Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 3: Some basics on optimization
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2023)

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Survey responses

- A majority of respondents are familiar with Python.
- Most are comfortable with Jupyter notebooks.
- There is a clear preference for PyTorch.

How familiar are you with Jupyter notebooks?
40 responses

Which Deep Learning framework would you prefer to use for Homework 2? Check multiple choices if there is no preference among them.
41 responses

[^0]
Outline

- This lecture

1. Linear algebra: Norms, matrix norms, dual norms
2. Analysis: Continuity, Lipschitz continuity, differentiation
3. Convexity: Convex sets, convex functions, subdifferentials, L-Lipschitz gradient functions, strong convexity
4. Convergence rates and convergence plots

- Next lecture

1. Gradient descent methods

Vector norms

Definition (Vector norm)

A norm of a vector in \mathbb{R}^{p} is a function $\|\cdot\|: \mathbb{R}^{p} \rightarrow \mathbb{R}$ such that for all vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{p}$ and scalar $\lambda \in \mathbb{R}$
(a) $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{p}$
nonnegativity
(b) $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$
(c) $\|\lambda \mathbf{x}\|=|\lambda|\|\mathbf{x}\|$
(d) $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$
definitiveness
homogeniety triangle inequality

Observations: $\quad \circ$ There is a family of ℓ_{q}-norms parameterized by $q \in[1, \infty]$;

- For $\mathbf{x} \in \mathbb{R}^{p}$, the ℓ_{q}-norm is defined as $\|\mathbf{x}\|_{q}:=\left(\sum_{i=1}^{p}\left|x_{i}\right|^{q}\right)^{1 / q}$.

Example

(1) $\quad \ell_{2}$-norm: $\|\mathbf{x}\|_{2}:=\sqrt{\sum_{i=1}^{p} x_{i}^{2}} \quad$ (Euclidean norm)
(2) $\quad \ell_{1}$-norm: $\|\mathbf{x}\|_{1}:=\sum_{i=1}^{p}\left|x_{i}\right| \quad$ (Manhattan norm)
(3) $\quad \ell_{\infty}$-norm: $\quad\|\mathbf{x}\|_{\infty}:=\max _{i=1, \ldots, p}\left|x_{i}\right| \quad$ (Chebyshev norm)

Vector norms contd.

Definition (Quasi-norm)

A quasi-norm satisfies all the norm properties except (d) triangle inequality, which is replaced by $\|\mathbf{x}+\mathbf{y}\| \leq c(\|\mathbf{x}\|+\|\mathbf{y}\|)$ for a constant $c \geq 1$.

Definition (Semi(pseudo)-norm)

A semi(pseudo)-norm satisfies all the norm properties except (b) definiteness.

Example

- The ℓ_{q}-norm is in fact a quasi norm when $q \in(0,1)$, with $c=2^{1 / q}-1$.
- The total variation norm (TV-norm) defined (in 1D): $\|\mathrm{x}\|_{\mathrm{TV}}:=\sum_{i=1}^{p-1}\left|x_{i+1}-x_{i}\right|$ is a semi-norm since it fails to satisfy (b); e.g., any $\mathbf{x}=c(1,1, \ldots, 1)^{T}$ for $c \neq 0$ will have $\|\mathbf{x}\|_{\mathrm{TV}}=0$ even though $\mathbf{x} \neq \mathbf{0}$.

Definition (ℓ_{0}-"norm")

$\|\mathbf{x}\|_{0}=\lim _{q \rightarrow 0}\|\mathbf{x}\|_{q}^{q}=\left|\left\{i: x_{i} \neq 0\right\}\right|$
Observations: \quad The ℓ_{0}-"norm" counts the non-zero components of \mathbf{x}. Hence, it is not a norm.

- It does not satisfy the property (c) \Rightarrow it is also neither a quasi- nor a semi-norm.

Vector norms contd.

Norm balls

Radius r ball in ℓ_{q}-norm: $\quad \mathcal{B}_{q}(r)=\left\{\mathbf{x} \in \mathbb{R}^{p}:\|\mathbf{x}\|_{q} \leq r\right\}$

Table: Some norm balls in \mathbb{R}^{3}

Vector norms contd.

Definition (Dual norm)

Let $\|\cdot\|$ be a norm in \mathbb{R}^{p}, then the dual norm denoted by $\|\cdot\|^{*}$ is defined:

$$
\|\mathbf{x}\|^{*}=\sup _{\|\mathbf{y}\| \leq 1} \mathbf{x}^{T} \mathbf{y}, \quad \text { for all } \mathbf{x} \in \mathbb{R}^{p}
$$

Observations: \circ The dual of the dual norm is the original (primal) norm, i.e., $\|\mathbf{x}\|^{* *}=\|\mathbf{x}\|$.

- The dual of $\|\cdot\|_{q}$ is $\|\cdot\|_{p}$ where p is such that $\frac{1}{q}+\frac{1}{p}=1$.
- Hölder's inequality: $\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\|_{q}\|\mathbf{y}\|_{p}$, where $p \in[1,+\infty)$ and $\frac{1}{q}+\frac{1}{p}=1$.
- Cauchy-Schwarz is a special case of Hölder's inequality $(q=p=2)$.

Example

i) $\|\cdot\|_{2}$ is dual of $\|\cdot\|_{2}$ (i.e. $\|\cdot\|_{2}$ is self-dual): $\sup \left\{\mathbf{z}^{T} \mathbf{x} \mid\|\mathbf{x}\|_{2} \leq 1\right\}=\|\mathbf{z}\|_{2}$.
ii) $\|\cdot\|_{1}$ is dual of $\|\cdot\|_{\infty}$, (and vice versa): $\sup \left\{\mathbf{z}^{T} \mathbf{x} \mid\|\mathbf{x}\|_{\infty} \leq 1\right\}=\|\mathbf{z}\|_{1}$.

Matrix norms

- Similar to vector norms, matrix norms are a metric over matrices:

Definition (Matrix norm)

A norm of an $n \times p$ matrix is a map $\|\cdot\|: \mathbb{R}^{n \times p} \rightarrow \mathbb{R}$ such that for all matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times p}$ and scalar $\lambda \in \mathbb{R}$
(a) $\|\mathbf{A}\| \geq 0$ for all $\mathbf{A} \in \mathbb{R}^{n \times p}$ nonnegativity
(b) $\|\mathbf{A}\|=0$ if and only if $\mathbf{A}=\mathbf{0}$
(c) $\|\lambda \mathbf{A}\|=|\lambda|\|\mathbf{A}\|$
(d) $\|\mathbf{A}+\mathbf{B}\| \leq\|\mathbf{A}\|+\|\mathbf{B}\|$
definitiveness
homogeniety triangle inequality

Definition (Matrix inner product)

Matrix inner product is defined as follows

$$
\langle\mathbf{A}, \mathbf{B}\rangle=\operatorname{trace}\left(\mathbf{A B}^{T}\right)
$$

Matrix norms contd.

- Similar to vector ℓ_{p}-norms, we have Schatten q-norms for matrices.

Definition (Schatten q-norms)
$\|\mathbf{A}\|_{q}:=\left(\sum_{i=1}^{p}\left(\sigma(\mathbf{A})_{i}\right)^{q}\right)^{1 / q}$, where $\sigma(\mathbf{A})_{i}$ is the $i^{\text {th }}$ singular value of \mathbf{A}.

Example (with $r=\min \{n, p\}$ and $\sigma_{i}=\sigma(\mathbf{A})_{i}$)

$$
\begin{array}{llll}
\|\mathbf{A}\|_{1}^{S} & =\|\mathbf{A}\|_{*} \quad:=\sum_{i=1}^{r} \sigma_{i} & \equiv \operatorname{trace}\left(\sqrt{\mathbf{A}^{T} \mathbf{A}}\right) & \text { (Nuclear/trace) } \\
\|\mathbf{A}\|_{2}^{S} & =\|\mathbf{A}\|_{F} \quad:=\sqrt{\sum_{i=1}^{r}\left(\sigma_{i}\right)^{2}} & \equiv \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{p}\left|a_{i j}\right|^{2}} & \quad \text { (Frobenius) } \\
\|\mathbf{A}\|_{\infty}^{S} & =\|\mathbf{A}\| \quad:=\max _{i=1, \ldots, r}\left\{\sigma_{i}\right\} & \equiv \max _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A x}\|}{\|\mathbf{x}\|} & \quad \text { (Spectral/matrix) }
\end{array}
$$

Matrix norms contd.

Definition (Operator norm)

The operator norm between ℓ_{q} and $\ell_{r}(1 \leq q, r \leq \infty)$ of a matrix \mathbf{A} is defined as

$$
\|\mathbf{A}\|_{q \rightarrow r}=\sup _{\|\mathbf{x}\|_{q} \leq 1}\|\mathbf{A} \mathbf{x}\|_{r}
$$

Problem

Show that $\|\mathbf{A}\|_{2 \rightarrow 2}=\|\mathbf{A}\|$ i.e., ℓ_{2} to ℓ_{2} operator norm is the spectral norm.

Solution

$$
\begin{aligned}
& \|\mathbf{A}\|_{2 \rightarrow 2}=\sup _{\|\mathbf{x}\|_{2} \leq 1}\|\mathbf{A} \mathbf{x}\|_{2}=\sup _{\|\mathbf{x}\|_{2} \leq 1}\left\|\mathbf{U} \boldsymbol{\Sigma}^{T} \mathbf{x}\right\|_{2} \quad \text { (using SVD of } \mathbf{A} \text {) } \\
& =\sup _{\|\mathbf{x}\|_{2} \leq 1}\left\|\boldsymbol{\Sigma} \mathbf{V}^{T} \mathbf{x}\right\|_{2} \quad\left(\text { rotational invariance of }\|\cdot\|_{2}\right) \\
& =\sup _{\|\mathbf{z}\|_{2} \leq 1}\|\boldsymbol{\Sigma} \mathbf{z}\|_{2} \quad\left(\text { letting } \mathbf{V}^{T} \mathbf{x}=\mathbf{z}\right) \\
& =\sup _{\|\mathbf{z}\|_{2} \leq 1} \sqrt{\sum_{i=1}^{\min (n, p)} \sigma_{i}^{2} z_{i}^{2}}=\sigma_{\max }=\|\mathbf{A}\|
\end{aligned}
$$

Matrix norms contd.

Other examples

- The $\|\mathbf{A}\|_{\infty \rightarrow \infty}$ (norm induced by ℓ_{∞}-norm) also denoted $\|\mathbf{A}\|_{\infty}$, is the max-row-sum norm:

$$
\|\mathbf{A}\|_{\infty \rightarrow \infty}:=\sup \left\{\|\mathbf{A x}\|_{\infty} \mid\|\mathbf{x}\|_{\infty} \leq 1\right\}=\max _{i=1, \ldots, n} \sum_{j=1}^{p}\left|a_{i j}\right|
$$

- The $\|\mathbf{A}\|_{1 \rightarrow 1}$ (norm induced by ℓ_{1}-norm) also denoted $\|\mathbf{A}\|_{1}$, is the max-column-sum norm:

$$
\|\mathbf{A}\|_{1 \rightarrow 1}:=\sup \left\{\|\mathbf{A} \mathbf{x}\|_{1} \mid\|\mathbf{x}\|_{1} \leq 1\right\}=\max _{i=1, \ldots, p} \sum_{j=1}^{n}\left|a_{i j}\right| .
$$

Matrix norms contd.

Matrix \& vector norm analogy

Vectors	$\\|\mathbf{x}\\|_{1}$	$\\|\mathbf{x}\\|_{2}$	$\\|\mathbf{x}\\|_{\infty}$
Matrices	$\\|\mathbf{X}\\|_{*}$	$\\|\mathbf{X}\\|_{F}$	$\\|\mathbf{X}\\|$

Definition (Dual of a matrix)

The dual norm of $\mathbf{A} \in \mathbb{R}^{n \times p}$ is defined as

$$
\|\mathbf{A}\|^{*}=\sup \left\{\operatorname{trace}\left(\mathbf{A}^{T} \mathbf{X}\right) \mid\|\mathbf{X}\| \leq 1\right\}
$$

Matrix \& vector dual norm analogy

Vector primal norm	$\\|\mathbf{x}\\|_{1}$	$\\|\mathbf{x}\\|_{2}$	$\\|\mathbf{x}\\|_{\infty}$
Vector dual norm	$\\|\mathbf{x}\\|_{\infty}$	$\\|\mathbf{x}\\|_{2}$	$\\|\mathbf{x}\\|_{1}$
Matrix primal norm	$\\|\mathbf{X}\\|_{*}$	$\\|\mathbf{X}\\|_{F}$	$\\|\mathbf{X}\\|$
Matrix dual norm	$\\|\mathbf{X}\\|$	$\\|\mathbf{X}\\|_{F}$	$\\|\mathbf{X}\\|_{*}$

Matrix definitions contd.

Definition (Positive semidefinite \& positive definite matrices)

A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is positive semidefinite (denoted $\mathbf{A} \succeq 0$) if $\mathbf{x}^{T} \mathbf{A x} \geq 0$ for all $\mathbf{x} \neq \mathbf{0}$; while it is positive definite (denoted $\mathbf{A} \succ 0$) if $\mathbf{x}^{T} \mathbf{A x}>0$.

Observations: $\quad \circ \mathbf{A} \succeq 0$ iff all its eigenvalues are nonnegative i.e. $\lambda_{\min }(\mathbf{A}) \geq 0$.

- Similarly, $\mathbf{A} \succ 0$ iff all its eigenvalues are positive i.e. $\lambda_{\min }(\mathbf{A})>0$.
- \mathbf{A} is negative semidefinite if $-\mathbf{A} \succeq 0$; while \mathbf{A} is negative definite if $-\mathbf{A} \succ 0$.
- Semidefinite ordering of two symmetric matrices, \mathbf{A} and $\mathbf{B}: \mathbf{A} \succeq \mathbf{B}$ if $\mathbf{A}-\mathbf{B} \succeq 0$.

Example (Matrix inequalities)

1. If $\mathbf{A} \succeq 0$ and $\mathbf{B} \succeq 0$, then $\mathbf{A}+\mathbf{B} \succeq 0$
2. If $\mathbf{A} \succeq \mathbf{B}$ and $\mathbf{C} \succeq \mathbf{D}$, then $\mathbf{A}+\mathbf{C} \succeq \mathbf{B}+\mathbf{D}$
3. If $\mathbf{B} \preceq 0$ then $\mathbf{A}+\mathbf{B} \preceq \mathbf{A}$
4. If $\mathbf{A} \succeq 0$ and $\alpha \geq 0$, then $\alpha \mathbf{A} \succeq 0$
5. If $\mathbf{A} \succ 0$, then $\mathbf{A}^{2} \succ 0$
6. If $\mathbf{A} \succ 0$, then $\mathbf{A}^{-1} \succ 0$

Continuity in functions

Definition (Continuity)

Let $f: \mathcal{Q} \rightarrow \mathbb{R}$ where $\mathcal{Q} \subseteq \mathbb{R}^{p}$. Then, f is a continuous function over its domain \mathcal{Q} if and only if

$$
\lim _{\mathbf{x} \rightarrow \mathbf{y}} f(\mathbf{x})=f(\mathbf{y}), \quad \forall \mathbf{y} \in \mathcal{Q}
$$

i.e., the limit of f-as \mathbf{x} approaches \mathbf{y}-exists and is equal to $f(\mathbf{y})$.

Definition (Class of continuous functions)

We denote the class of continuous functions f over the domain \mathcal{Q} as $f \in \mathcal{C}(\mathcal{Q})$.

Definition (Lipschitz continuity)

Let $f: \mathcal{Q} \rightarrow \mathbb{R}$ where $\mathcal{Q} \subseteq \mathbb{R}^{p}$. Then, f is called Lipschitz continuous if there exists a constant value $K \geq 0$ such that the following holds

$$
|f(\mathbf{y})-f(\mathbf{x})| \leq K\|\mathbf{y}-\mathbf{x}\|_{2}, \quad \forall \mathbf{x}, \quad \mathbf{y} \in \mathcal{Q}
$$

Observation: ○ "Small" changes in the input result into "small" changes in the function values.

Continuity in functions

Differentiability in functions

Definition (Differentiability)

Let $\mathcal{Q} \subseteq \mathbb{R}^{p}$. A function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is said to be k-times continuously differentiable on \mathcal{Q} if all its partial derivatives up to k-th order exist and are continuous over \mathcal{Q}. Notation: $f \in \mathcal{C}^{k}(\mathcal{Q})$.

- A key quantity is the gradient of the function $f: \mathcal{Q} \rightarrow \mathbb{R}$, which we denote as ∇f (\mathbf{e}_{i} is the i-th unit vector):

$$
\nabla f(\mathbf{x}):=\sum_{i=1}^{p} \frac{\partial f}{\partial x_{i}} \mathbf{e}_{i}=\left[\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{p}}\right]^{T} .
$$

- For $k=2$, we dub $\nabla^{2} f$ as the Hessian of f, i.e., $\left[\nabla^{2} f\right]_{i, j}:=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$.

Gradients as linear approximations

A "Taylor" way of thinking about gradients:

Let $\mathcal{Q} \subseteq \mathbb{R}^{p}$. If $f \in \mathcal{C}^{1}(\mathcal{Q})$, then $\mathbf{u} \mapsto\langle\nabla f(\mathbf{x}), \mathbf{u}\rangle$ is the unique linear function from \mathcal{Q} to \mathbb{R} such that

$$
\lim _{\mathbf{u} \rightarrow 0} \frac{|f(\mathbf{x}+\mathbf{u})-f(\mathbf{x})-\langle\nabla f(\mathbf{x}), \mathbf{u}\rangle|}{\|\mathbf{u}\|} \rightarrow 0
$$

Example

The gradient of $f: \mathbf{x} \mapsto\|\mathbf{x}\|_{2}^{2}$ is

$$
\nabla f(\mathbf{x})=2 \mathbf{x}
$$

Proof :

- To apply the Taylor way of thinking, we consider the following quantity:

$$
\begin{aligned}
f(\mathbf{x}+\mathbf{u})-f(\mathbf{x})=\|\mathbf{x}+\mathbf{u}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2} & =\|\mathbf{x}\|_{2}^{2}+2\langle\mathbf{x}, \mathbf{u}\rangle+\|\mathbf{u}\|_{2}^{2}-\|\mathbf{x}\|_{2}^{2} \\
& =2\langle\mathbf{x}, \mathbf{u}\rangle+\|\mathbf{u}\|_{2}^{2} \\
& =\langle 2 \mathbf{x}, \mathbf{u}\rangle+o\left(\|\mathbf{u}\|_{2}\right) .
\end{aligned}
$$

- Since the linear map is unique, we get that the gradient is $\nabla f(\mathbf{x})=2 \mathbf{x}$.

To be or not to be differentiable

Figure: (Left panel) ∞-times continuously differentiable function in \mathbb{R}. (Right panel) Non-differentiable $f(x)=|x|$ in \mathbb{R}.

Gradients of vector valued functions

Jacobian

When $f: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{d}$ is a vector valued function, the following $d \times n$ matrix \mathbf{J} of partial derivatives

$$
\left[\mathbf{J}_{f}(\mathbf{x})\right]_{i, j}:=\frac{\partial f_{i}}{\partial x_{j}}(\mathbf{x})
$$

is called the Jacobian of f at \mathbf{x}.
Observations: ○ The Jacobian is the transpose of the gradient, when f is real valued.

- Thinking in terms of Jacobians is really helpful when we need to use the chain rule.

Chain Rule via Jacobians

Let \circ denote the functional composition: $g \circ f:=g(f(\mathbf{x}))$. If $g \circ f$ is differentiable at \mathbf{x}, then the following holds

$$
\mathbf{J}_{g \circ f}(\mathbf{x})=\mathbf{J}_{g}(f(\mathbf{x})) \mathbf{J}_{f}(\mathbf{x})
$$

Hence, the chain rule, which is helpful in differentiating function compositions, can be related to a simple product of Jacobian matrices.

Example: Quadratic loss

Example

The gradient of the function $h: \mathbf{x} \mapsto\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}$ is given by the following expression:

$$
\nabla h(\mathbf{x})=2 \mathbf{A}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})
$$

Proof: $\quad \circ$ We apply the chain rule:

- The Jacobian of the affine function $f: \mathbf{x} \mapsto \mathbf{A x}-\mathbf{b}$ is $\mathbf{J}_{f}(\mathbf{x})=\mathbf{A}$.
- The gradient of $g: \mathbf{x} \mapsto\|\mathbf{x}\|_{2}^{2}$ is $\nabla g(\mathbf{x})=2 \mathbf{x} \Rightarrow \mathbf{J}_{g}(\mathbf{x})=2 \mathbf{x}^{T}$.
- Using the chain rule on the composition $h=g \circ f$:

$$
\begin{aligned}
\mathbf{J}_{g \circ f}(\mathbf{x}) & =\mathbf{J}_{g}(f(\mathbf{x})) \mathbf{J}_{f}(\mathbf{x}) \\
& =\mathbf{J}_{g}(\mathbf{A x}-\mathbf{b}) \mathbf{J}_{f}(\mathbf{x}) \\
& =2(\mathbf{A x}-\mathbf{b})^{T} \mathbf{A} .
\end{aligned}
$$

- Since h is real valued, the Jacobian is a row vector, we obtain the gradient by transposing.

Example: Logistic loss

Example

The gradient of the logistic loss $f(\mathbf{x})=\log \left(1+\exp \left(-b\left(\mathbf{a}^{T} \mathbf{x}\right)\right)\right)$ is given by the following expression:

$$
\nabla f(\mathbf{x})=-b \frac{\exp \left(-b\left(\mathbf{a}^{T} \mathbf{x}\right)\right)}{1+\exp \left(-b\left(\mathbf{a}^{T} \mathbf{x}\right)\right)} \mathbf{a}
$$

Proof: $\circ f$ is a composition of the following functions:

- $h(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}$, whose Jacobian is $\mathbf{J}_{h}(\mathbf{x})=\mathbf{a}^{T}$
- $g(u)=\log (1+\exp (-b u))$, whose " 1×1 Jacobian" is $\mathbf{J}_{g}(u)=-b \frac{\exp (-b u)}{1+\exp (-b u)}$
- By the chain rule:

$$
\begin{aligned}
\mathbf{J}_{f}(\mathbf{x}) & =\mathbf{J}_{g}(h(\mathbf{x})) \cdot \mathbf{J}_{h}(\mathbf{x}) \\
& =-b \frac{\exp \left(-b\left(\mathbf{a}^{T} \mathbf{x}\right)\right)}{1+\exp \left(-b\left(\mathbf{a}^{T} \mathbf{x}\right)\right)} \mathbf{a}^{T}
\end{aligned}
$$

- The gradient is simply the transpose of $\mathbf{J}_{f}(\mathbf{x})$.

Use Jacobians!

With Jacobians, differentiating function compositions is a direct mechanical process.

A more complicated example here and another one at the advanced material!

Example

The gradient of $f: \mathbf{x} \mapsto \boldsymbol{w}_{2}^{T} \sigma\left(\mathbf{W}_{1} \mathbf{x}+\boldsymbol{\mu}\right)$ is given by the following expression:

$$
\nabla f(\mathbf{x})=\mathbf{J}_{f}(\mathbf{x})^{T}=\mathbf{W}_{1}^{T}\left(\sigma^{\prime}\left(\mathbf{W}_{1} \mathbf{x}+\boldsymbol{\mu}\right) \odot \boldsymbol{w}_{2}\right)
$$

where σ is a non-linear function that applies to each coordinate, and \odot denotes the component wise product.
Proof: o We use the fact that f is a composition of the following functions:

- $h(\mathbf{x})=\mathbf{W}_{1} \mathbf{x}+\boldsymbol{\mu}$, whose Jacobian is $\mathbf{J}_{h}(\mathbf{x})=\mathbf{W}_{1}$.
- $g(\mathbf{x})=\left[\begin{array}{c}\sigma\left(\mathbf{x}_{1}\right) \\ \vdots \\ \sigma\left(\mathbf{x}_{n}\right)\end{array}\right]$, whose Jacobian is $\mathbf{J}_{g}(\mathbf{x})=\operatorname{diag}\left(\sigma^{\prime}\left(\mathbf{x}_{1}\right), \ldots, \sigma^{\prime}\left(\mathbf{x}_{n}\right)\right)$.
- $k(\mathbf{x})=\boldsymbol{w}_{2}^{T} \mathbf{x}$ whose Jacobian is $\mathbf{J}_{k}(\mathbf{x})=\boldsymbol{w}_{2}^{T}$.
- By the chain rule, we have that

$$
\begin{aligned}
\mathbf{J}_{f}(\mathbf{x}) & =\mathbf{J}_{k}(g(h(\mathbf{x}))) \cdot \mathbf{J}_{g}(h(\mathbf{x})) \cdot \mathbf{J}_{h}(\mathbf{x}) \\
& =\boldsymbol{w}_{2}^{T} \cdot \operatorname{diag}\left(\sigma^{\prime}\left(\left[\mathbf{W}_{1} \mathbf{x}+\boldsymbol{\mu}\right]_{1}\right), \ldots, \sigma^{\prime}\left(\left[\mathbf{W}_{1} \mathbf{x}+\boldsymbol{\mu}\right]_{n}\right)\right) \cdot \mathbf{W}_{1} .
\end{aligned}
$$

- Simply transpose the Jacobian to get the gradient and use \odot to replace the diagonal matrix.

Some reminders on sets

Definition (Closed set)

A set is closed if it contains all its limit points.
Definition (Open set)
A set is open if its complement is closed.

Definition (Closure of a set)

Let $\mathcal{Q} \subseteq \mathbb{R}^{p}$ be a given open set, i.e., it contains a neighborhood of all its points. Then, the closure of \mathcal{Q}, denoted as $\mathrm{cl}(\mathcal{Q})$, is the smallest closed set in \mathbb{R}^{p} that includes \mathcal{Q}.

Figure: (Left panel) Closed set \mathcal{Q}. (Middle panel) Open set \mathcal{Q} and its closure $\mathrm{cl}(\mathcal{Q})$ (Right panel).

Convexity of sets

Definition

- $\mathcal{Q} \subseteq \mathbb{R}^{p}$ is a convex set if

$$
\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q} \quad \forall \alpha \in[0,1], \quad \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in \mathcal{Q}
$$

- $\mathcal{Q} \subseteq \mathbb{R}^{p}$ is a strictly convex set if

$$
\forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q} \quad \forall \alpha \in(0,1), \quad \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in \operatorname{interior}(\mathcal{Q}) .
$$

Figure: (Left) Strictly convex (Middle) Convex (Right) Non-convex

Convexity of functions

Definition

Let \mathcal{Q} be a convex set in \mathbb{R}^{p}. A function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is called convex if

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right), \quad \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}, \quad \forall \alpha \in[0,1] .
$$

- f is called concave, if $-f$ is convex.

Figure: (Left) Non-convex (Middle) Convex (Right) Concave

Convexity of functions

Definition

Let \mathcal{Q} be a convex set in \mathbb{R}^{p}. A function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is called convex if

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right), \quad \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}, \quad \forall \alpha \in[0,1] .
$$

Question: $\quad \circ$ Can we extend f from \mathcal{Q} to \mathbb{R}^{p} preserving convexity?

Convexity of functions

Definition

Let \mathcal{Q} be a convex set in \mathbb{R}^{p}. A function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is called convex if

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right), \quad \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}, \quad \forall \alpha \in[0,1] .
$$

Question: $\quad \circ$ Can we extend f from \mathcal{Q} to \mathbb{R}^{p} preserving convexity?

Definition (Extended real-valued convex functions)

$$
f(\mathbf{x}):= \begin{cases}f(\mathbf{x}) & \text { if } \mathbf{x} \in \mathcal{Q} \\ +\infty & \text { if otherwise }\end{cases}
$$

Recall, $\operatorname{dom}(f)=\mathcal{Q}$. If $\mathcal{Q} \neq \mathbb{R}^{p}$, extended f is never continuous, but it is I.s.c.

Convexity of functions

Definition

Let \mathcal{Q} be a convex set in \mathbb{R}^{p}. A function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is called convex if

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right), \quad \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}, \quad \forall \alpha \in[0,1] .
$$

Proposition

Every ℓ_{q}-norm $\|\cdot\|_{q}(q \geq 1)$ in \mathbb{R}^{p} is convex.
Proof :

Convexity of functions

Definition

Let \mathcal{Q} be a convex set in \mathbb{R}^{p}. A function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is called convex if

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right), \quad \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}, \quad \forall \alpha \in[0,1] .
$$

Proposition

Every ℓ_{q}-norm $\|\cdot\|_{q}(q \geq 1)$ in \mathbb{R}^{p} is convex.
Proof : ○ Proof by intimidation.

Convexity of functions

Definition

Let \mathcal{Q} be a convex set in \mathbb{R}^{p}. A function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is called convex if

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right), \quad \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}, \quad \forall \alpha \in[0,1] .
$$

Proposition

Every ℓ_{q}-norm $\|\cdot\|_{q}(q \geq 1)$ in \mathbb{R}^{p} is convex.
Proof : ○Kidding! By triangle inequality and homogeneity of the norm:

$$
\left\|\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right\|_{q} \leq\left\|\alpha \mathbf{x}_{1}\right\|_{q}+\left\|(1-\alpha) \mathbf{x}_{2}\right\|_{q}=\alpha\left\|\mathbf{x}_{1}\right\|_{q}+(1-\alpha)\left\|\mathbf{x}_{2}\right\|_{q}, \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}, \forall \alpha \in[0,1]
$$

Convexity of functions

Definition

Let \mathcal{Q} be a convex set in \mathbb{R}^{p}. A function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is called convex if

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right), \quad \forall \mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{Q}, \quad \forall \alpha \in[0,1] .
$$

Example

Function	Example		Attributes						
ℓ_{q} vector norms, $q \geq 1$	$\\|\mathbf{x}\\|_{2},\\|\mathbf{x}\\|_{1},\\|\mathbf{x}\\|_{\infty}$		convex						
ℓ_{q} matrix norms, $q \geq 1$		$\\|\mathbf{X}\\|_{*}=\sum_{i=1}^{\operatorname{rank}(\mathbf{X})} \sigma_{i}$							
Square root function		convex							
Max of convex functions	$\max _{i} f_{i}(x), f_{i}$ convex	concave							
Min of concave functions	$\min _{i} f_{i}(x), f_{i}$ concave	convex							
Sum of convex functions	$\sum_{i=1}^{n} f_{i}, f_{i}$ convex	concave							
Logarithmic functions	$\log ^{n}(\operatorname{det}(\mathbf{X}))$	convex							
Affine/linear functions	$\sum_{i=1}^{n} X_{i i}$		concave, assumes $\mathbf{X} \succ 0$						
Eigenvalue functions	$\lambda_{\max }(\mathbf{X})$		both convex and concave						

Revisiting: Alternative definitions of function convexity II [2]

Recall, the epigraph of $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ is

$$
\operatorname{epi}(f)=\{(\mathbf{x}, u) \in \mathcal{Q} \times \mathbb{R}: f(\mathbf{x}) \leq u\}
$$

Definition

A function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex if its epigraph is a convex set.

Figure: Epigraph - the region in green above graph f.

Revisiting: Alternative definition of function convexity III [2]

Definition

Let \mathcal{Q} is a convex set in \mathbb{R}^{p}. A function $f \in \mathcal{C}^{1}(\mathcal{Q})$ is called convex on \mathcal{Q} if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$:

$$
f(\mathbf{x}) \geq f(\mathbf{y})+\langle\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle
$$

Definition

A function $f \in \mathcal{C}^{1}(\mathcal{Q})$ is called convex on \mathcal{Q} if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$:

$$
\langle\nabla f(\mathbf{y})-\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \geq 0
$$

*That is, if its gradient is a monotone operator.

Revisiting: Alternative definition of function convexity IV [2]

Definition

Let \mathcal{Q} is a convex set in \mathbb{R}^{p}. A function $f \in \mathcal{C}^{2}(\mathcal{Q})$ is called convex on \mathcal{Q} if for any $\mathbf{x} \in \mathcal{Q}$:

$$
\nabla^{2} f(\mathbf{x}) \succeq 0
$$

Remarks: $\quad \circ$ Geometrical interpretation: the graph of f has zero or positive (upward) curvature.

- However, this does not exclude flatness of f.

Revisiting: Alternative definition of function convexity V [2]

Definition

Let \mathcal{Q} is a convex set in \mathbb{R}^{p}. A function $f \in \mathcal{C}^{2}(\mathcal{Q})$ is called convex on \mathcal{Q} if for any $\mathbf{x} \in \mathcal{Q}, \mathbf{v} \in \mathbb{R}^{p}$, the function $g(t)=f(\mathbf{x}+t \mathbf{v})$ is convex on its domain $\{t \mid \mathbf{x}+t \mathbf{v} \in \mathcal{Q}\}$.

Remarks: $\quad \circ$ This approach allows us to check the convexity long 1-dimensional lines.

- This concept generalizes to self-concordant functions (advanced material).

Strict convexity

Definition

A function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ is called strictly convex on \mathcal{Q} if

$$
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right)<\alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) \quad \forall \mathbf{x}_{1} \mathbf{x}_{2} \in \mathcal{Q}, \quad \forall \alpha \in(0,1) .
$$

Theorem

If $\mathcal{Q} \subset \mathbb{R}^{p}$ is a convex set and $f: \mathbb{R}^{p} \rightarrow(-\infty,+\infty]$ is a proper and strictly convex function, then there exist at most one minimizer of f over \mathcal{Q}.

Figure: (Left panel) Convex function. (Right panel) Strictly convex function.

Subdifferentials and (sub)gradients in convex functions

Definition

Let $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex function. The subdifferential of f at a point $\mathbf{x} \in \mathcal{Q}$ is defined by the set:

$$
\partial f(\mathbf{x})=\left\{\mathbf{v} \in \mathbb{R}^{p}: f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{v}, \mathbf{y}-\mathbf{x}\rangle \text { for all } \mathbf{y} \in \mathcal{Q}\right\} .
$$

Each element \mathbf{v} of $\partial f(\mathbf{x})$ is called subgradient of f at \mathbf{x}.

Definition

Let $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a differentiable convex function. Then, the subdifferential of f at a point $\mathbf{x} \in \mathcal{Q}$ contains only the gradient, i.e., $\partial f(\mathbf{x})=\{\nabla f(\mathbf{x})\}$.

Remark: $\quad \circ$ Subdifferential generalizes ∇ to nondifferentiable functions

Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.

Generalized subdifferentials for nonconvex functions

Definition

Let $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a locally Lipschitz function. The Clarke subdifferential of f at a point $\mathbf{x} \in \mathcal{Q}$ is defined by the set:

$$
\partial_{C} f(\mathbf{x})=\operatorname{conv}\left(\left\{\mathbf{v} \in \mathbb{R}^{p}: \begin{array}{l}
\exists \mathbf{x}^{k} \rightarrow \mathbf{x}, \nabla f\left(\mathbf{x}^{k}\right) \text { exists, } \\
\nabla f\left(\mathbf{x}^{k}\right) \rightarrow \mathbf{v}
\end{array}\right\}\right)
$$

Remarks:

- For convex functions, the Clarke subdifferential reduces to subdifferential.
- If \mathbf{x}^{\star} is a local minimum of f, then $\mathbf{0} \in \partial_{C} f\left(\mathbf{x}^{\star}\right)$.

Figure: The Clarke subdifferential at -3 and $0: \partial_{C} f(-3)=\partial_{C} f(0)=[0,1]$. Non-subdifferentiability at -3 and 0 .

Heads up: Be careful with automatic differentiation!

Example (Simple)

The gradient of the function $f: x \mapsto \operatorname{ReLU}(x)-\operatorname{ReLU}(-x)=x$ at 0 is given by $g(0)=1$.
Remark: \circ Subdifferentials are tricky business!

- Automatic differentiation can be wrong [3]!
- We will revisit when we discuss the Moreau-Rockafellar's decomposition theorem.

Figure: (Left panel) ReLU function. (Right panel) Calculation of $g(0)$ in PyTorch.

L-Lipschitz gradient class of functions

Definition (L-Lipschitz gradient convex functions)

Let $f: \mathcal{Q} \rightarrow \mathbb{R}$ be differentiable and convex, i.e., $f \in \mathcal{F}^{1}(\mathcal{Q})$. Then, f has a Lipschitz gradient if there exists $L>0$ (the Lipschitz constant) such that $\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|_{2} \leq L\|\mathbf{x}-\mathbf{y}\|_{2}, \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{Q}$.

Proposition (L-Lipschitz gradient convex functions)

$f \in \mathcal{F}^{1}(\mathcal{Q})$ has L-Lipschitz gradient if and only if the following function is convex:

$$
h(\mathbf{x})=\frac{L}{2}\|\mathbf{x}\|_{2}^{2}-f(\mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{Q} .
$$

Definition (Class of 2-nd order Lipschitz functions)

The class of twice continuously differentiable functions f on \mathcal{Q} with Lipschitz continuous Hessian is denoted as $\mathcal{F}_{L}^{2,2}(\mathcal{Q})$ (with $2 \rightarrow 2$ denoting the spectral norm)

$$
\left\|\nabla^{2} f(\mathbf{x})-\nabla^{2} f(\mathbf{y})\right\|_{2 \rightarrow 2} \leq L\|\mathbf{x}-\mathbf{y}\|_{2}, \quad \forall \mathbf{x}, \mathbf{y} \in Q
$$

Remark: $\quad \circ \mathcal{F}_{L}^{l, m}$: functions that are l-times differentiable with m-th order Lipschitz property.

Example: Logistic regression

Problem (Logistic regression)

Given a sample vector $\mathbf{a}_{i} \in \mathbb{R}^{p}$ and a binary class label $b_{i} \in\{-1,+1\}(i=1, \ldots, n)$, we define the conditional probability of b_{i} given \mathbf{a}_{i} as:

$$
\mathbb{P}\left(b_{i} \mid \mathbf{a}_{i}, \mathbf{x}^{\natural}, \mu\right) \propto 1 /\left(1+e^{-b_{i}\left(\left\langle\mathbf{x}^{\natural}, \mathbf{a}_{i}\right\rangle+\mu\right)}\right),
$$

where $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ is some true weight vector, $\mu \in \mathbb{R}$ is called the intercept. How to estimate \mathbf{x}^{\natural} given the sample vectors, the binary labels, and μ ?

Optimization formulation

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-b_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}+\mu\right)\right)\right)}_{f(\mathbf{x})}
$$

Structural properties

Let $\mathbf{A}=\left[\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right]^{T}$ (design matrix), then $f \in \mathcal{F}_{L}^{2,1}$, with $L=\frac{1}{4}\left\|\mathbf{A}^{T} \mathbf{A}\right\|$

μ-strongly convex functions

Definition

A function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ is called μ-strongly convex on its domain if and only if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$ and $\alpha \in[0,1]$ we have:

$$
f(\alpha \mathbf{x}+(1-\alpha) \mathbf{y}) \leq \alpha f(\mathbf{x})+(1-\alpha) f(\mathbf{y})-\frac{\mu}{2} \alpha(1-\alpha)\|\mathbf{x}-\mathbf{y}\|_{2}^{2}
$$

The constant μ is called the convexity parameter of function f.

- The class of k-differentiable μ-strongly functions is denoted as $\mathcal{F}_{\mu}^{k}(\mathcal{Q})$.
- Strong convexity \Rightarrow strict convexity, BUT strict convexity \Rightarrow strong convexity

Alternative: μ-strongly convex functions

Definition

A convex function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is said to be μ-strongly convex if

$$
h(\mathbf{x})=f(\mathbf{x})-\frac{\mu}{2}\|\mathbf{x}\|_{2}^{2}
$$

is convex, where μ is called the strong convexity parameter.

- The class of k-differentiable μ-strongly functions is denoted as $\mathcal{F}_{\mu}^{k}(\mathcal{Q})$.
- Non-smooth functions can be μ-strongly convex: e.g., $f(\mathbf{x})=\|\mathbf{x}\|_{1}+\frac{\mu}{2}\|\mathbf{x}\|_{2}^{2}$.

Figure: (Left) Convex (Right) Strongly convex

Properties of μ-strongly convex functions

Lemma
Let $f: \mathcal{Q} \rightarrow \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ be a twice differentiable convex function, i.e., $f \in \mathcal{F}^{2}(\mathcal{Q})$. Then, f is μ-strongly convex function if and only if

$$
\nabla^{2} f(\mathbf{x}) \succeq \mu \mathbf{I}, \quad \forall \mathbf{x} \in \mathbb{R}^{p}
$$

Properties of μ-strongly convex functions

Lemma

Let $f: \mathcal{Q} \rightarrow \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ be a twice differentiable convex function, i.e., $f \in \mathcal{F}^{2}(\mathcal{Q})$. Then, f is μ-strongly convex function if and only if

$$
\nabla^{2} f(\mathbf{x}) \succeq \mu \mathbf{I}, \quad \forall \mathbf{x} \in \mathbb{R}^{p}
$$

Example (Toy example)

Consider the quadratic function $f(\mathbf{x})=\frac{1}{2}\|\mathbf{x}\|_{2}^{2}$. Then, f is a μ-strongly convex since $\nabla^{2} f(\mathbf{x})=\mathbf{I} \quad \Longrightarrow \quad \mu=1$.

Figure: Toy example for μ-strongly convex functions.

Properties of μ-strongly convex functions

Lemma

Let $f: \mathcal{Q} \rightarrow \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ be a twice differentiable convex function, i.e., $f \in \mathcal{F}^{2}(\mathcal{Q})$. Then, f is μ-strongly convex function if and only if

$$
\nabla^{2} f(\mathbf{x}) \succeq \mu \mathbf{I}, \quad \forall \mathbf{x} \in \mathbb{R}^{p}
$$

Example (Overdetermined least squares)

Consider an overdetermined linear system of equations $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$ where $\mathbf{A} \in \mathbb{R}^{n \times p}$ is a full column-rank matrix and \mathbf{x}^{\natural} is unknown. Assume that $\mathbf{A}^{T} \mathbf{A} \succeq \rho \mathbf{I}, \rho>0$ and let $f(\mathbf{x})=\frac{1}{2}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}$. Then, f is a μ-strongly convex function, i.e., $f \in \mathcal{F}_{\mu}^{2}\left(\mathbb{R}^{p}\right)$ since:

$$
\nabla^{2} f(\mathbf{x})=\mathbf{A}^{T} \mathbf{A} \text { where } \mathbf{A}^{T} \mathbf{A} \succeq \rho \mathbf{I}=: \mu \mathbf{I} .
$$

Figure: Overdetermined system of linear equations.

Properties of μ-strongly convex functions

Lemma

Let $f: \mathcal{Q} \rightarrow \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ be a twice differentiable convex function, i.e., $f \in \mathcal{F}^{2}(\mathcal{Q})$. Then, f is μ-strongly convex function if and only if

$$
\nabla^{2} f(\mathbf{x}) \succeq \mu \mathbf{I}, \quad \forall \mathbf{x} \in \mathbb{R}^{p}
$$

Example (Trivial)

Any linear function $f(\mathbf{x})=\mathbf{c}^{T} \mathbf{x}+\beta \in \mathcal{F}_{\mu}^{1}\left(\mathbb{R}^{p}\right)$ for $\mu=0$ since

$$
\nabla f(\mathbf{x})=\mathbf{c} \text { and } \nabla^{2} f(\mathbf{x})=\mathbf{0}
$$

Figure: Counterexample for μ-strongly convex functions.

Properties of μ-strongly convex functions

Lemma

Let $f: \mathcal{Q} \rightarrow \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ be a twice differentiable convex function, i.e., $f \in \mathcal{F}^{2}(\mathcal{Q})$. Then, f is μ-strongly convex function if and only if

$$
\nabla^{2} f(\mathbf{x}) \succeq \mu \mathbf{I}, \quad \forall \mathbf{x} \in \mathbb{R}^{p}
$$

Lemma

A continuously differentiable function f belongs to $\mathcal{F}_{\mu}^{1}(\mathcal{Q})$ if there exists a constant $\mu>0$ such that for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$, we have:

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{\mu}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}
$$

Lemma

Let f be continuously differentiable. The following condition, holding for all $\mathbf{x}, \mathbf{y} \in \mathcal{Q} \subseteq \mathbb{R}^{p}$, is equivalent to inclusion that f is μ-strongly convex function:

$$
\langle\nabla f(\mathbf{x})-\nabla f(\mathbf{y}), \mathbf{x}-\mathbf{y}\rangle \geq \mu\|\mathbf{x}-\mathbf{y}\|_{2}^{2} .
$$

L-smooth, μ-strongly convex functions

Definition

Let $f: \mathcal{Q} \rightarrow \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ be a continuously differentiable function. Then, f is both μ-strongly and L-smooth convex function if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$, we have:

$$
\frac{\mu}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2} \leq f(\mathbf{y})-f(\mathbf{x})-\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \leq \frac{L}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}
$$

for constants $0<\mu \leq L$. We denote that $f \in \mathcal{F}_{\mu, L}^{1,1}(\mathcal{Q})$. If f is twice differentiable, an equivalent condition is

$$
\mu \mathbf{I} \preceq \nabla^{2} f(\mathbf{x}) \preceq L \mathbf{I} .
$$

L-smooth, μ-strongly convex functions

Definition

Let $f: \mathcal{Q} \rightarrow \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ be a continuously differentiable function. Then, f is both μ-strongly and L-smooth convex function if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$, we have:

$$
\frac{\mu}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2} \leq f(\mathbf{y})-f(\mathbf{x})-\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \leq \frac{L}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}
$$

for constants $0<\mu \leq L$. We denote that $f \in \mathcal{F}_{\mu, L}^{1,1}(\mathcal{Q})$. If f is twice differentiable, an equivalent condition is

$$
\mu \mathbf{I} \preceq \nabla^{2} f(\mathbf{x}) \preceq L \mathbf{I} .
$$

Example

Consider an linear system of equations $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}$ where $\mu \mathbf{I} \preceq \mathbf{A}^{T} \mathbf{A} \preceq L \mathbf{I}$. Let $f(\mathbf{x})=\frac{1}{2}\|\mathbf{b}-\mathbf{A x}\|_{2}^{2}$. Then, f is both μ-strongly convex and L-smooth function, i.e., $f \in \mathcal{F}_{\mu, L}^{2,1}\left(\mathbb{R}^{p}\right)$ since:

$$
\nabla^{2} f(\mathbf{x})=\mathbf{A}^{T} \mathbf{A} \text { where } \mu \mathbf{I} \preceq \mathbf{A}^{T} \mathbf{A} \preceq L \mathbf{I} .
$$

L-smooth, μ-strongly convex functions

Definition

Let $f: \mathcal{Q} \rightarrow \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^{p}$ be a continuously differentiable function. Then, f is both μ-strongly and L-smooth convex function if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$, we have:

$$
\frac{\mu}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2} \leq f(\mathbf{y})-f(\mathbf{x})-\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle \leq \frac{L}{2}\|\mathbf{y}-\mathbf{x}\|_{2}^{2}
$$

for constants $0<\mu \leq L$. We denote that $f \in \mathcal{F}_{\mu, L}^{1,1}(\mathcal{Q})$. If f is twice differentiable, an equivalent condition is

$$
\mu \mathbf{I} \preceq \nabla^{2} f(\mathbf{x}) \preceq L \mathbf{I} .
$$

Observations: ○ Both μ and L show up in convergence rate characterization of algorithms

- Unfortunately, μ, L are usually not known a priori...
- When they are known, they can help significantly (even in stopping algorithms)

Convergence rates

Definition (Convergence of a sequence)

The sequence $\mathbf{u}^{1}, \mathbf{u}^{2}, \ldots, \mathbf{u}^{k}, \ldots$ converges to \mathbf{u}^{\star} (denoted $\lim _{k \rightarrow \infty} \mathbf{u}^{k}=\mathbf{u}^{\star}$), if

$$
\forall \varepsilon>0, \exists K \in \mathbb{N}: k \geq K \Rightarrow\left\|\mathbf{u}^{k}-\mathbf{u}^{\star}\right\| \leq \varepsilon
$$

Convergence rates: the "speed" at which a sequence converges

- sublinear: if there exists $c>0$ such that

$$
\left\|\mathbf{u}^{k}-\mathbf{u}^{\star}\right\|=O\left(k^{-c}\right)
$$

- linear: if there exists $\alpha \in(0,1)$ such that

$$
\left\|\mathbf{u}^{k}-\mathbf{u}^{\star}\right\|=O\left(\alpha^{k}\right)
$$

- Q-linear: if there exists a constant $r \in(0,1)$ such that

$$
\lim _{k \rightarrow \infty} \frac{\left\|\mathbf{u}^{k+1}-\mathbf{u}^{\star}\right\|}{\left\|\mathbf{u}^{k}-\mathbf{u}^{\star}\right\|}=r
$$

- superlinear: if $r=0$, we say that the sequence converges superlinearly.
- quadratic: if there exists a constant $\mu>0$ such that $\lim _{k \rightarrow \infty} \frac{\left\|\mathbf{u}^{k+1}-\mathbf{u}^{\star}\right\|}{\left\|\mathbf{u}^{k}-\mathbf{u}^{\star}\right\|^{2}}=\mu$

Example: Convergence rates

Examples of sequences that all converge to $u^{\star}=0$:

- Sublinear: $u^{k}=1 / k$
- Linear: $u^{k}=0.5^{k}$
- Superlinear: $u^{k}=k^{-k}$
- Quadratic: $u^{k}=0.5^{2^{k}}$

Wrap up!

- Please take a look at the handout for rate examples!
- See advanced material for material beyond convexity!
- Star-convexity
- Invexity
- Lecture on Monday!

*Jacobian of the self-attention module [5]

Example

We consider the Jacobian of $f: \mathbf{X} \mapsto \sigma_{s}\left(\mathbf{X} \mathbf{W}_{Q}^{\top} \mathbf{W}_{K} \mathbf{X}^{\top}\right) \mathbf{X} \mathbf{W}_{V}^{\top}$, where σ_{s} is row-wise softmax, $\mathbf{X} \in \mathbb{R}^{d_{s} \times d}$, $\mathbf{W}_{Q}, \mathbf{W}_{K}, \mathbf{W}_{V} \in \mathbb{R}^{d_{m} \times d}, f(\mathbf{X}) \in \mathbb{R}^{d_{s} \times d_{m}}$.

- Define $\boldsymbol{\beta}_{i}:=\sigma_{s}\left(\mathbf{X}^{(i,:)} \mathbf{W}_{Q}^{\top} \mathbf{W}_{K} \mathbf{X}^{\top}\right)^{\top} \in \mathbb{R}^{d_{s}}$ We can reformulate the definition above as:

$$
f(\mathbf{X})=\left[\begin{array}{c}
\boldsymbol{\beta}_{1}^{\top} \\
\vdots \\
\boldsymbol{\beta}_{d_{s}}^{\top}
\end{array}\right] \mathbf{X} \mathbf{W}_{V}^{\top}
$$

- By the product rule:

$$
\frac{\partial f(\mathbf{X})}{\partial X^{(p, k)}}=\left[\begin{array}{c}
\frac{\partial \boldsymbol{\beta}_{1}^{\top}}{\partial X^{(p, k)}} \tag{1}\\
\vdots \\
\frac{\partial \boldsymbol{\beta}_{d_{s}}^{\top}}{\partial X^{(p, k)}}
\end{array}\right] \mathbf{X} \mathbf{W}_{V}^{\top}+\left[\begin{array}{c}
\boldsymbol{\beta}_{1}^{\top} \\
\vdots \\
\boldsymbol{\beta}_{d_{s}}^{\top}
\end{array}\right] \frac{\partial\left(\mathbf{X} \mathbf{W}_{V}^{\top}\right)}{\partial X^{(p, k)}} .
$$

*Jacobian of self-attention module [5]

- Suppose $\boldsymbol{\beta}=\operatorname{Softmax}(\mathbf{u}) \in \mathbb{R}^{d_{s}}$, then $\frac{\partial \boldsymbol{\beta}}{\partial \mathbf{u}}=\operatorname{diag}(\boldsymbol{\beta})-\boldsymbol{\beta} \boldsymbol{\beta}^{\top}$. This is because:
- We can reformulate $\boldsymbol{\beta}$ as: $\boldsymbol{\beta}=\left[\begin{array}{c}\frac{\exp \left(u^{(1)}\right)}{\sum_{i=1}^{d_{s}} \exp \left(u^{(i)}\right)} \\ \vdots \\ \frac{\exp \left(u^{\left(d_{s}\right)}\right)}{\sum_{i=1}^{d_{s}} \exp \left(u^{(i)}\right)}\end{array}\right]$
- Thus

$$
\begin{aligned}
\frac{\partial \beta^{(j)}}{\partial u^{(k)}}=\frac{\partial \frac{\exp \left(u^{(j)}\right)}{\sum_{i=1}^{d_{s}} \exp \left(u^{(i)}\right)}}{\partial u^{(k)}} & = \begin{cases}\frac{-\exp \left(u^{(j)}\right)-\exp \left(u^{(k)}\right)}{\left(\sum_{i=1}^{d_{s}} \exp \left(u^{(i)}\right)\right)^{2}} & \text { if } j \neq k \\
\frac{\exp \left(u^{(k)}\right) \sum_{i=1}^{d_{s}} \exp \left(u^{(i)}\right)-\left(\exp \left(u^{(k)}\right)\right)^{2}}{\left(\sum_{i=1}^{d_{s}} \exp \left(u^{(i)}\right)\right)^{2}} & \text { if } j=k \\
& =\left\{\begin{array}{ll}
-\beta^{(j)} \beta^{(k)} & \text { if } j \neq k \\
\beta^{(k)}-\beta^{(j)} \beta^{(k)} & \text { if } j=k
\end{array} .\right.\end{cases}
\end{aligned}
$$

- Thus

$$
\begin{equation*}
\frac{\partial \boldsymbol{\beta}}{\partial \mathbf{u}}=\operatorname{diag}(\boldsymbol{\beta})-\boldsymbol{\beta} \boldsymbol{\beta}^{\top} \tag{2}
\end{equation*}
$$

*Jacobian of self-attention module [5]

- Then we can calculate the term $\frac{\partial \boldsymbol{\beta}_{i}}{\partial X^{(p, k)}}$ for $i \in\left[d_{s}\right]$ in the first part of Eq. (1).

$$
\begin{align*}
\frac{\partial \boldsymbol{\beta}_{i}}{\partial X^{(p, k)}} & =\left(\operatorname{diag}\left(\boldsymbol{\beta}_{i}\right)-\boldsymbol{\beta}_{i} \boldsymbol{\beta}_{i}^{\top}\right) \frac{\partial\left(\mathbf{X} \mathbf{W}_{K}^{\top} \mathbf{W}_{Q} \mathbf{X}^{(i,:)^{\top}}\right)}{\partial X^{(p, k)}} \tag{3}\\
& =\left(\operatorname{diag}\left(\boldsymbol{\beta}_{i}\right)-\boldsymbol{\beta}_{i} \boldsymbol{\beta}_{i}^{\top}\right)\left(\boldsymbol{e}_{p} \boldsymbol{e}_{k}^{\top} \mathbf{W}_{K}^{\top} \mathbf{W}_{Q} \mathbf{X}^{(i,:)^{\top}}+\mathbf{X} \mathbf{W}_{K}^{\top} \mathbf{W}_{Q} \boldsymbol{e}_{k} \delta_{i p}\right),
\end{align*}
$$

where \boldsymbol{e}_{p} is the $p^{\text {th }}$ canonical basis vector of $\mathbb{R}^{d_{s}}, \boldsymbol{e}_{k}$ is the $k^{\text {th }}$ canonical basis vector of \mathbb{R}^{d}.

- Next, let's consider the second term in Eq. (1):

$$
\begin{equation*}
\frac{\partial\left(\mathbf{X} \mathbf{W}_{V}^{\top}\right)}{\partial X^{(p, k)}}=\boldsymbol{e}_{p} \boldsymbol{e}_{k}^{\top} \mathbf{W}_{V}^{\top} . \tag{4}
\end{equation*}
$$

- Lastly, substituting Eq. (3) and Eq. (4) into Eq. (1):

$$
\frac{\partial f(\mathbf{X})}{\partial X^{(p, k)}}=\left[\begin{array}{c}
\left(\operatorname{diag}\left(\boldsymbol{\beta}_{1}\right)-\boldsymbol{\beta}_{1} \boldsymbol{\beta}_{1}^{\top}\right)\left(\boldsymbol{e}_{p} \boldsymbol{e}_{k}^{\top} \mathbf{W}_{K}^{\top} \mathbf{W}_{Q} \mathbf{X}^{(1,:)^{\top}}+\mathbf{X} \mathbf{W}_{K}^{\top} \mathbf{W}_{Q} \boldsymbol{e}_{k} \delta_{1 p}\right) \\
\vdots \\
\left(\operatorname{diag}\left(\boldsymbol{\beta}_{d_{s}}\right)-\boldsymbol{\beta}_{d_{s}} \boldsymbol{\beta}_{d_{s}}^{\top}\right)\left(\boldsymbol{e}_{p} \boldsymbol{e}_{k}^{\top} \mathbf{W}_{K}^{\top} \mathbf{W}_{Q} \mathbf{X}^{\left(d_{s},:\right)^{\top}}+\mathbf{X} \mathbf{W}_{K}^{\top} \mathbf{W}_{Q} \boldsymbol{e}_{k} \delta_{d_{s} p}\right)
\end{array}\right] \mathbf{X} \mathbf{W}_{V}^{\top}+\left[\begin{array}{c}
\boldsymbol{\beta}_{1}^{\top} \\
\vdots \\
\boldsymbol{\beta}_{d_{s}}^{\top}
\end{array}\right] \boldsymbol{e}_{p} \boldsymbol{e}_{k}^{\top} \mathbf{W}_{V}^{\top}
$$

Convex hull

Definition (Convex hull)

Let $\mathcal{Q} \subseteq \mathbb{R}^{p}$ be a set. The convex hull of \mathcal{Q}, i.e., $\operatorname{conv}(\mathcal{Q})$, is the smallest convex set that contains \mathcal{Q}.

Definition (Convex hull of points)

Let $\mathcal{Q} \subseteq \mathbb{R}^{p}$ be a finite set of points with cardinality $|\mathcal{Q}|$. The convex hull of \mathcal{Q} is the set of all convex combinations of its points, i.e.,

$$
\operatorname{conv}(\mathcal{Q})=\left\{\sum_{i=1}^{|\mathcal{Q}|} \alpha_{i} \mathbf{x}_{i}: \sum_{i=1}^{|\mathcal{Q}|} \alpha_{i}=1, \alpha_{i} \geq 0, \forall i, \mathbf{x}_{i} \in \mathcal{Q}\right\}
$$

Figure: (Left) Discrete set of points \mathcal{Q}. (Right) Convex hull $\operatorname{conv}(\mathcal{Q})$.

*Star convex sets

Definition

$\mathcal{Q} \subseteq \mathbb{R}^{p}$ is a star-shaped set if there exists a $\mathbf{x}_{1} \in \mathcal{Q}$ such that

$$
\forall \mathbf{x}_{2} \in \mathcal{Q} \quad \forall \alpha \in[0,1], \quad \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in \mathcal{Q}
$$

Figure: Example of a star-shaped but not convex set.

*Star convexity

Definition

A function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ is called star-convex on \mathcal{Q} if there exists a global minimum $\mathbf{x}^{\star} \in \mathcal{Q}$ such that

$$
f\left(\alpha \mathbf{x}^{\star}+(1-\alpha) \mathbf{x}\right) \leq \alpha f\left(\mathbf{x}^{\star}\right)+(1-\alpha) f(\mathbf{x}) \quad \forall \mathbf{x} \in \mathcal{Q}, \quad \forall \alpha \in[0,1] .
$$

Remarks:

- Any convex function is star-convex.
- Star-convexity can be viewed as convexity between any point \mathbf{x} and a global minimum \mathbf{x}^{\star}.
- Allows the negative gradient $-\nabla f(\mathbf{x})$ to the desired minimization direction.
- Consider the following objective function:

$$
\min _{\mathbf{x}} f(\mathbf{x}):=\frac{1}{n}\left(\sum_{i=1}^{n}\left|b_{i}-\left\langle\mathbf{a}_{i}, \mathbf{x}\right\rangle\right|^{q}\right)^{1 / q} .
$$

- Star-convex for any real number q when $n \leq p$.
- Convex for $q \geq 1$.
- $(q=1)$: the least-absolute deviation estimator. $(q=2)$: the least-squares estimator.

*Invex function

Definition

Let \mathcal{Q} be an open set in \mathbb{R}^{p}. A differentiable function $f: \mathcal{Q} \rightarrow \mathbb{R}$ is called invex if there exists a function $\eta: \mathcal{Q} \times \mathcal{Q} \rightarrow \mathbb{R}^{p}$ such that

$$
f(\mathbf{x}) \geq f(\mathbf{y})+\langle\nabla f(\mathbf{y}), \eta(\mathbf{x}, \mathbf{y})\rangle, \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{Q} .
$$

Remarks: $\quad \circ$ Any convex function is invex function: $\eta(\mathbf{x}, \mathbf{y})=\mathbf{x}-\mathbf{y}$.

- Any local minima in an invex function is global minima!

Proof : $\quad \circ$ Suppose \mathbf{x}^{\star} is a local minimum, then $\nabla f\left(\mathbf{x}^{\star}\right)=0$. By the definition above, we have

$$
f(\mathbf{x}) \geq f\left(\mathbf{x}^{\star}\right)+\langle 0, \eta(\mathbf{x}, \mathbf{y})\rangle=f\left(\mathbf{x}^{\star}\right), \quad \forall \mathbf{x} \in \mathcal{Q} .
$$

$0 \Rightarrow \mathrm{x}^{\star}$ is also a global minimum.

Example (Causality via directed acyclic graph (DAG) learning [1])

For any $s>0$, define $f^{s}:\left\{\boldsymbol{X} \in \mathbb{R}^{d \times d} \mid s>\rho(\boldsymbol{X} \circ \boldsymbol{X})\right\} \rightarrow \mathbb{R}$ as $f^{s}(\boldsymbol{X}) \stackrel{\text { def }}{=}-\log \operatorname{det}(s \boldsymbol{I}-\boldsymbol{X} \circ \boldsymbol{X})+d \log s$, where \circ is the Hadamard product, $\rho(\cdot)$ is the spectral radius, and \boldsymbol{X} is the graph weighted adjacency matrix.

- Then, f^{s} is an invex function. $f^{s}(\boldsymbol{X}) \geq 0$ with $f^{s}(\boldsymbol{X})=0$ if and only if \boldsymbol{X} is a DAG.
*Self-concordant functions [4]

Definition (Self-concordant functions in 1-dimension)

A convex function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if

$$
\left|\varphi^{\prime \prime \prime}(t)\right| \leq 2 \varphi^{\prime \prime}(t)^{3 / 2}, \quad \forall t \in \mathbb{R}
$$

*Self-concordant functions [4]

Definition (Self-concordant functions in 1-dimension)

A convex function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if

$$
\left|\varphi^{\prime \prime \prime}(t)\right| \leq 2 \varphi^{\prime \prime}(t)^{3 / 2}, \quad \forall t \in \mathbb{R}
$$

Affine Invariance of self-concordant functions

Let $\tilde{\varphi}(t)=\varphi(\alpha t+\beta)$ where $\alpha \neq 0$. Then, $\tilde{\varphi}$ is self-concordant iff φ is.

*Self-concordant functions [4]

Definition (Self-concordant functions in 1-dimension)

A convex function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is self-concordant if

$$
\left|\varphi^{\prime \prime \prime}(t)\right| \leq 2 \varphi^{\prime \prime}(t)^{3 / 2}, \quad \forall t \in \mathbb{R}
$$

Affine Invariance of self-concordant functions

Let $\tilde{\varphi}(t)=\varphi(\alpha t+\beta)$ where $\alpha \neq 0$. Then, $\tilde{\varphi}$ is self-concordant iff φ is.

Important remarks of self-concordance

1. Generalize to higher dimension: A convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be (standard) self-concordant if $\left|\varphi^{\prime \prime \prime}(t)\right| \leq 2 \varphi^{\prime \prime}(t)^{3 / 2}$, where $\varphi(t):=f(\mathbf{x}+t \mathbf{v})$ for all $t \in \mathbb{R}, \mathbf{x} \in \operatorname{dom} f$ and $\mathbf{v} \in \mathbb{R}^{n}$ such that $\mathbf{x}+t \mathbf{v} \in \operatorname{dom} f$.
2. Affine invariance still holds in high dimension.
3. Self-concordant functions are efficiently minimized by the Newton method and its variants.

References I

[1] Kevin Bello, Bryon Aragam, and Pradeep Ravikumar.
Dagma: Learning dags via m-matrices and a log-determinant acyclicity characterization.
In Advances in Neural Information Processing Systems, 2022.
(Cited on page 62.)
[2] S. Boyd, S.P. Boyd, L. Vandenberghe, and Cambridge University Press.
Convex Optimization.
Berichte uber verteilte messysteme. Cambridge University Press, 2004.
(Cited on pages 33, 34, 35, and 36.)
[3] Sham M Kakade and Jason D Lee.
Provably correct automatic sub-differentiation for qualified programs.
In Advances in Neural Information Processing Systems, volume 31, 2018.
(Cited on page 40.)
[4] Yurii Nesterov and Arkadii Nemirovskii.
Interior-point polynomial algorithms in convex programming.
SIAM, 1994.
(Cited on pages 63, 64, and 65.)

References II

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need.
In Advances in Neural Information Processing Systems, 2017.
(Cited on pages 56, 57, and 58.)

[^0]: Remark:

 - Homeworks will be given as Jupyter notebooks.

