# Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

### Lecture 3: Some basics on optimization

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2023)

















#### License Information for Mathematics of Data Slides

▶ This work is released under a <u>Creative Commons License</u> with the following terms:

#### Attribution

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

#### Non-Commercial

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes — unless they get the licensor's permission.

#### ▶ Share Alike

► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work

#### ▶ Full Text of the License

### Survey responses

- o A majority of respondents are familiar with Python.
  - ▶ Most are comfortable with Jupyter notebooks.
  - ► There is a clear preference for PyTorch.



Which Deep Learning framework would you prefer to use for Homework 2? Check multiple choices if there is no preference among them.

41 responses



Remark:

o Homeworks will be given as Jupyter notebooks.

#### Outline

- ► This lecture
  - 1. Linear algebra: Norms, matrix norms, dual norms
  - 2. Analysis: Continuity, Lipschitz continuity, differentiation
  - 3. Convexity: Convex sets, convex functions, subdifferentials, L-Lipschitz gradient functions, strong convexity
  - 4. Convergence rates and convergence plots
- Next lecture
  - 1 Gradient descent methods

#### Vector norms

# Definition (Vector norm)

A norm of a vector in  $\mathbb{R}^p$  is a function  $\|\cdot\|: \mathbb{R}^p \to \mathbb{R}$  such that for all vectors  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$  and scalar  $\lambda \in \mathbb{R}$ 

(a)  $\|\mathbf{x}\| > 0$  for all  $\mathbf{x} \in \mathbb{R}^p$ 

nonnegativity

(b)  $\|\mathbf{x}\| = 0$  if and only if  $\mathbf{x} = \mathbf{0}$ 

definitiveness

(c)  $\|\lambda \mathbf{x}\| = |\lambda| \|\mathbf{x}\|$ 

homogeniety

(d)  $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ 

triangle inequality

#### **Observations:**

- $\circ$  There is a family of  $\ell_q$ -norms parameterized by  $q \in [1, \infty]$ ;
- $\circ$  For  $\mathbf{x} \in \mathbb{R}^p$ , the  $\ell_q$ -norm is defined as  $\|\mathbf{x}\|_q := \left(\sum_{i=1}^p |x_i|^q\right)^{1/q}$ .

# Example

- (1)  $\ell_2$ -norm:  $\|\mathbf{x}\|_2 := \sqrt{\sum_{i=1}^p x_i^2}$  (Euclidean norm)
- (2)  $\ell_1$ -norm:  $\|\mathbf{x}\|_1 := \sum_{i=1}^p |x_i|$  (Manhattan norm)
- (3)  $\ell_{\infty}$ -norm:  $\|\mathbf{x}\|_{\infty} := \max_{i=1,\dots,n} |x_i|$  (Chebyshev norm)

#### Vector norms contd.

# Definition (Quasi-norm)

A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is replaced by  $\|\mathbf{x} + \mathbf{y}\| \le c(\|\mathbf{x}\| + \|\mathbf{y}\|)$  for a constant  $c \ge 1$ .

# Definition (Semi(pseudo)-norm)

A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

# Example

- ▶ The  $\ell_q$ -norm is in fact a quasi norm when  $q \in (0,1)$ , with  $c = 2^{1/q} 1$ .
- ► The total variation norm (TV-norm) defined (in 1D):  $\|\mathbf{x}\|_{\text{TV}} := \sum_{i=1}^{p-1} |x_{i+1} x_i|$  is a semi-norm since it fails to satisfy (b); e.g., any  $\mathbf{x} = c(1, 1, \dots, 1)^T$  for  $c \neq 0$  will have  $\|\mathbf{x}\|_{\text{TV}} = 0$  even though  $\mathbf{x} \neq \mathbf{0}$ .

# Definition ( $\ell_0$ -"norm")

$$\|\mathbf{x}\|_0 = \lim_{q \to 0} \|\mathbf{x}\|_q^q = |\{i : x_i \neq 0\}|$$

- **Observations:** o The  $\ell_0$ -"norm" counts the non-zero components of x. Hence, it is **not** a norm.
  - $\circ$  It does not satisfy the property (c)  $\Rightarrow$  it is also neither a **quasi** nor a **semi-norm**.

#### Vector norms contd.

### Norm balls

Radius 
$$r$$
 ball in  $\ell_q$ -norm:  $\mathcal{B}_q(r)$ 

$$\mathcal{B}_q(r) = \{ \mathbf{x} \in \mathbb{R}^p : ||\mathbf{x}||_q \le r \}$$



Table: Some norm balls in  $\mathbb{R}^3$ 

#### Vector norms contd.

# Definition (Dual norm)

Let  $\|\cdot\|$  be a norm in  $\mathbb{R}^p$ , then the **dual norm** denoted by  $\|\cdot\|^*$  is defined:

$$\|\mathbf{x}\|^* = \sup_{\|\mathbf{y}\| \le 1} \mathbf{x}^T \mathbf{y}, \quad \text{for all } \mathbf{x} \in \mathbb{R}^p$$

#### **Observations:**

- The dual of the dual norm is the original (primal) norm, i.e.,  $\|\mathbf{x}\|^{**} = \|\mathbf{x}\|$ .
- $\circ$  The dual of  $\|\cdot\|_q$  is  $\|\cdot\|_p$  where p is such that  $\frac{1}{q} + \frac{1}{p} = 1$ .
- o Hölder's inequality:  $|\mathbf{x}^T\mathbf{y}| \leq \|\mathbf{x}\|_q \|\mathbf{y}\|_p$ , where  $p \in [1, +\infty)$  and  $\frac{1}{q} + \frac{1}{p} = 1$ .
- $\circ$  Cauchy-Schwarz is a special case of Hölder's inequality (q=p=2).

# Example

- i)  $\|\cdot\|_2$  is dual of  $\|\cdot\|_2$  (i.e.  $\|\cdot\|_2$  is self-dual):  $\sup\{\mathbf{z}^T\mathbf{x} \mid \|\mathbf{x}\|_2 \le 1\} = \|\mathbf{z}\|_2$ .
- ii)  $\|\cdot\|_1$  is dual of  $\|\cdot\|_{\infty}$ , (and *vice versa*):  $\sup\{\mathbf{z}^T\mathbf{x}\mid \|\mathbf{x}\|_{\infty}\leq 1\}=\|\mathbf{z}\|_1$ .

#### Matrix norms

o Similar to vector norms, matrix norms are a metric over matrices:

# Definition (Matrix norm)

A norm of an  $n \times p$  matrix is a map  $\|\cdot\| : \mathbb{R}^{n \times p} \to \mathbb{R}$  such that for all matrices  $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times p}$  and scalar  $\lambda \in \mathbb{R}$ 

- (a)  $\|\mathbf{A}\| \geq 0$  for all  $\mathbf{A} \in \mathbb{R}^{n \times p}$
- nonnegativity (b)  $\|\mathbf{A}\| = 0$  if and only if  $\mathbf{A} = \mathbf{0}$ definitiveness
- (c)  $\|\lambda \mathbf{A}\| = |\lambda| \|\mathbf{A}\|$
- homogeniety (d)  $\|\mathbf{A} + \mathbf{B}\| < \|\mathbf{A}\| + \|\mathbf{B}\|$ triangle inequality

# Definition (Matrix inner product)

Matrix inner product is defined as follows

$$\langle \mathbf{A}, \mathbf{B} \rangle = \mathsf{trace}\left(\mathbf{A}\mathbf{B}^T\right)$$
 .

o Similar to vector  $\ell_p$ -norms, we have Schatten q-norms for matrices.

# Definition (Schatten q-norms)

 $\|\mathbf{A}\|_q := \left(\sum_{i=1}^p (\sigma(\mathbf{A})_i)^q\right)^{1/q}$ , where  $\sigma(\mathbf{A})_i$  is the  $i^{th}$  singular value of  $\mathbf{A}$ .

Example (with 
$$r = \min\{n, p\}$$
 and  $\sigma_i = \sigma(\mathbf{A})_i$ ) 
$$\|\mathbf{A}\|_1^S = \|\mathbf{A}\|_* := \sum_{i=1}^r \sigma_i \qquad \equiv \operatorname{trace}\left(\sqrt{\mathbf{A}^T\mathbf{A}}\right) \quad \text{(Nuclear/trace)}$$
 
$$\|\mathbf{A}\|_2^S = \|\mathbf{A}\|_F := \sqrt{\sum_{i=1}^r (\sigma_i)^2} \quad \equiv \sqrt{\sum_{i=1}^n \sum_{j=1}^p |a_{ij}|^2} \quad \text{(Frobenius)}$$
 
$$\|\mathbf{A}\|_{\infty}^S = \|\mathbf{A}\| \quad := \max_{i=1,\dots,r} \{\sigma_i\} \quad \equiv \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \quad \text{(Spectral/matrix)}$$

### Definition (Operator norm)

The operator norm between  $\ell_q$  and  $\ell_r$   $(1 \le q, r \le \infty)$  of a matrix **A** is defined as

$$\|\mathbf{A}\|_{q\to r} = \sup_{\|\mathbf{x}\|_q \le 1} \|\mathbf{A}\mathbf{x}\|_r$$

#### Problem

Show that  $\|\mathbf{A}\|_{2\to 2} = \|\mathbf{A}\|$  i.e.,  $\ell_2$  to  $\ell_2$  operator norm is the spectral norm.

### Solution

$$\begin{split} \|\mathbf{A}\|_{2\to 2} &= \sup_{\|\mathbf{x}\|_2 \le 1} \|\mathbf{A}\mathbf{x}\|_2 = \sup_{\|\mathbf{x}\|_2 \le 1} \|\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T\mathbf{x}\|_2 \quad \text{(using SVD of } \mathbf{A}) \\ &= \sup_{\|\mathbf{x}\|_2 \le 1} \|\boldsymbol{\Sigma}\mathbf{V}^T\mathbf{x}\|_2 \quad \text{(rotational invariance of } \|\cdot\|_2) \\ &= \sup_{\|\mathbf{z}\|_2 \le 1} \|\boldsymbol{\Sigma}\mathbf{z}\|_2 \quad \text{(letting } \mathbf{V}^T\mathbf{x} = \mathbf{z}) \\ &= \sup_{\|\mathbf{z}\|_2 \le 1} \sqrt{\sum_{i=1}^{\min(n,p)} \sigma_i^2 z_i^2} = \sigma_{\max} = \|\mathbf{A}\| \end{split}$$

### Other examples

▶ The  $\|\mathbf{A}\|_{\infty\to\infty}$  (norm induced by  $\ell_{\infty}$ -norm) also denoted  $\|\mathbf{A}\|_{\infty}$ , is the max-row-sum norm:

$$\|\mathbf{A}\|_{\infty \to \infty} := \sup\{\|\mathbf{A}\mathbf{x}\|_{\infty} \mid \|\mathbf{x}\|_{\infty} \le 1\} = \max_{i=1,\dots,n} \sum_{j=1}^{p} |a_{ij}|.$$

▶ The  $\|\mathbf{A}\|_{1\to 1}$  (norm induced by  $\ell_1$ -norm) also denoted  $\|\mathbf{A}\|_1$ , is the max-column-sum norm:

$$\|\mathbf{A}\|_{1\to 1} := \sup\{\|\mathbf{A}\mathbf{x}\|_1 \mid \|\mathbf{x}\|_1 \le 1\} = \max_{i=1,\dots,p} \sum_{j=1}^n |a_{ij}|.$$

# Matrix & vector norm analogy

| Vectors  | $\ \mathbf{x}\ _1$ | $\ \mathbf{x}\ _2$ | $\ \mathbf{x}\ _{\infty}$ |
|----------|--------------------|--------------------|---------------------------|
| Matrices | $\ \mathbf{X}\ _*$ | $\ \mathbf{X}\ _F$ | $\ \mathbf{X}\ $          |

# Definition (Dual of a matrix)

The dual norm of  $\mathbf{A} \in \mathbb{R}^{n \times p}$  is defined as

$$\|\mathbf{A}\|^* = \sup \left\{ \operatorname{trace} \left( \mathbf{A}^T \mathbf{X} \right) \mid \|\mathbf{X}\| \le 1 \right\}.$$

# Matrix & vector dual norm analogy

| Vector primal norm | $\ \mathbf{x}\ _1$        | $\ \mathbf{x}\ _2$ | $\ \mathbf{x}\ _{\infty}$ |
|--------------------|---------------------------|--------------------|---------------------------|
| Vector dual norm   | $\ \mathbf{x}\ _{\infty}$ | $\ \mathbf{x}\ _2$ | $\ \mathbf{x}\ _1$        |
| Matrix primal norm | $\ \mathbf{X}\ _*$        | $\ \mathbf{X}\ _F$ | $\ \mathbf{X}\ $          |
| Matrix dual norm   | $\ \mathbf{X}\ $          | $\ \mathbf{X}\ _F$ | $\ \mathbf{X}\ _*$        |

#### Matrix definitions contd.

# Definition (Positive semidefinite & positive definite matrices)

A symmetric matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$  is positive semidefinite (denoted  $\mathbf{A} \succeq 0$ ) if  $\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$  for all  $\mathbf{x} \neq \mathbf{0}$ ; while it is positive definite (denoted  $\mathbf{A} \succ 0$ ) if  $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ .

#### Observations:

- $\circ$  **A**  $\succeq 0$  iff all its eigenvalues are **nonnegative** i.e.  $\lambda_{\min}(\mathbf{A}) \geq 0$ .
- $\circ$  Similarly,  $\mathbf{A} \succ 0$  iff all its eigenvalues are **positive** i.e.  $\lambda_{\min}(\mathbf{A}) > 0$ .
- $\circ$  **A** is negative semidefinite if  $-\mathbf{A} \succeq 0$ ; while **A** is negative definite if  $-\mathbf{A} \succ 0$ .
- $\circ$  Semidefinite ordering of two *symmetric* matrices, A and B:  $A \succeq B$  if  $A B \succeq 0$ .

# Example (Matrix inequalities)

- 1. If  $\mathbf{A} \succeq 0$  and  $\mathbf{B} \succeq 0$ , then  $\mathbf{A} + \mathbf{B} \succeq 0$
- 2. If  $A \succeq B$  and  $C \succeq D$ , then  $A + C \succeq B + D$
- 3. If  $\mathbf{B} \leq 0$  then  $\mathbf{A} + \mathbf{B} \leq \mathbf{A}$
- 4. If  $\mathbf{A} \succeq 0$  and  $\alpha \geq 0$ , then  $\alpha \mathbf{A} \succeq 0$
- 5. If  $\mathbf{A} \succ 0$ , then  $\mathbf{A}^2 \succ 0$
- 6. If  $\mathbf{A} \succ 0$ , then  $\mathbf{A}^{-1} \succ 0$

# **Continuity in functions**

# Definition (Continuity)

Let  $f:\mathcal{Q}\to\mathbb{R}$  where  $\mathcal{Q}\subseteq\mathbb{R}^p$ . Then, f is a continuous function over its domain  $\mathcal{Q}$  if and only if

$$\lim_{\mathbf{x}\to\mathbf{y}} f(\mathbf{x}) = f(\mathbf{y}), \quad \forall \mathbf{y} \in \mathcal{Q},$$

i.e., the limit of f—as  $\mathbf x$  approaches  $\mathbf y$ —exists and is equal to  $f(\mathbf y)$ .

# Definition (Class of continuous functions)

We denote the class of continuous functions f over the domain  $\mathcal{Q}$  as  $f \in \mathcal{C}(\mathcal{Q})$ .

# Definition (Lipschitz continuity)

Let  $f:\mathcal{Q}\to\mathbb{R}$  where  $\mathcal{Q}\subseteq\mathbb{R}^p$ . Then, f is called Lipschitz continuous if there exists a constant value  $K\geq 0$  such that the following holds

$$|f(\mathbf{y}) - f(\mathbf{x})| \le K ||\mathbf{y} - \mathbf{x}||_2, \quad \forall \mathbf{x}, \ \mathbf{y} \in \mathcal{Q}.$$

Observation: o "Small" changes in the input result into "small" changes in the function values.

# Continuity in functions



# Differentiability in functions

# Definition (Differentiability)

Let  $\mathcal{Q} \subseteq \mathbb{R}^p$ . A function  $f: \mathcal{Q} \to \mathbb{R}$  is said to be k-times continuously differentiable on  $\mathcal{Q}$  if all its partial derivatives up to k-th order exist and are continuous over  $\mathcal{Q}$ . Notation:  $f \in \mathcal{C}^k(\mathcal{Q})$ .

 $\circ$  A key quantity is the gradient of the function  $f: \mathcal{Q} \to \mathbb{R}$ , which we denote as  $\nabla f$  (e<sub>i</sub> is the *i*-th unit vector):

$$\nabla f(\mathbf{x}) := \sum_{i=1}^{p} \frac{\partial f}{\partial x_i} \mathbf{e}_i = \left[ \frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_p} \right]^T.$$

 $\circ \text{ For } k=2 \text{, we dub } \nabla^2 f \text{ as the } \mathbf{Hessian} \text{ of } f \text{, i.e., } \left[ \nabla^2 f \right]_{i,j} := \frac{\partial^2 f}{\partial x_i \partial x_j}.$ 

# **Gradients as linear approximations**

# A "Taylor" way of thinking about gradients:

Let  $\mathcal{Q}\subseteq\mathbb{R}^p$ . If  $f\in\mathcal{C}^1(\mathcal{Q})$ , then  $\mathbf{u}\mapsto\langle\nabla f(\mathbf{x}),\mathbf{u}\rangle$  is the *unique* linear function from  $\mathcal{Q}$  to  $\mathbb{R}$  such that

$$\lim_{\mathbf{u} \Rightarrow 0} \frac{|f(\mathbf{x} + \mathbf{u}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{u} \rangle|}{\|\mathbf{u}\|} \rightarrow 0$$

### Example

The gradient of  $f: \mathbf{x} \mapsto \|\mathbf{x}\|_2^2$  is

$$\nabla f(\mathbf{x}) = 2\mathbf{x}$$

Proof:

o To apply the Taylor way of thinking, we consider the following quantity:

$$\begin{split} f(\mathbf{x} + \mathbf{u}) - f(\mathbf{x}) &= \|\mathbf{x} + \mathbf{u}\|_2^2 - \|\mathbf{x}\|_2^2 = \|\mathbf{x}\|_2^2 + 2\langle \mathbf{x}, \mathbf{u} \rangle + \|\mathbf{u}\|_2^2 - \|\mathbf{x}\|_2^2 \\ &= 2\langle \mathbf{x}, \mathbf{u} \rangle + \|\mathbf{u}\|_2^2 \\ &= \langle 2\mathbf{x}, \mathbf{u} \rangle + o(\|\mathbf{u}\|_2). \end{split}$$

o Since the linear map is unique, we get that the gradient is  $\nabla f(\mathbf{x}) = 2\mathbf{x}$ .

#### To be or not to be differentiable



Figure: (Left panel)  $\infty$ -times continuously differentiable function in  $\mathbb R$ . (Right panel) Non-differentiable f(x) = |x| in  $\mathbb R$ .

#### Gradients of vector valued functions

#### Jacobian

When  $f: \mathbb{R}^n \rightrightarrows \mathbb{R}^d$  is a vector valued function, the following  $d \times n$  matrix **J** of partial derivatives

$$\left[\mathbf{J}_f(\mathbf{x})\right]_{i,j} := \frac{\partial f_i}{\partial x_j}(\mathbf{x})$$

is called the Jacobian of f at x.

Observations:

- $\circ$  The Jacobian is the transpose of the gradient, when f is real valued.
- o Thinking in terms of Jacobians is really helpful when we need to use the chain rule.

#### Chain Rule via Jacobians

Let  $\circ$  denote the functional composition:  $g \circ f := g(f(\mathbf{x}))$ . If  $g \circ f$  is differentiable at  $\mathbf{x}$ , then the following holds

$$\mathbf{J}_{g \circ f}(\mathbf{x}) = \mathbf{J}_g(f(\mathbf{x}))\mathbf{J}_f(\mathbf{x}).$$

Hence, the chain rule, which is helpful in differentiating function compositions, can be related to a simple product of Jacobian matrices.

# **Example: Quadratic loss**

# Example

The gradient of the function  $h: \mathbf{x} \mapsto \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$  is given by the following expression:

$$\nabla h(\mathbf{x}) = 2\mathbf{A}^T(\mathbf{A}\mathbf{x} - \mathbf{b}).$$

#### **Proof:**

- We apply the chain rule:
  - ▶ The Jacobian of the affine function  $f : \mathbf{x} \mapsto \mathbf{A}\mathbf{x} \mathbf{b}$  is  $\mathbf{J}_f(\mathbf{x}) = \mathbf{A}$ .
  - ▶ The gradient of  $g: \mathbf{x} \mapsto \|\mathbf{x}\|_2^2$  is  $\nabla g(\mathbf{x}) = 2\mathbf{x} \Rightarrow \mathbf{J}_g(\mathbf{x}) = 2\mathbf{x}^T$ .
  - ▶ Using the chain rule on the composition  $h = g \circ f$ :

$$\begin{aligned} \mathbf{J}_{g \circ f}(\mathbf{x}) &= \mathbf{J}_g(f(\mathbf{x})) \mathbf{J}_f(\mathbf{x}) \\ &= \mathbf{J}_g(\mathbf{A}\mathbf{x} - \mathbf{b}) \mathbf{J}_f(\mathbf{x}) \\ &= 2(\mathbf{A}\mathbf{x} - \mathbf{b})^T \mathbf{A}. \end{aligned}$$

 $\circ$  Since h is real valued, the Jacobian is a row vector, we obtain the gradient by transposing.

# **Example: Logistic loss**

# Example

The gradient of the logistic loss  $f(\mathbf{x}) = \log(1 + \exp(-b(\mathbf{a}^T\mathbf{x})))$  is given by the following expression:

$$\nabla f(\mathbf{x}) = -b \frac{\exp(-b(\mathbf{a}^T \mathbf{x}))}{1 + \exp(-b(\mathbf{a}^T \mathbf{x}))} \mathbf{a}.$$

**Proof:** 

- $\circ$  f is a composition of the following functions:
  - $h(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ , whose Jacobian is  $\mathbf{J}_h(\mathbf{x}) = \mathbf{a}^T$
  - $g(u) = \log(1 + \exp(-bu))$ , whose "1 × 1 Jacobian" is  $\mathbf{J}_g(u) = -b\frac{\exp(-bu)}{1 + \exp(-bu)}$
  - ► By the chain rule:

$$\mathbf{J}_f(\mathbf{x}) = \mathbf{J}_g(h(\mathbf{x})) \cdot \mathbf{J}_h(\mathbf{x})$$
$$= -b \frac{\exp(-b(\mathbf{a}^T \mathbf{x}))}{1 + \exp(-b(\mathbf{a}^T \mathbf{x}))} \mathbf{a}^T$$

 $\circ$  The gradient is simply the transpose of  $\mathbf{J}_f(\mathbf{x})$ .

### Use Jacobians !

With Jacobians, differentiating function compositions is a direct mechanical process.

# A more complicated example here and another one at the advanced material!

### Example

The gradient of  $f: \mathbf{x} \mapsto w_2^T \sigma(\mathbf{W}_1 \mathbf{x} + \boldsymbol{\mu})$  is given by the following expression:

$$\nabla f(\mathbf{x}) = \mathbf{J}_f(\mathbf{x})^T = \mathbf{W}_1^T(\sigma'(\mathbf{W}_1\mathbf{x} + \boldsymbol{\mu}) \odot \boldsymbol{w}_2),$$

where  $\sigma$  is a non-linear function that applies to each coordinate, and  $\odot$  denotes the component wise product.

Proof:

- $\circ$  We use the fact that f is a composition of the following functions:
  - $lackbox{f h}({f x}) = {f W}_1 {f x} + m{\mu}$ , whose Jacobian is  ${f J}_h({f x}) = {f W}_1$ .

- $lackbox{f k}({f x})={m w}_2^T{f x}$  whose Jacobian is  ${f J}_k({f x})={m w}_2^T.$
- By the chain rule, we have that

$$\begin{aligned} \mathbf{J}_f(\mathbf{x}) &= \mathbf{J}_k(g(h(\mathbf{x}))) \cdot \mathbf{J}_g(h(\mathbf{x})) \cdot \mathbf{J}_h(\mathbf{x}) \\ &= w_2^T \cdot \mathsf{diag}(\sigma'([\mathbf{W}_1\mathbf{x} + \boldsymbol{\mu}]_1), \dots, \sigma'([\mathbf{W}_1\mathbf{x} + \boldsymbol{\mu}]_n)) \cdot \mathbf{W}_1. \end{aligned}$$

o Simply transpose the Jacobian to get the gradient and use o to replace the diagonal matrix.

#### Some reminders on sets

# Definition (Closed set)

A set is closed if it contains all its limit points.

# Definition (Open set)

A set is open if its complement is closed.

### Definition (Closure of a set)

Let  $Q \subseteq \mathbb{R}^p$  be a given open set, i.e., it contains a neighborhood of all its points. Then, the closure of Q, denoted as  $\operatorname{cl}(Q)$ , is the smallest closed set in  $\mathbb{R}^p$  that includes Q.



Figure: (Left panel) Closed set Q. (Middle panel) Open set Q and its closure cl(Q) (Right panel).

### Convexity of sets

#### Definition

 $ightharpoonup \mathcal{Q} \subseteq \mathbb{R}^p$  is a convex set if

$$\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q} \quad \forall \alpha \in [0, 1], \quad \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2 \in \mathcal{Q}.$$

 $ightharpoonup \mathcal{Q} \subseteq \mathbb{R}^p$  is a *strictly* convex set if

$$\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q} \quad \forall \alpha \in (0, 1), \quad \alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2 \in \mathsf{interior}(\mathcal{Q}).$$



Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex

#### Definition

Let  $\mathcal Q$  be a convex set in  $\mathbb R^p$ . A function  $f\colon \mathcal Q\to\mathbb R$  is called *convex* if

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2), \qquad \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q}, \quad \forall \alpha \in [0, 1].$$

ightharpoonup f is called concave, if -f is convex.



Figure: (Left) Non-convex (Middle) Convex (Right) Concave

### Definition

Let  $\mathcal Q$  be a convex set in  $\mathbb R^p$ . A function  $f\colon \mathcal Q\to\mathbb R$  is called *convex* if

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2), \qquad \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q}, \quad \forall \alpha \in [0, 1].$$

**Question:**  $\circ$  Can we extend f from  $\mathcal Q$  to  $\mathbb R^p$  preserving convexity?

#### Definition

Let  $\mathcal Q$  be a convex set in  $\mathbb R^p$ . A function  $f\colon \mathcal Q\to\mathbb R$  is called *convex* if

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2), \qquad \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q}, \quad \forall \alpha \in [0, 1].$$

**Question:**  $\circ$  Can we extend f from  $\mathcal Q$  to  $\mathbb R^p$  preserving convexity?

Definition (Extended real-valued convex functions)

$$f(\mathbf{x}) := \left\{ egin{array}{ll} f(\mathbf{x}) & ext{if } \mathbf{x} \in \mathcal{Q} \\ +\infty & ext{if otherwise} \end{array} 
ight.$$

Recall, dom(f) = Q. If  $Q \neq \mathbb{R}^p$ , extended f is never continuous, but it is l.s.c.

#### Definition

Let  $\mathcal{Q}$  be a convex set in  $\mathbb{R}^p$ . A function  $f \colon \mathcal{Q} \to \mathbb{R}$  is called *convex* if

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2), \qquad \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q}, \quad \forall \alpha \in [0, 1].$$

# Proposition

Every  $\ell_q$ -norm  $\|\cdot\|_q$   $(q\geq 1)$  in  $\mathbb{R}^p$  is convex.

Proof:

### Definition

Let  $\mathcal Q$  be a convex set in  $\mathbb R^p$ . A function  $f\colon \mathcal Q\to\mathbb R$  is called *convex* if

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2), \qquad \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q}, \quad \forall \alpha \in [0, 1].$$

# Proposition

Every  $\ell_q$ -norm  $\|\cdot\|_q$   $(q \ge 1)$  in  $\mathbb{R}^p$  is convex.

**Proof**: o Proof by intimidation.

#### Definition

Let  $\mathcal Q$  be a convex set in  $\mathbb R^p$ . A function  $f\colon \mathcal Q\to\mathbb R$  is called *convex* if

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2), \quad \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q}, \quad \forall \alpha \in [0, 1].$$

# Proposition

Every  $\ell_q$ -norm  $\|\cdot\|_q$   $(q \ge 1)$  in  $\mathbb{R}^p$  is convex.

**Proof:** • Kidding! By triangle inequality and homogeneity of the norm:

$$\|\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2\|_q \le \|\alpha \mathbf{x}_1\|_q + \|(1 - \alpha)\mathbf{x}_2\|_q = \alpha\|\mathbf{x}_1\|_q + (1 - \alpha)\|\mathbf{x}_2\|_q, \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q}, \forall \alpha \in [0, 1].$$

#### Definition

Let  $\mathcal Q$  be a convex set in  $\mathbb R^p$ . A function  $f\colon \mathcal Q\to\mathbb R$  is called *convex* if

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2), \qquad \forall \mathbf{x}_1, \mathbf{x}_2 \in \mathcal{Q}, \quad \forall \alpha \in [0, 1].$$

### Example

| Function                          | Example                                                           | Attributes                                  |
|-----------------------------------|-------------------------------------------------------------------|---------------------------------------------|
| $\ell_q$ vector norms, $q \geq 1$ | $\ \mathbf{x}\ _{2}, \ \mathbf{x}\ _{1}, \ \mathbf{x}\ _{\infty}$ | convex                                      |
| $\ell_q$ matrix norms, $q \geq 1$ | $\ \mathbf{X}\ _* = \sum_{i=1}^{rank(\mathbf{X})} \sigma_i$       | convex                                      |
| Square root function              | $\sqrt{x}$                                                        | concave                                     |
| Max of convex functions           | $\max_i f_i(x)$ , $f_i$ convex                                    | convex                                      |
| Min of concave functions          | $\min_i f_i(x)$ , $f_i$ concave                                   | concave                                     |
| Sum of convex functions           | $\sum_{i=1}^n f_i, f_i$ convex                                    | convex                                      |
| Logarithmic functions             | $\log\left(det(\mathbf{X}) ight)$                                 | concave, assumes $\mathbf{X}\succ 0$        |
| Affine/linear functions           | $\sum_{i=1}^{n} X_{ii}$                                           | both convex and concave                     |
| Eigenvalue functions              | $\lambda_{\max}(\mathbf{X})$                                      | convex, assumes $\mathbf{X} = \mathbf{X}^T$ |

# Revisiting: Alternative definitions of function convexity II [2]

Recall, the epigraph of  $f \colon \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$  is  $\operatorname{epi}(f) = \{(\mathbf{x}, u) \in \mathcal{Q} \times \mathbb{R} \colon f(\mathbf{x}) < u\}.$ 

#### Definition

A function  $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$  is convex if its epigraph is a convex set.



Figure: Epigraph — the region in green above graph f.

# Revisiting: Alternative definition of function convexity III [2]



#### Definition

Let  $\mathcal Q$  is a convex set in  $\mathbb R^p$ . A function  $f\in\mathcal C^1(\mathcal Q)$  is called convex on  $\mathcal Q$  if for any  $\mathbf x,\ \mathbf y\in\mathcal Q$ :

$$f(\mathbf{x}) \ge f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \ \mathbf{x} - \mathbf{y} \rangle.$$

### Definition

A function  $f \in \mathcal{C}^1(\mathcal{Q})$  is called convex on  $\mathcal{Q}$  if for any  $\mathbf{x}, \ \mathbf{y} \in \mathcal{Q}$ :

$$\langle \nabla f(\mathbf{y}) - \nabla f(\mathbf{x}), \ \mathbf{y} - \mathbf{x} \rangle \ge 0.$$

\*That is, if its gradient is a monotone operator.



# Revisiting: Alternative definition of function convexity IV [2]

#### Definition

Let  $\mathcal Q$  is a convex set in  $\mathbb R^p$ . A function  $f\in\mathcal C^2(\mathcal Q)$  is called convex on  $\mathcal Q$  if for any  $\mathbf x\in\mathcal Q$ :

$$\nabla^2 f(\mathbf{x}) \succeq 0.$$

#### Remarks:

- $\circ$  Geometrical interpretation: the graph of f has zero or positive (upward) curvature.
- $\circ$  However, this does not exclude flatness of f.



# Revisiting: Alternative definition of function convexity V [2]

#### Definition

Let  $\mathcal Q$  is a convex set in  $\mathbb R^p$ . A function  $f\in\mathcal C^2(\mathcal Q)$  is called convex on  $\mathcal Q$  if for any  $\mathbf x\in\mathcal Q$ ,  $\mathbf v\in\mathbb R^p$ , the function  $g(t)=f(\mathbf x+t\mathbf v)$  is convex on its domain  $\{t|\mathbf x+t\mathbf v\in\mathcal Q\}$ .

#### Remarks:

- $\circ$  This approach allows us to check the convexity long 1-dimensional lines.
- o This concept generalizes to self-concordant functions (advanced material).



## Strict convexity

#### Definition

A function  $f \colon \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$  is called *strictly convex* on  $\mathcal{Q}$  if

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) < \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2) \quad \forall \mathbf{x}_1 \ \mathbf{x}_2 \in \mathcal{Q}, \quad \forall \alpha \in (0, 1).$$

#### Theorem

If  $Q \subset \mathbb{R}^p$  is a convex set and  $f : \mathbb{R}^p \to (-\infty, +\infty]$  is a proper and strictly convex function, then there exist at most one minimizer of f over Q.



Figure: (Left panel) Convex function. (Right panel) Strictly convex function.

# Subdifferentials and (sub)gradients in convex functions

### Definition

Let  $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$  be a convex function. The subdifferential of f at a point  $\mathbf{x}\in\mathcal{Q}$  is defined by the set:

$$\partial f(\mathbf{x}) = \left\{ \mathbf{v} \in \mathbb{R}^p \ : \ f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{v}, \ \mathbf{y} - \mathbf{x} \rangle \text{ for all } \mathbf{y} \in \mathcal{Q} \right\}.$$

Each element  $\mathbf{v}$  of  $\partial f(\mathbf{x})$  is called *subgradient* of f at  $\mathbf{x}$ .

### Definition

Let  $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$  be a differentiable convex function. Then, the subdifferential of f at a point  $\mathbf{x} \in \mathcal{Q}$  contains only the gradient, i.e.,  $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}.$ 

Remark:

 $\circ$  Subdifferential generalizes abla to nondifferentiable functions



Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.

### Generalized subdifferentials for nonconvex functions

#### Definition

Let  $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$  be a locally Lipschitz function. The Clarke subdifferential of f at a point  $\mathbf{x} \in \mathcal{Q}$  is defined by the set:

$$\partial_C f(\mathbf{x}) = \operatorname{conv} \left( \left\{ \mathbf{v} \in \mathbb{R}^p : \begin{array}{l} \exists \mathbf{x}^k o \mathbf{x}, \nabla f\left(\mathbf{x}^k\right) \text{ exists,} \\ \nabla f\left(\mathbf{x}^k\right) o \mathbf{v} \end{array} \right\} \right).$$

Remarks:

- $\circ$  For convex functions, the Clarke subdifferential reduces to subdifferential.
- o If  $\mathbf{x}^*$  is a local minimum of f, then  $\mathbf{0} \in \partial_C f(\mathbf{x}^*)$ .



Figure: The Clarke subdifferential at -3 and 0:  $\partial_C f(-3) \stackrel{!}{=} \partial_C f(0) = [0,1]$ . Non-subdifferentiability at -3 and 0.

## Heads up: Be careful with automatic differentiation!

# Example (Simple)

The gradient of the function  $f: x \mapsto \mathsf{ReLU}(x) - \mathsf{ReLU}(-x) = x$  at 0 is given by g(0) = 1.

#### Remark:

- Subdifferentials are tricky business!
- Automatic differentiation can be wrong [3]!
- o We will revisit when we discuss the Moreau-Rockafellar's decomposition theorem.



Figure: (Left panel) ReLU function. (Right panel) Calculation of g(0) in PyTorch.

## L-Lipschitz gradient class of functions

## Definition (*L*-Lipschitz gradient convex functions)

Let  $f: \mathcal{Q} \to \mathbb{R}$  be differentiable and convex, i.e.,  $f \in \mathcal{F}^1(\mathcal{Q})$ . Then, f has a Lipschitz gradient if there exists L > 0 (the Lipschitz constant) such that  $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L\|\mathbf{x} - \mathbf{y}\|_2$ ,  $\forall \mathbf{x}, \mathbf{y} \in \mathcal{Q}$ .

## Proposition (*L*-Lipschitz gradient convex functions)

 $f \in \mathcal{F}^1(\mathcal{Q})$  has L-Lipschitz gradient if and only if the following function is convex:

$$h(\mathbf{x}) = \frac{L}{2} \|\mathbf{x}\|_2^2 - f(\mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{Q}.$$

## Definition (Class of 2-nd order Lipschitz functions)

The class of twice continuously differentiable functions f on  $\mathcal Q$  with Lipschitz continuous Hessian is denoted as  $\mathcal F^{2,2}_L(\mathcal Q)$  (with  $2\to 2$  denoting the spectral norm)

$$\|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{y})\|_{2\to 2} \le L \|\mathbf{x} - \mathbf{y}\|_2, \quad \forall \mathbf{x}, \mathbf{y} \in Q,$$

**Remark:**  $\circ \mathcal{F}_L^{l,m}$ : functions that are l-times differentiable with m-th order Lipschitz property.



## **Example: Logistic regression**

## Problem (Logistic regression)

Given a sample vector  $\mathbf{a}_i \in \mathbb{R}^p$  and a binary class label  $b_i \in \{-1, +1\}$  (i = 1, ..., n), we define the conditional probability of  $b_i$  given  $\mathbf{a}_i$  as:

$$\mathbb{P}(b_i|\mathbf{a}_i,\mathbf{x}^{\natural},\mu) \propto 1/(1+e^{-b_i(\langle\mathbf{x}^{\natural},\mathbf{a}_i\rangle+\mu)}),$$

where  $\mathbf{x}^{\natural} \in \mathbb{R}^p$  is some true weight vector,  $\mu \in \mathbb{R}$  is called the intercept. How to estimate  $\mathbf{x}^{\natural}$  given the sample vectors, the binary labels, and  $\mu$ ?

## Optimization formulation

$$\min_{\mathbf{x} \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-b_i(\mathbf{a}_i^T \mathbf{x} + \mu)))}_{f(\mathbf{x})}$$

## Structural properties

Let  $\mathbf{A} = [\mathbf{a}_1, \dots, \mathbf{a}_n]^T$  (design matrix), then  $f \in \mathcal{F}_L^{2,1}$ , with  $\underline{\mathbf{L}} = \frac{1}{4} \|\mathbf{A}^T \mathbf{A}\|$ 

## $\mu$ -strongly convex functions

#### Definition

A function  $f:\mathcal{Q}\to\mathbb{R}\cup\{+\infty\}$ ,  $\mathcal{Q}\subseteq\mathbb{R}^p$  is called  $\mu$ -strongly convex on its domain if and only if for any  $\mathbf{x},\ \mathbf{y}\in\mathcal{Q}$  and  $\alpha\in[0,1]$  we have:

$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}) - \frac{\mu}{2}\alpha(1 - \alpha)\|\mathbf{x} - \mathbf{y}\|_2^2.$$

The constant  $\mu$  is called the convexity parameter of function f.

- ▶ The class of k-differentiable  $\mu$ -strongly functions is denoted as  $\mathcal{F}^k_{\mu}(\mathcal{Q})$ .
- ► Strong convexity ⇒ strict convexity, BUT strict convexity ⇒ strong convexity



Figure: (Left) Convex (Right) Strongly convex

## Alternative: $\mu$ -strongly convex functions

#### Definition

A convex function  $f:\mathcal{Q}\to\mathbb{R}$  is said to be  $\mu\text{-strongly convex}$  if

$$h(\mathbf{x}) = f(\mathbf{x}) - \frac{\mu}{2} \|\mathbf{x}\|_2^2$$

is convex, where  $\mu$  is called the strong convexity parameter.

- ▶ The class of k-differentiable  $\mu$ -strongly functions is denoted as  $\mathcal{F}^k_{\mu}(\mathcal{Q})$ .
- Non-smooth functions can be  $\mu$ -strongly convex: e.g.,  $f(\mathbf{x}) = \|\mathbf{x}\|_1 + \frac{\mu}{2} \|\mathbf{x}\|_2^2$ .



Figure: (Left) Convex (Right) Strongly convex

#### Lemma

Let  $f: \mathcal{Q} \to \mathbb{R}$ ,  $\mathcal{Q} \subseteq \mathbb{R}^p$  be a twice differentiable convex function, i.e.,  $f \in \mathcal{F}^2(\mathcal{Q})$ . Then, f is  $\mu$ -strongly convex function if and only if

$$\nabla^2 f(\mathbf{x}) \succeq \mu \mathbf{I}, \ \forall \mathbf{x} \in \mathbb{R}^p.$$

#### Lemma

Let  $f: \mathcal{Q} \to \mathbb{R}$ ,  $\mathcal{Q} \subseteq \mathbb{R}^p$  be a twice differentiable convex function, i.e.,  $f \in \mathcal{F}^2(\mathcal{Q})$ . Then, f is  $\mu$ -strongly convex function if and only if

$$\nabla^2 f(\mathbf{x}) \succeq \mu \mathbf{I}, \ \forall \mathbf{x} \in \mathbb{R}^p.$$

# Example (Toy example)

Consider the quadratic function  $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{x}\|_2^2$ . Then, f is a  $\mu$ -strongly convex since  $\nabla^2 f(\mathbf{x}) = \mathbf{I} \implies \mu = 1$ .



Figure: Toy example for  $\mu$ -strongly convex functions.

#### Lemma

Let  $f: \mathcal{Q} \to \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^p$  be a twice differentiable convex function, i.e.,  $f \in \mathcal{F}^2(\mathcal{Q})$ . Then, f is  $\mu$ -strongly convex function if and only if

$$\nabla^2 f(\mathbf{x}) \succeq \mu \mathbf{I}, \ \forall \mathbf{x} \in \mathbb{R}^p.$$

## Example (Overdetermined least squares)

Consider an overdetermined linear system of equations  $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$  where  $\mathbf{A} \in \mathbb{R}^{n \times p}$  is a full column-rank matrix and  $\mathbf{x}^{\natural}$  is unknown. Assume that  $\mathbf{A}^T\mathbf{A} \succeq \rho\mathbf{I}, \rho > 0$  and let  $f(\mathbf{x}) = \frac{1}{2}\|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2$ . Then, f is a  $\mu$ -strongly convex function, i.e.,  $f \in \mathcal{F}^2_{\mu}(\mathbb{R}^p)$  since:

$$\nabla^2 f(\mathbf{x}) = \mathbf{A}^T \mathbf{A}$$
 where  $\mathbf{A}^T \mathbf{A} \succeq \rho \mathbf{I} =: \mu \mathbf{I}$ .



Figure: Overdetermined system of linear equations.

#### Lemma

Let  $f: \mathcal{Q} \to \mathbb{R}$ ,  $\mathcal{Q} \subseteq \mathbb{R}^p$  be a twice differentiable convex function, i.e.,  $f \in \mathcal{F}^2(\mathcal{Q})$ . Then, f is  $\mu$ -strongly convex function if and only if

$$\nabla^2 f(\mathbf{x}) \succeq \mu \mathbf{I}, \ \forall \mathbf{x} \in \mathbb{R}^p.$$

## Example (Trivial)

Any linear function  $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} + \beta \in \mathcal{F}^1_\mu(\mathbb{R}^p)$  for  $\mu = 0$  since

$$\nabla f(\mathbf{x}) = \mathbf{c}$$
 and  $\nabla^2 f(\mathbf{x}) = \mathbf{0}$ .



Figure: Counterexample for  $\mu$ -strongly convex functions.

#### Lemma

Let  $f: \mathcal{Q} \to \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^p$  be a twice differentiable convex function, i.e.,  $f \in \mathcal{F}^2(\mathcal{Q})$ . Then, f is  $\mu$ -strongly convex function if and only if

$$\nabla^2 f(\mathbf{x}) \succeq \mu \mathbf{I}, \ \forall \mathbf{x} \in \mathbb{R}^p.$$

#### Lemma

A continuously differentiable function f belongs to  $\mathcal{F}^1_{\mu}(\mathcal{Q})$  if there exists a constant  $\mu > 0$  such that for any  $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$ , we have:

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||_2^2$$

#### Lemma

Let f be continuously differentiable. The following condition, holding for all  $\mathbf{x}, \mathbf{y} \in \mathcal{Q} \subseteq \mathbb{R}^p$ , is equivalent to inclusion that f is  $\mu$ -strongly convex function:

$$\langle \nabla f(\mathbf{x}) - \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge \mu \|\mathbf{x} - \mathbf{y}\|_2^2$$
.

## L-smooth, $\mu$ -strongly convex functions

#### Definition

Let  $f:\mathcal{Q}\to\mathbb{R},\mathcal{Q}\subseteq\mathbb{R}^p$  be a continuously differentiable function. Then, f is both  $\mu$ -strongly and L-smooth convex function if for any  $\mathbf{x},\mathbf{y}\in\mathcal{Q}$ , we have:

$$\frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 \le f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$$

for constants  $0 < \mu \le L$ . We denote that  $f \in \mathcal{F}^{1,1}_{\mu,L}(\mathcal{Q})$ . If f is twice differentiable, an equivalent condition is

$$\mu \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbf{I}.$$

## L-smooth, $\mu$ -strongly convex functions

#### Definition

Let  $f:\mathcal{Q}\to\mathbb{R},\mathcal{Q}\subseteq\mathbb{R}^p$  be a continuously differentiable function. Then, f is both  $\mu$ -strongly and L-smooth convex function if for any  $\mathbf{x},\mathbf{y}\in\mathcal{Q}$ , we have:

$$\frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 \le f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$$

for constants  $0 < \mu \le L$ . We denote that  $f \in \mathcal{F}_{\mu,L}^{1,1}(\mathcal{Q})$ . If f is twice differentiable, an equivalent condition is

$$\mu \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbf{I}.$$

## Example

Consider an linear system of equations  $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural}$  where  $\mu \mathbf{I} \leq \mathbf{A}^T \mathbf{A} \leq L \mathbf{I}$ . Let  $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2$ . Then, f is both  $\mu$ -strongly convex and L-smooth function, i.e.,  $f \in \mathcal{F}_{u,L}^{2,1}(\mathbb{R}^p)$  since:

$$\nabla^2 f(\mathbf{x}) = \mathbf{A}^T \mathbf{A} \quad \text{where} \quad \mu \mathbf{I} \preceq \mathbf{A}^T \mathbf{A} \preceq L \mathbf{I}.$$

## L-smooth, $\mu$ -strongly convex functions

#### Definition

Let  $f:\mathcal{Q}\to\mathbb{R},\mathcal{Q}\subseteq\mathbb{R}^p$  be a continuously differentiable function. Then, f is both  $\mu$ -strongly and L-smooth convex function if for any  $\mathbf{x},\mathbf{y}\in\mathcal{Q}$ , we have:

$$\frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 \le f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$$

for constants  $0 < \mu \le L$ . We denote that  $f \in \mathcal{F}_{u,L}^{1,1}(\mathcal{Q})$ . If f is twice differentiable, an equivalent condition is

$$\mu \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbf{I}.$$

**Observations:** 

- $\circ$  Both  $\mu$  and L show up in convergence rate characterization of algorithms
- $\circ$  Unfortunately,  $\mu,L$  are usually not known a priori...
- o When they are known, they can help significantly (even in stopping algorithms)

## **Convergence rates**

# Definition (Convergence of a sequence)

The sequence  $\mathbf{u}^1, \mathbf{u}^2, ..., \mathbf{u}^k, ...$  converges to  $\mathbf{u}^*$  (denoted  $\lim_{k \to \infty} \mathbf{u}^k = \mathbf{u}^*$ ), if

$$\forall \ \varepsilon > 0, \exists \ K \in \mathbb{N} : k \ge K \Rightarrow \|\mathbf{u}^k - \mathbf{u}^\star\| \le \varepsilon$$

## Convergence rates: the "speed" at which a sequence converges

**sublinear:** if there exists c > 0 such that

$$\|\mathbf{u}^k - \mathbf{u}^\star\| = O(k^{-c})$$

▶ linear: if there exists  $\alpha \in (0,1)$  such that

$$\|\mathbf{u}^k - \mathbf{u}^\star\| = O(\alpha^k)$$

**Q-linear:** if there exists a constant  $r \in (0,1)$  such that

$$\lim_{k \to \infty} \frac{\|\mathbf{u}^{k+1} - \mathbf{u}^{\star}\|}{\|\mathbf{u}^k - \mathbf{u}^{\star}\|} = r$$

- **superlinear:** if r = 0, we say that the sequence converges *superlinearly*.
- quadratic: if there exists a constant  $\mu>0$  such that  $\lim_{k\to\infty}\frac{\|\mathbf{u}^{k+1}-\mathbf{u}^\star\|}{\|\mathbf{u}^k-\mathbf{u}^\star\|^2}=\mu$

# **Example: Convergence rates**

Examples of sequences that all converge to  $u^* = 0$ :

Sublinear:  $u^k = 1/k$ 

▶ Superlinear:  $u^k = k^{-k}$ 

• Quadratic:  $u^k = 0.5^{2^k}$ 



# Wrap up!

- o Please take a look at the handout for rate examples!
- o See advanced material for material beyond convexity!
  - Star-convexity
  - Invexity
- o Lecture on Monday!

# \*Jacobian of the self-attention module [5]

## Example

We consider the Jacobian of  $f: \mathbf{X} \mapsto \sigma_s \left( \mathbf{X} \mathbf{W}_Q^\top \mathbf{W}_K \mathbf{X}^\top \right) \mathbf{X} \mathbf{W}_V^\top$ , where  $\sigma_s$  is row-wise softmax,  $\mathbf{X} \in \mathbb{R}^{d_s \times d}$ ,  $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d_m \times d}$ ,  $f(\mathbf{X}) \in \mathbb{R}^{d_s \times d_m}$ .

 $lackbox{lack}$  Define  $eta_i := \sigma_s \left( \mathbf{X}^{(i,:)} \mathbf{W}_Q^ op \mathbf{W}_K \mathbf{X}^ op 
ight)^ op \in \mathbb{R}^{d_s}$  We can reformulate the definition above as:

$$f(\mathbf{X}) = egin{bmatrix} oldsymbol{eta}_1^{ op} \ dots \ oldsymbol{eta}_{d_x}^{ op} \end{bmatrix} \mathbf{X} \mathbf{W}_V^{ op}.$$

By the product rule:

$$\frac{\partial f(\mathbf{X})}{\partial X^{(p,k)}} = \begin{bmatrix} \frac{\partial \boldsymbol{\beta}_{1}^{\top}}{\partial X^{(p,k)}} \\ \vdots \\ \frac{\partial \boldsymbol{\beta}_{d_{s}}^{\top}}{\partial X^{(p,k)}} \end{bmatrix} \mathbf{X} \mathbf{W}_{V}^{\top} + \begin{bmatrix} \boldsymbol{\beta}_{1}^{\top} \\ \vdots \\ \boldsymbol{\beta}_{d_{s}}^{\top} \end{bmatrix} \frac{\partial (\mathbf{X} \mathbf{W}_{V}^{\top})}{\partial X^{(p,k)}}. \tag{1}$$

# \*Jacobian of self-attention module [5]

▶ Suppose  $\beta = \mathsf{Softmax}(\mathbf{u}) \in \mathbb{R}^{d_s}$ , then  $\frac{\partial \beta}{\partial \mathbf{u}} = \mathsf{diag}(\beta) - \beta \beta^\top$ . This is because:

$$\blacktriangleright \text{ We can reformulate } \pmb{\beta} \text{ as: } \pmb{\beta} = \begin{bmatrix} \frac{\exp{(u^{(1)})}}{\sum_{i=1}^{d_s} \exp{(u^{(i)})}} \\ \vdots \\ \frac{\exp{(u^{(d_s)})}}{\sum_{i=1}^{d_s} \exp{(u^{(i)})}} \end{bmatrix}.$$

Thus

$$\frac{\partial \beta^{(j)}}{\partial u^{(k)}} = \frac{\partial \frac{\exp{(u^{(j)})}}{\sum_{i=1}^{d_s} \exp{(u^{(i)})}}}{\partial u^{(k)}} = \begin{cases} \frac{-\exp{(u^{(j)})} - \exp{(u^{(k)})}}{(\sum_{i=1}^{d_s} \exp{(u^{(i)})})^2} & \text{if } j \neq k \\ \frac{\exp{(u^{(k)})} \sum_{i=1}^{d_s} \exp{(u^{(i)})} - (\exp{(u^{(k)})})^2}{(\sum_{i=1}^{d_s} \exp{(u^{(i)})})^2} & \text{if } j = k \end{cases}$$

$$= \begin{cases} -\beta^{(j)} \beta^{(k)} & \text{if } j \neq k \\ \beta^{(k)} - \beta^{(j)} \beta^{(k)} & \text{if } j = k \end{cases}.$$

► Thus

$$\frac{\partial \boldsymbol{\beta}}{\partial \mathbf{u}} = \operatorname{diag}(\boldsymbol{\beta}) - \boldsymbol{\beta} \boldsymbol{\beta}^{\top}. \tag{2}$$

# \*Jacobian of self-attention module [5]

▶ Then we can calculate the term  $\frac{\partial \beta_i}{\partial X^{(p,k)}}$  for  $i \in [d_s]$  in the first part of Eq. (1).

$$\frac{\partial \boldsymbol{\beta}_{i}}{\partial X^{(p,k)}} = \left(\operatorname{diag}(\boldsymbol{\beta}_{i}) - \boldsymbol{\beta}_{i} \boldsymbol{\beta}_{i}^{\top}\right) \frac{\partial \left(\mathbf{X} \mathbf{W}_{K}^{\top} \mathbf{W}_{Q} \mathbf{X}^{(i,:)^{\top}}\right)}{\partial X^{(p,k)}} \\
= \left(\operatorname{diag}(\boldsymbol{\beta}_{i}) - \boldsymbol{\beta}_{i} \boldsymbol{\beta}_{i}^{\top}\right) \left(\boldsymbol{e}_{p} \boldsymbol{e}_{k}^{\top} \mathbf{W}_{K}^{\top} \mathbf{W}_{Q} \mathbf{X}^{(i,:)^{\top}} + \mathbf{X} \mathbf{W}_{K}^{\top} \mathbf{W}_{Q} \boldsymbol{e}_{k} \delta_{ip}\right), \tag{3}$$

where  $e_p$  is the  $p^{\text{th}}$  canonical basis vector of  $\mathbb{R}^{d_s}$ ,  $e_k$  is the  $k^{\text{th}}$  canonical basis vector of  $\mathbb{R}^d$ .

Next, let's consider the second term in Eq. (1):

$$\frac{\partial (\mathbf{X} \mathbf{W}_{V}^{\top})}{\partial X^{(p,k)}} = e_{p} e_{k}^{\top} \mathbf{W}_{V}^{\top}. \tag{4}$$

Lastly, substituting Eq. (3) and Eq. (4) into Eq. (1):

$$\frac{\partial f(\mathbf{X})}{\partial X^{(p,k)}} = \begin{bmatrix} \left( \operatorname{diag}(\beta_1) - \beta_1 \beta_1^\top \right) \left( e_p e_k^\top \mathbf{W}_K^\top \mathbf{W}_Q \mathbf{X}^{(1,:)^\top} + \mathbf{X} \mathbf{W}_K^\top \mathbf{W}_Q e_k \delta_{1p} \right) \\ \vdots \\ \left( \operatorname{diag}(\beta_{d_s}) - \beta_{d_s} \beta_{d_s}^\top \right) \left( e_p e_k^\top \mathbf{W}_K^\top \mathbf{W}_Q \mathbf{X}^{(d_s,:)^\top} + \mathbf{X} \mathbf{W}_K^\top \mathbf{W}_Q e_k \delta_{d_sp} \right) \end{bmatrix} \mathbf{X} \mathbf{W}_V^\top + \begin{bmatrix} \beta_1^\top \\ \vdots \\ \beta_{d_s}^\top \end{bmatrix} e_p e_k^\top \mathbf{W}_V^\top.$$

#### Convex hull

## Definition (Convex hull)

Let  $\mathcal{Q} \subseteq \mathbb{R}^p$  be a set. The convex hull of  $\mathcal{Q}$ , i.e.,  $conv(\mathcal{Q})$ , is the *smallest* convex set that contains  $\mathcal{Q}$ .

## Definition (Convex hull of points)

Let  $\mathcal{Q} \subseteq \mathbb{R}^p$  be a finite set of points with cardinality  $|\mathcal{Q}|$ . The convex hull of  $\mathcal{Q}$  is the set of all convex combinations of its points, i.e.,

$$\mathrm{conv}(\mathcal{Q}) = \left\{ \sum_{i=1}^{|\mathcal{Q}|} \alpha_i \mathbf{x}_i \ : \ \sum_{i=1}^{|\mathcal{Q}|} \alpha_i = 1, \ \alpha_i \geq 0, \forall i, \ \mathbf{x}_i \in \mathcal{Q} \right\}.$$



Figure: (Left) Discrete set of points Q. (Right) Convex hull conv(Q).

### \*Star convex sets

### Definition

 $\mathcal{Q} \subseteq \mathbb{R}^p$  is a *star-shaped* set if there exists a  $\mathbf{x}_1 \in \mathcal{Q}$  such that

$$\forall \mathbf{x}_2 \in \mathcal{Q} \quad \forall \alpha \in [0,1], \quad \alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2 \in \mathcal{Q}.$$



Figure: Example of a star-shaped but not convex set.

# \*Star convexity

### Definition

A function  $f \colon \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$  is called *star-convex* on  $\mathcal{Q}$  if there exists a global minimum  $\mathbf{x}^\star \in \mathcal{Q}$  such that

$$f(\alpha \mathbf{x}^* + (1 - \alpha)\mathbf{x}) \le \alpha f(\mathbf{x}^*) + (1 - \alpha)f(\mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{Q}, \quad \forall \alpha \in [0, 1].$$

#### Remarks:

- Any convex function is star-convex.
- $\circ$  Star-convexity can be viewed as convexity between any point  ${f x}$  and a global minimum  ${f x}^\star.$
- $\circ$  Allows the negative gradient  $-\nabla f(\mathbf{x})$  to the desired minimization direction.
- o Consider the following objective function:

$$\min_{\mathbf{x}} f(\mathbf{x}) := \frac{1}{n} \left( \sum_{i=1}^{n} |b_i - \langle \mathbf{a}_i, \mathbf{x} \rangle|^q \right)^{1/q}.$$

- ▶ Star-convex for any real number q when n < p.
- ▶ Convex for  $q \ge 1$ .
- ightharpoonup (q=1): the least-absolute deviation estimator. (q=2): the least-squares estimator.

### \*Invex function

#### Definition

Let  $\mathcal Q$  be an open set in  $\mathbb R^p$ . A differentiable function  $f\colon \mathcal Q\to\mathbb R$  is called *invex* if there exists a function  $\eta:\mathcal Q\times\mathcal Q\to\mathbb R^p$  such that

$$f(\mathbf{x}) \ge f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \ \eta(\mathbf{x}, \mathbf{y}) \rangle, \quad \forall \mathbf{x}, \ \mathbf{y} \in \mathcal{Q}.$$

**Remarks:** o Any convex function is invex function:  $\eta(\mathbf{x}, \mathbf{y}) = \mathbf{x} - \mathbf{y}$ .

o Any local minima in an invex function is global minima!

**Proof:** o Suppose  $\mathbf{x}^*$  is a local minimum, then  $\nabla f(\mathbf{x}^*) = 0$ . By the definition above, we have

$$f(\mathbf{x}) \ge f(\mathbf{x}^*) + \langle 0, \eta(\mathbf{x}, \mathbf{y}) \rangle = f(\mathbf{x}^*), \quad \forall \mathbf{x} \in \mathcal{Q}.$$

 $\circ \Rightarrow \mathbf{x}^*$  is also a global minimum.

# Example (Causality via directed acyclic graph (DAG) learning [1])

For any s>0, define  $f^s:\{X\in\mathbb{R}^{d\times d}\mid s>\rho(X\circ X)\}\to\mathbb{R}$  as  $f^s(X)\stackrel{\mathrm{def}}{=}-\log\det(sI-X\circ X)+d\log s$ , where  $\circ$  is the Hadamard product,  $\rho(\cdot)$  is the spectral radius, and X is the graph weighted adjacency matrix.

▶ Then,  $f^s$  is an invex function.  $f^s(X) \ge 0$  with  $f^s(X) = 0$  if and only if X is a DAG.

# \*Self-concordant functions [4]

# Definition (Self-concordant functions in 1-dimension)

A convex function  $\varphi:\mathbb{R}\to\mathbb{R}$  is self-concordant if

$$|\varphi'''(t)| \le 2\varphi''(t)^{3/2}, \quad \forall t \in \mathbb{R}.$$

# \*Self-concordant functions [4]

## Definition (Self-concordant functions in 1-dimension)

A convex function  $\varphi:\mathbb{R}\to\mathbb{R}$  is self-concordant if

$$|\varphi'''(t)| \le 2\varphi''(t)^{3/2}, \quad \forall t \in \mathbb{R}.$$

### Affine Invariance of self-concordant functions

Let  $\tilde{\varphi}(t) = \varphi(\alpha t + \beta)$  where  $\alpha \neq 0$ . Then,  $\tilde{\varphi}$  is self-concordant iff  $\varphi$  is.

# \*Self-concordant functions [4]

## Definition (Self-concordant functions in 1-dimension)

A convex function  $\varphi:\mathbb{R}\to\mathbb{R}$  is self-concordant if

$$|\varphi'''(t)| \le 2\varphi''(t)^{3/2}, \quad \forall t \in \mathbb{R}.$$

### Affine Invariance of self-concordant functions

Let  $\tilde{\varphi}(t) = \varphi(\alpha t + \beta)$  where  $\alpha \neq 0$ . Then,  $\tilde{\varphi}$  is self-concordant iff  $\varphi$  is.

## Important remarks of self-concordance

- 1. Generalize to higher dimension: A convex function  $f:\mathbb{R}^n\to\mathbb{R}$  is said to be (standard) self-concordant if  $|\varphi'''(t)|\leq 2\varphi''(t)^{3/2}$ , where  $\varphi(t):=f(\mathbf{x}+t\mathbf{v})$  for all  $t\in\mathbb{R}$ ,  $\mathbf{x}\in\mathrm{dom}\,f$  and  $\mathbf{v}\in\mathbb{R}^n$  such that  $\mathbf{x}+t\mathbf{v}\in\mathrm{dom}\,f$ .
- 2. Affine invariance still holds in high dimension.
- 3. Self-concordant functions are efficiently minimized by the Newton method and its variants.

#### References |

[1] Kevin Bello, Bryon Aragam, and Pradeep Ravikumar.

Dagma: Learning dags via m-matrices and a log-determinant acyclicity characterization. In *Advances in Neural Information Processing Systems*, 2022.

(Cited on page 62.)

[2] S. Boyd, S.P. Boyd, L. Vandenberghe, and Cambridge University Press.

Convex Optimization.

Berichte uber verteilte messysteme. Cambridge University Press, 2004.

(Cited on pages 33, 34, 35, and 36.)

[3] Sham M Kakade and Jason D Lee.

Provably correct automatic sub-differentiation for qualified programs.

In Advances in Neural Information Processing Systems, volume 31, 2018.

(Cited on page 40.)

[4] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex programming. SIAM, 1994.

(Cited on pages 63, 64, and 65.)

### References II

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.

Attention is all you need.

In Advances in Neural Information Processing Systems, 2017.

(Cited on pages 56, 57, and 58.)