradient, 1-Imo, 2-sv, 1- $v+$

How do prox operator and lmo compare in practice?

An example with matrices

Problem Definition

$$
\min _{\mathbf{X} \in \mathbb{R}^{p \times p}} f(\mathbf{X})+g(\mathbf{X})
$$

- Define $g(\mathbf{X})=\delta_{\mathcal{X}}(\mathbf{X})$, where $\mathcal{X}:=\left\{\mathbf{X}: \mathbf{X} \in \mathbb{R}^{p \times p},\|\mathbf{X}\|_{*} \leq \alpha\right\}$ is nuclear norm ball.
- This problem is equivalent to:

$$
\min _{\mathbf{X} \in \mathcal{X}} f(\mathbf{X})
$$

Observations

- $\operatorname{prox}_{g}=\pi_{\mathcal{X}}$. Projection requires full SVD, $\mathcal{O}\left(p^{3}\right)$.
- lmo computes (approximately) top singular vectors, roughly in $\approx \mathcal{O}\left(p^{2}\right)$ with Lanczos algorithm.

Example: Phase retrieval

Phase retrieval

Aim: Recover signal $\mathbf{x}^{\natural} \in \mathbb{C}^{p}$ from the measurements $\mathbf{b} \in \mathbb{R}^{n}$:

$$
b_{i}=\left|\left\langle\mathbf{a}_{i}, \mathbf{x}^{\natural}\right\rangle\right|^{2}+\omega_{i} .
$$

($\mathbf{a}_{i} \in \mathbb{C}^{p}$ are known measurement vectors, ω_{i} models noise).

- Non-linear measurements \rightarrow non-convex maximum likelihood estimators.

PhaseLift [4]

Phase retrieval can be solved as a convex matrix completion problem, following a combination of

- semidefinite relaxation $\left(\mathbf{x}^{\natural} \mathbf{x}^{\natural}=\mathbf{X}^{\natural}\right)$
- convex relaxation $\quad\left(\right.$ rank $\left.\rightarrow\|\cdot\|_{*}\right)$
albeit in terms of the lifted variable $\mathbf{X} \in \mathbb{C}^{p \times p}$.

Example: Phase retrieval - II

Problem formulation

We solve the following PhaseLift variant:

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{X} \in \mathbb{C}^{p} \times p}\left\{\frac{1}{2}\|\mathcal{A}(\mathbf{X})-\mathbf{b}\|_{2}^{2}: \quad\|\mathbf{X}\|_{*} \leq \kappa, \quad \mathbf{X} \geq 0\right\} \tag{12}
\end{equation*}
$$

Experimental setup [19]

Coded diffraction pattern measurements, $\mathbf{b}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{L}\right]$ with $L=20$ different masks

$$
\mathbf{b}_{\ell}=\left|\mathrm{fft}\left(\mathbf{d}_{\ell}^{H} \odot \mathbf{x}^{\natural}\right)\right|^{2}
$$

$\rightarrow \odot$ denotes Hadamard product; $|\cdot|^{2}$ applies element-wise
$\rightarrow \mathbf{d}_{\ell}$ are randomly generated octonary masks (distributions as proposed in [4])
\rightarrow Parametric choices: $\lambda^{0}=\mathbf{0}^{n} ; \quad \epsilon=10^{-2} ; \quad \kappa=\operatorname{mean}(\mathbf{b})$.

Example: Phase retrieval - III

Test with synthetic data: Prox vs sharp

\rightarrow Synthetic data: $\mathbf{x}^{\natural}=\operatorname{randn}(p, 1)+i \cdot \operatorname{randn}(p, 1)$.
\rightarrow Stopping criteria: $\frac{\left\|\mathbf{x}^{\natural}-\mathbf{x}^{k}\right\|_{2}}{\left\|\mathbf{x}^{4}\right\|_{2}} \leq 10^{-2}$.
\rightarrow Averaged over 10 Monte-Carlo iterations.
Note that the problem is $p \times p$ dimensional!

A basic constrained non-convex problem

Problem setting

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{x} \in \mathcal{X}\}
$$

Assumptions

- \mathcal{X} is nonempty, convex, closed and bounded.
- f has L-Lipschitz continuous gradients, but it is non-convex.

Stationary point

Due to constraints, $\left\|\nabla f\left(\mathrm{x}^{\star}\right)\right\|=0$ may not hold!
Frank-Wolfe gap: Following measure, known as FW-gap, generalizes the definition of stationary point for constrained problems:

$$
g_{F W}(\mathbf{x}):=\max _{\mathbf{y} \in \mathcal{X}}(\mathbf{x}-\mathbf{y})^{T} \nabla f(\mathbf{x})
$$

- $g_{F W}(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathcal{X}$.
- $\mathbf{x} \in \mathcal{X}$ is a stationary point if and only if $g_{F W}(\mathbf{x})=0$.

CGM for non-convex problems

CGM for non-convex problems

1. Choose $\mathbf{x}^{0} \in \mathcal{X}, K>0$ total number of iterations.
2. For $k=0,1, \ldots, K-1$ perform:

$$
\begin{cases}\hat{\mathbf{x}}^{k} & :=\operatorname{lmo} \mathcal{X}\left(\nabla f\left(\mathbf{x}^{k}\right)\right) \\ \mathbf{x}^{k+1} & :=\left(1-\gamma_{k}\right) \mathbf{x}^{k}+\gamma_{k} \hat{\mathbf{x}}^{k}\end{cases}
$$

where $\gamma_{k}:=\frac{1}{\sqrt{K+1}}$.

Theorem

Denote $\overline{\mathbf{x}}$ chosen uniformly random from $\left\{\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{K}\right\}$. Then, CGM satisfies

$$
\min _{k=1,2, \ldots, K} g_{F W}\left(\mathbf{x}^{k}\right) \leq \mathbb{E}\left[g_{F W}(\overline{\mathbf{x}})\right] \leq \frac{1}{\sqrt{K}}\left(f\left(\mathbf{x}^{0}\right)-f^{\star}+\frac{L D^{2}}{2}\right)
$$

* There exist stochastic CGM methods for non-convex problems. See [17] for details.

A basic constrained stochastic problem

Problem setting (Stochastic)

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{\mathbb{E}[f(\mathbf{x}, \theta)]: \mathbf{x} \in \mathcal{X}\} \tag{13}
\end{equation*}
$$

Assumptions

- θ is a random vector whose probability distribution is supported on set Θ
- \mathcal{X} is nonempty, convex, closed and bounded.
- $f(\cdot, \theta) \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{p}\right)$ for all θ (i.e., convex with Lipschitz gradient).

Example (Finite-sum model)

$$
\mathbb{E}[f(\mathbf{x}, \theta)]=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})
$$

- $j=\theta$ is a drawn uniformly from $\Theta=\{1,2, \ldots, n\}$
- $f_{j} \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{p}\right)$ for all j (i.e., convex with Lipschitz gradient).

Stochastic conditional gradient method

Stochastic conditional gradient method (SFW)

1. Choose $\mathrm{x}^{0} \in \mathcal{X}$.
2. For $k=0,1, \ldots$ perform:

$$
\begin{cases}\hat{\mathbf{x}}^{k} & :=\operatorname{lmo} \mathcal{X}\left(\tilde{\nabla} f\left(\mathbf{x}^{k}, \theta_{k}\right)\right) \\ \mathbf{x}^{k+1} & :=\left(1-\gamma_{k}\right) \mathbf{x}^{k}+\gamma_{k} \hat{\mathbf{x}}^{k}\end{cases}
$$

where $\gamma_{k}:=\frac{2}{k+2}$, and $\tilde{\nabla} f$ is an unbiased estimator of ∇f.

Theorem [9]

Assume that the following variance condition holds

$$
\mathbb{E}\left\|\nabla f\left(\mathbf{x}^{k}\right)-\tilde{\nabla} f\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2} \leq\left(\frac{L D}{k+1}\right)^{2}
$$

Then, the iterates of SFW satisfies

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}, \theta\right)\right]-f^{\star} \leq \frac{4 L D^{2}}{k+1}
$$

$(*) \rightarrow$ SFW requires decreasing variance!

Stochastic conditional gradient method

$$
\begin{aligned}
& \text { Stochastic conditional gradient method (SFW) } \\
& \hline \text { 1. Choose } \mathbf{x}^{0} \in \mathcal{X} \text {. } \\
& \text { 2. For } k=0,1, \ldots \text { perform: } \\
& \qquad \begin{cases}\hat{\mathbf{x}}^{k} & :=\operatorname{lmo} \mathcal{X}\left(\tilde{\nabla} f\left(\mathbf{x}^{k}, \theta_{k}\right)\right) \\
\mathbf{x}^{k+1} & :=\left(1-\gamma_{k}\right) \mathbf{x}^{k}+\gamma_{k} \hat{\mathbf{x}}^{k},\end{cases}
\end{aligned}
$$

where $\gamma_{k}:=\frac{2}{k+2}$, and $\tilde{\nabla} f$ is an unbiased estimator of ∇f.

Example (Finite-sum model)

$$
\mathbb{E}[f(\mathbf{x}, \theta)]=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})
$$

Assume f_{j} is G-Lipschitz continuous for all j. Suppose that \mathcal{S}_{k} is a random sampling (with replacement) from $\Theta=\{1,2, \ldots, n\}$. Then,

$$
\tilde{\nabla} f\left(\mathbf{x}^{k}, \theta_{k}\right):=\frac{1}{\left|\mathcal{S}_{k}\right|} \sum_{j \in \mathcal{S}_{k}} f_{j}\left(\mathbf{x}^{k}\right) \quad \Longrightarrow \quad \mathbb{E}\left\|\nabla f(\mathbf{x})-\tilde{\nabla} f\left(\mathbf{x}, \theta_{k}\right)\right\|^{2} \leq \frac{G^{2}}{\left|\mathcal{S}_{k}\right|}
$$

Hence, by choosing $\left|\mathcal{S}_{k}\right|=\left(\frac{G(k+1)}{L D}\right)^{2}$ we satisfy the variance condition for SFW.

Wrap up!

- Monday: Transition from variance reduction to deep learning...

*Expanding on prox operator and optimality condition

Notes

- By definition, $g(\mathbf{y})+\frac{1}{2 \lambda}\|\mathbf{y}-\mathbf{x}\|^{2}$ attains its minimum when $\mathbf{y}=\operatorname{prox}_{\lambda g}(\mathbf{x})$.
- One can see that $g(\mathbf{y})+\frac{1}{2 \lambda}\|\mathbf{y}-\mathbf{x}\|^{2}$ is convex, and prox operator computes its minimizer over \mathbb{R}^{p}.
- As a result, subdifferential of $g(\mathbf{y})+\frac{1}{2 \lambda}\|\mathbf{y}-\mathbf{x}\|^{2}$ at the minimizer $\left(\mathbf{y}=\operatorname{prox}_{\lambda g}(\mathbf{x})\right)$ should include 0 .
- Hence, $0 \in \partial g\left(\operatorname{prox}_{\lambda g}(\mathbf{x})\right)+\frac{1}{\lambda}\left(\operatorname{prox}_{\lambda g}(\mathbf{x})-\mathbf{x}\right)$.
- After rearranging the above inclusion we obtain: $\mathbf{x} \in \lambda \partial g\left(\operatorname{prox}_{\lambda g}(\mathbf{x})\right)+\operatorname{prox}_{\lambda g}(\mathbf{x})$
- We can rewrite the RHS as a single function: $\lambda \partial g\left(\operatorname{prox}_{\lambda g}(\mathbf{x})\right)+\operatorname{prox}_{\lambda g}(\mathbf{x})=(\lambda \partial g+\mathbb{I})\left(\operatorname{prox}_{\lambda g}(\mathbf{x})\right)$
- The inclusion becomes: $\mathbf{x} \in(\lambda \partial g+\mathbb{I})\left(\operatorname{prox}_{\lambda g}(\mathbf{x})\right)$.
- Finally, we compute the inverse of $(\lambda \partial g+\mathbb{I})(\cdot)$ to conclude: $\operatorname{prox}_{\lambda g}(\mathbf{x})=(\lambda \partial g+\mathbb{I})^{-1}(\mathbf{x})$.
- In the literature, $(\lambda \partial g+\mathbb{I})^{-1}$ is called the resolvent of the subdifferential of g with parameter λ.
- This is just a technical term that stands for proximal operator of λg, as we have defined in this course.

* A short detour: Basic properties of prox-operator

Property (Basic properties of prox-operator)

1. $\operatorname{prox}_{g}(\mathbf{x})$ is well-defined and single-valued (i.e., the prox-operator (3) has a unique solution since $g(\cdot)+\frac{1}{2}\|\cdot-\mathbf{x}\|_{2}^{2}$ is strongly convex).
2. Optimality condition:

$$
\mathbf{x} \in \operatorname{prox}_{g}(\mathbf{x})+\partial g\left(\operatorname{prox}_{g}(\mathbf{x})\right), \mathbf{x} \in \mathbb{R}^{p}
$$

3. \mathbf{x}^{\star} is a fixed point of $\operatorname{prox}_{g}(\cdot)$:

$$
0 \in \partial g\left(\mathbf{x}^{\star}\right) \quad \Leftrightarrow \quad \mathbf{x}^{\star}=\operatorname{prox}_{g}\left(\mathbf{x}^{\star}\right)
$$

4. Nonexpansiveness:

$$
\left\|\operatorname{prox}_{g}(\mathbf{x})-\operatorname{prox}_{g}(\tilde{\mathbf{x}})\right\|_{2} \leq\|\mathbf{x}-\tilde{\mathbf{x}}\|_{2}, \quad \forall \mathbf{x}, \tilde{\mathbf{x}} \in \mathbb{R}^{p}
$$

Note: An operator is called non-expansive if it is L-Lipschitz continuous with $L=1$.

*Adaptive Restart

It is possible the preserve $\mathcal{O}\left(\frac{1}{k^{2}}\right)$ convergence guarantee!
One needs to slightly modify the algorithm as below.

Generalized fast proximal-gradient scheme

1. Choose $\mathbf{x}^{0}=\mathbf{x}^{-1} \in \operatorname{dom}(F)$ arbitrarily as a starting point.
2. Set $\theta_{0}=\theta_{-1}=1, \lambda:=L_{f}^{-1}$
3. For $k=0,1, \ldots$, generate two sequences $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ and $\left\{\mathbf{y}^{k}\right\}_{k \geq 0}$ as:

$$
\left\{\begin{array}{l}
\mathbf{y}^{k}:=\mathbf{x}^{k}+\theta_{k}\left(\theta_{k-1}^{-1}-1\right)\left(\mathbf{x}^{k}-\mathbf{x}^{k-1}\right) \\
\mathbf{x}^{k+1}:=\operatorname{prox}_{\lambda g}\left(\mathbf{y}^{k}-\lambda \nabla f\left(\mathbf{y}^{k}\right)\right) \tag{14}\\
\text { if restart test holds } \\
\quad \theta_{k-1}=\theta_{k}=1 \\
\quad \mathbf{y}^{k}=\mathbf{x}^{k} \\
\quad \mathbf{x}^{k+1}:=\operatorname{prox}_{\lambda g}\left(\mathbf{y}^{k}-\lambda \nabla f\left(\mathbf{y}^{k}\right)\right)
\end{array}\right.
$$

θ_{k} is chosen so that it satisfies

$$
\theta_{k+1}=\frac{\sqrt{\theta_{k}^{4}+4 \theta_{k}^{2}}-\theta_{k}^{2}}{2}<\frac{2}{k+3}
$$

*Adaptive Restart: Guarantee

Theorem (Global complexity [8])

The sequence $\left\{\mathbf{x}^{k}\right\}_{k \geq 0}$ generated by the modified algorithm satisfies

$$
\begin{equation*}
F\left(\mathbf{x}^{k}\right)-F^{\star} \leq \frac{2 L_{f}}{(k+2)^{2}}\left(R_{0}^{2}+\sum_{k_{i} \leq k}\left(\left\|\mathbf{x}^{\star}-\mathbf{x}^{k_{i}}\right\|_{2}^{2}-\left\|\mathbf{x}^{\star}-\mathbf{z}^{k_{i}}\right\|_{2}^{2}\right)\right) \forall k \geq 0 \tag{15}
\end{equation*}
$$

where $R_{0}:=\min _{\mathbf{x}^{\star} \in \mathcal{S}^{\star}}\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|, \mathbf{z}^{k}=\mathbf{x}^{k-1}+\theta_{k-1}^{-1}\left(\mathbf{x}^{k}-\mathbf{x}^{k-1}\right)$ and $k_{i}, i=1 \ldots$ are the iterations for which the restart test holds.

Various restarts tests that might coincide with $\left\|\mathrm{x}^{*}-\mathrm{x}^{k_{i}}\right\|_{2}^{2} \leq\left\|\mathrm{x}^{*}-\mathrm{z}^{k_{i}}\right\|_{2}^{2}$

- Exact non-monotonicity test: $F\left(\mathrm{x}^{k+1}\right)-F\left(\mathrm{x}^{k}\right)>0$
- Non-monotonicity test: $\left\langle\left(L_{F}\left(\mathbf{y}^{k-1}-\mathbf{x}^{k}\right), \mathbf{x}^{k+1}-\frac{1}{2}\left(\mathbf{x}^{k}+y^{k-1}\right)\right\rangle>0\right.$ (implies exact non-monotonicity and it is advantageous when function evaluations are expensive)
- Gradient-mapping based test: $\left\langle\left(L_{f}\left(\mathbf{y}^{k}-\mathbf{x}^{k+1}\right), \mathbf{x}^{k+1}-\mathbf{x}^{k}\right\rangle>0\right.$

*Recall: Composite convex minimization

Problem (Unconstrained composite convex minimization)

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{F(\mathbf{x}):=f(\mathbf{x})+g(\mathbf{x})\}
$$

- f and g are both proper, closed, and convex.
- $\operatorname{dom}(F):=\operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$ and $-\infty<F^{\star}<+\infty$.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(F): F\left(\mathbf{x}^{\star}\right)=F^{\star}\right\}$ is nonempty.

*Recall: Composite convex minimization guarantees

Proximal gradient method(ISTA) vs. fast proximal gradient method (FISTA)

Assumptions, step sizes and convergence rates

Proximal gradient method:

$$
f \in \mathcal{F}_{L}^{1,1}, \quad \alpha=\frac{1}{L}
$$

$$
F\left(\mathbf{x}^{k}\right)-F\left(\mathbf{x}^{\star}\right) \leq \epsilon, \quad \mathcal{O}\left(\frac{1}{\epsilon}\right)
$$

Fast proximal gradient method:

$$
f \in \mathcal{F}_{L}^{1,1}, \quad \alpha=\frac{1}{L} \quad F\left(\mathbf{x}^{k}\right)-F\left(\mathbf{x}^{\star}\right) \leq \epsilon, \quad \mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right) .
$$

*Recall: Composite convex minimization guarantees

Proximal gradient method(ISTA) vs. fast proximal gradient method (FISTA)

Assumptions, step sizes and convergence rates

Proximal gradient method:

$$
f \in \mathcal{F}_{L}^{1,1}, \quad \alpha=\frac{1}{L} \quad F\left(\mathbf{x}^{k}\right)-F\left(\mathbf{x}^{\star}\right) \leq \epsilon, \quad \mathcal{O}\left(\frac{1}{\epsilon}\right)
$$

Fast proximal gradient method:

$$
f \in \mathcal{F}_{L}^{1,1}, \quad \alpha=\frac{1}{L} \quad F\left(\mathbf{x}^{k}\right)-F\left(\mathbf{x}^{\star}\right) \leq \epsilon, \quad \mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right) .
$$

- We require α_{k} to be a function of L.
- It may not be possible to know exactly the Lipschitz constant. Line-search ?
- Adaptation to local geometry \rightarrow may lead to larger steps.

*How can we better adapt to the local geometry?

Non-adaptive:

*How can we better adapt to the local geometry?

Line-search:

*How can we better adapt to the local geometry?
Variable metric:

*The idea of the proximal-Newton method

Assumptions A. 2

Assume that $f \in \mathcal{F}_{L, \mu}^{2,1}\left(\mathbb{R}^{p}\right)$ and $g \in \mathcal{F}_{\text {prox }}\left(\mathbb{R}^{p}\right)$.

*Proximal-Newton update

- Similar to classical newton, proximal-newton suggests the following update scheme using second order Taylor series expansion near \mathbf{x}_{k}.

$$
\begin{equation*}
\mathbf{x}^{k+1}:=\underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min _{2}}\{\underbrace{\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{k}\right)^{T} \nabla^{2} f\left(\mathbf{x}^{k}\right)\left(\mathbf{x}-\mathbf{x}^{k}\right)+\nabla f\left(\mathbf{x}^{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{k}\right)}_{\text {2nd-order Taylor expansion near } \mathbf{x}^{k}}+g(\mathbf{x})\} . \tag{16}
\end{equation*}
$$

*The proximal-Newton-type algorithm

Proximal-Newton algorithm (PNA)

1. Given $\mathbf{x}^{0} \in \mathbb{R}^{p}$ as a starting point.
2. For $k=0,1, \cdots$, perform the following steps:
2.1. Evaluate an SDP matrix $\mathbf{H}_{k} \approx \nabla^{2} f\left(\mathbf{x}^{k}\right)$ and $\nabla f\left(\mathbf{x}^{k}\right)$.
2.2. Compute $\mathbf{d}^{k}:=\operatorname{prox}_{\mathbf{H}_{k}^{-1} g}\left(\mathbf{x}^{k}-\mathbf{H}_{k}^{-1} \nabla f\left(\mathbf{x}^{k}\right)\right)-\mathbf{x}^{k}$.
2.3. Update $\mathbf{x}^{k+1}:=\mathbf{x}^{k}+\alpha_{k} \mathbf{d}^{k}$.
*The proximal-Newton-type algorithm

Proximal-Newton algorithm (PNA)

1. Given $\mathbf{x}^{0} \in \mathbb{R}^{p}$ as a starting point.
2. For $k=0,1, \cdots$, perform the following steps:
2.1. Evaluate an SDP matrix $\mathbf{H}_{k} \approx \nabla^{2} f\left(\mathbf{x}^{k}\right)$ and $\nabla f\left(\mathbf{x}^{k}\right)$.
2.2. Compute $\mathbf{d}^{k}:=\operatorname{prox}_{\mathbf{H}_{k}^{-1} g}\left(\mathbf{x}^{k}-\mathbf{H}_{k}^{-1} \nabla f\left(\mathbf{x}^{k}\right)\right)-\mathbf{x}^{k}$.
2.3. Update $\mathbf{x}^{k+1}:=\mathbf{x}^{k}+\alpha_{k} \mathbf{d}^{k}$.

Remark

- $\mathbf{H}_{k} \equiv \nabla^{2} f\left(\mathbf{x}^{k}\right) \Longrightarrow$ proximal-Newton algorithm.
- $\mathbf{H}_{k} \approx \nabla^{2} f\left(\mathbf{x}^{k}\right) \Longrightarrow$ proximal-quasi-Newton algorithm.
- A generalized prox-operator: $\operatorname{prox}_{\mathbf{H}_{k}^{-1} g}\left(\mathbf{x}^{k}+\mathbf{H}_{k}^{-1} \nabla f\left(\mathbf{x}^{k}\right)\right)$.

*Convergence analysis

Theorem (Global convergence [11])

Assume generalized-prox subproblem is solved exactly for the algorithm and there exists $\mu>0$ such that $\mathbf{H}_{k} \succeq \mu \mathbb{I}$ for all $k \geq 0$. Then;

$$
\left\{\mathbf{x}^{k}\right\}_{k \geq 0} \text { globally converges to a solution } \mathbf{x}^{\star} \text { of (2). }
$$

*Convergence analysis

Theorem (Global convergence [11])

Assume generalized-prox subproblem is solved exactly for the algorithm and there exists $\mu>0$ such that $\mathbf{H}_{k} \succeq \mu \mathbb{I}$ for all $k \geq 0$. Then;

$$
\left\{\mathbf{x}^{k}\right\}_{k \geq 0} \text { globally converges to a solution } \mathbf{x}^{\star} \text { of (2). }
$$

Theorem (Local convergence [11])

Assume generalized-prox subproblem is solved exactly for the algorithm there exists $0<\mu \leq L_{2}<+\infty$ such that $\mu \mathbb{I} \preceq \mathbf{H}_{k} \preceq L_{2} \mathbb{I}$ for all sufficiently large k. Then;

- If $\overline{\mathbf{H}}_{k} \equiv \nabla^{2} f\left(\mathbf{x}^{k}\right)$, then $\alpha_{k}=1$ for k sufficiently large (full-step).
- If $\mathbf{H}_{k} \equiv \nabla^{2} f\left(\mathbf{x}^{k}\right)$, then $\left\{\mathbf{x}^{k}\right\}$ locally converges to \mathbf{x}^{\star} at a quadratic rate.
- If \mathbf{H}_{k} satisfies the Dennis-Moré condition:

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \frac{\left\|\left(\mathbf{H}_{k}-\nabla^{2} f\left(\mathbf{x}^{\star}\right)\right)\left(\mathbf{x}^{k+1}-\mathbf{x}^{k}\right)\right\|}{\left\|\mathbf{x}^{k+1}-\mathbf{x}^{k}\right\|}=0 \tag{17}
\end{equation*}
$$

then $\left\{\mathbf{x}^{k}\right\}$ locally converges to \mathbf{x}^{\star} at a super linear rate.
*How to compute the approximation \mathbf{H}_{k} ?

How to update \mathbf{H}_{k} ?

Matrix \mathbf{H}_{k} can be updated by using low-rank updates.

- BFGS update: maintain the Dennis-Moré condition and $\mathbf{H}_{k} \succ 0$.

$$
\mathbf{H}_{k+1}:=\mathbf{H}_{k}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{T}}{\mathbf{s}_{k}^{T} \mathbf{y}_{k}}-\frac{\mathbf{H}_{k} \mathbf{s}_{k} \mathbf{s}_{k}^{T} \mathbf{H}_{k}}{\mathbf{s}_{k}^{T} \mathbf{H}_{k} \mathbf{s}_{k}}, \quad \mathbf{H}_{0}:=\gamma \mathbb{I}, \quad(\gamma>0) .
$$

where $\mathbf{y}_{k}:=\nabla f\left(\mathbf{x}^{k+1}\right)-\nabla f\left(\mathbf{x}^{k}\right)$ and $\mathbf{s}_{k}:=\mathbf{x}^{k+1}-\mathbf{x}^{k}$.

- Diagonal+Rank-1 [3]: computing PN direction \mathbf{d}^{k} is in polynomial time, but it does not maintain the Dennis-Moré condition:

$$
\mathbf{H}_{k}:=\mathbf{D}_{k}+\mathbf{u}_{k} \mathbf{u}_{k}^{T}, \quad \mathbf{u}_{k}:=\frac{\mathbf{s}_{k}-\mathbf{H}_{0} \mathbf{y}_{k}}{\sqrt{\left(\mathbf{s}_{k}-\mathbf{H}_{0} \mathbf{y}_{k}\right)^{T} \mathbf{y}_{k}}}
$$

where \mathbf{D}_{k} is a positive diagonal matrix.

*Pros and cons

Pros

- Fast local convergence rate (super-linear or quadratic)
- Numerical robustness under the inexactness/noise ([11]).
- Well-suited for problems with many data points but few parameters. For example,

$$
F^{*}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\sum_{j=1}^{n} \ell_{j}\left(\mathbf{a}_{j}^{T} \mathbf{x}+b_{j}\right)+g(\mathbf{x})\right\}
$$

where ℓ_{j} is twice continuously differentiable and convex, $g \in \mathcal{F}_{\text {prox }}, p \ll n$.

*Pros and cons

Pros

- Fast local convergence rate (super-linear or quadratic)
- Numerical robustness under the inexactness/noise ([11]).
- Well-suited for problems with many data points but few parameters. For example,

$$
F^{*}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\sum_{j=1}^{n} \ell_{j}\left(\mathbf{a}_{j}^{T} \mathbf{x}+b_{j}\right)+g(\mathbf{x})\right\}
$$

where ℓ_{j} is twice continuously differentiable and convex, $g \in \mathcal{F}_{\text {prox }}, p \ll n$.

Cons

- Expensive iteration compared to proximal-gradient methods.
- Global convergence rate may be worse than accelerated proximal-gradient methods.
- Requires a good initial point to get fast local convergence.
- Requires strict conditions for global/local convergence analysis.

*Example 1: Sparse logistic regression

Problem (Sparse logistic regression)

Given a sample vector $\mathbf{a} \in \mathbb{R}^{p}$ and a binary class label vector $\mathbf{b} \in\{-1,+1\}^{n}$. The conditional probability of a label b given \mathbf{a} is defined as:

$$
\mathbb{P}(b \mid \mathbf{a}, \mathbf{x}, \mu)=\frac{1}{1+e^{-b\left(\mathbf{x}^{T} \mathbf{a}+\mu\right)}},
$$

where $\mathbf{x} \in \mathbb{R}^{p}$ is a weight vector, μ is called the intercept.
Goal: Find a sparse-weight vector \mathbf{x} via the maximum likelihood principle.

Optimization formulation

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{p}}\{\underbrace{\frac{1}{n} \sum_{i=1}^{n} L\left(b_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}+\mu\right)\right)}_{f(\mathbf{x})}+\underbrace{\rho\|\mathbf{x}\|_{1}}_{g(\mathbf{x})}\} \tag{18}
\end{equation*}
$$

where \mathbf{a}_{i} is the i-th row of data matrix \mathbf{A} in $\mathbb{R}^{n \times p}, \rho>0$ is a regularization parameter, and ℓ is the logistic loss function $\ell(\tau):=\log \left(1+e^{-\tau}\right)$.

*Example: Sparse logistic regression

Real data

- Real data: w2a with $n=3470$ data points, $p=300$ features
- Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters

- Tolerance 10^{-6}.
- L-BFGS memory $m=50$.
- Ground truth: Get a high accuracy approximation of \mathbf{x}^{\star} and f^{\star} by TFOCS with tolerance 10^{-12}.

*Example: Sparse logistic regression-Numerical results

*Example 2: ℓ_{1}-regularized least squares

Problem (ℓ_{1}-regularized least squares)

Given $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$, solve:

$$
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{F(\mathbf{x}):=\frac{1}{2}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}+\rho\|\mathbf{x}\|_{1}\right\}
$$

where $\rho>0$ is a regularization parameter.

Complexity per iterations

- Evaluating $\nabla f\left(\mathbf{x}^{k}\right)=\mathbf{A}^{T}\left(\mathbf{A} \mathbf{x}^{k}-\mathbf{b}\right)$ requires one $\mathbf{A x}$ and one $\mathbf{A}^{T} \mathbf{y}$.
- One soft-thresholding operator $\operatorname{prox}_{\lambda g}(\mathbf{x})=\operatorname{sign}(\mathbf{x}) \otimes \max \{|\mathbf{x}|-\rho, 0\}$.
- Optional: Evaluating $L=\left\|\mathbf{A}^{T} \mathbf{A}\right\|$ (spectral norm) - via power iterations (e.g., 20 iterations, each iteration requires one $\mathbf{A x}$ and one $\mathbf{A}^{T} \mathbf{y}$).

Synthetic data generation

- $\mathbf{A}:=\operatorname{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, \mathbb{I})$.
- \mathbf{x}^{\star} is a s-sparse vector generated randomly.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\star}+\mathcal{N}\left(0,10^{-3}\right)$.
*Example 2: ℓ_{1}-regularized least squares - Numerical results - Trial 1
Parameters: $n=750, p=2000, s=200, \rho=1$

*Example 2: ℓ_{1}-regularized least squares - Numerical results - Trial 2
Parameters: $n=750, p=2000, s=200, \rho=1$

References I

[1] Amir Beck.
First-order methods in optimization, volume 25.
SIAM, 2017.
(Cited on pages 36, 37, and 38.)
[2] Amir Beck and Marc Teboulle.
A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci., 2(1):183-202, 2009.
(Cited on pages 19, 20, and 22.)
[3] S. Becker and M. J. Fadili.
A quasi-newton proximal splitting method.
In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, NIPS'12, pages 2618-2626, Red Hook, NY, USA, 2012. Curran Associates Inc.
(Cited on page 78.)
[4] E.J. Candès, T. Strohmer, and V. Voroninski.
Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. IEE Trans. Signal Processing, 60(5):2422-2432, 2012.
(Cited on pages 54 and 55.)

References II

[5] P. Combettes and J.-C. Pesquet.
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter Proximal Splitting Methods in Signal Processing, pages 185-212.
Springer-Velarg, 2011.
(Cited on page 17.)
[6] Marguerite Frank and Philip Wolfe.
An algorithm for quadratic programming.
Naval Res. Logis. Quart., 3:95-110, 1956.
(Cited on page 45.)
[7] Dan Garber and Elad Hazan.
Faster rates for the frank-wolfe method over strongly-convex sets.
In Proceedings of the 32nd International Conference on International Conference on Machine Learning Volume 37, '15, pages 541-549. JMLR.org, 2015.
(Cited on pages 49 and 50.)
[8] Pontus Giselsson and Stephen Boyd.
Monotonicity and restart in fast gradient methods.
In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, pages 5058-5063. IEEE, 2014. (Cited on page 66.)

References III

[9] E. Hazan and H. Luo.
Variance-reduced and projection-free stochastic optimization.
In Proc. 33rd Int. Conf. Machine Learning, 2016.
(Cited on page 60.)
[10] M. Jaggi.
Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.
JMLR W\&CP, 28(1):427-435, 2013.
(Cited on page 45.)
[11] J.D. Lee, Y. Sun, and M.A. Saunders.
Proximal newton-type methods for convex optimization.
Tech. Report., pages 1-25, 2012.
(Cited on pages 76, 77, 79, and 80.)
[12] Ion Necoara.
General convergence analysis of stochastic first order methods for composite optimization, 2020.
(Cited on page 43.)

References IV

[13] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. Stat. Sci., 27(4):538-557, 2012.
(Cited on page 4.)
[14] Yurii Nesterov.
Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science \& Business Media, 2013.
(Cited on page 31.)
[15] N. Parikh and S. Boyd.
Proximal algorithms.
Found. Trends Opt., 1(3):123-231, 2013.
(Cited on page 17.)
[16] Pradeep Ravikumar, Martin J. Wainwright, Garvesh Raskutti, and Bin Yu.
High-dimensional covariance estimation by minimizing ℓ_{1}-penalized log-determinant divergence.
Elec. J. Stats., 5:935-980, 2011.
(Cited on page 5.)

References V

[17] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola.
Stochastic frank-wolfe methods for nonconvex optimization.
arXiv preprint arXiv:1607.08254, 2016.
(Cited on page 58.)
[18] R Tyrrell Rockafellar.
Monotone operators and the proximal point algorithm.
SIAM journal on control and optimization, 14(5):877-898, 1976.
(Cited on pages 12 and 13.)
[19] Alp Yurtsever, Ya-Ping Hsieh, and Volkan Cevher.
Scalable convex methods for phase retrieval.
In 6th IEEE Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2015.
(Cited on page 55.)

