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Logistics

▶ Credits: 6

▶ Lectures: Monday 9:00-12:00 (MA B1 11)

▶ Exercise hours: Friday 16:00-19:00 (BC 07-08)

▶ Prerequisites: Previous coursework in calculus, linear algebra, and probability is required. Familiarity with
optimization is useful.

▶ Grading: Homework exercises & exam (cf., syllabus).
▶ Moodle: My courses > Genie electrique et electronique (EL) > Master > EE-556

syllabus & course outline & HW exercises.
▶ TA’s: Andrej Janchevski (Head TA), Luca Viano, Pedro Abranches, Thomas Pethick, Zhenyu Zhu,

Yongtao Wu, Wanyun Xie.
▶ @LIONS: Stratis Skoulakis, Kimon Antonakopoulos, Angeliki Kamoutsi.
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Logistics for online teaching

▶ Zoom link for video lectures and exercise hours:

https://go.epfl.ch/mod-zoom

Passcode: 994779

▶ Mediaspace@EPFL channel for recorded videos:

https://mediaspace.epfl.ch/channel/EE-556%2BMathematics%2Bof%2Bdata%253A%2Bfrom%2Btheory%
2Bto%2Bcomputation/30469

▶ Moodle:

https://moodle.epfl.ch/course/view.php?id=14220
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Outline

▶ Overview of Mathematics of Data
▶ Empirical Risk Minimization
▶ Statistical Learning with Maximum Likelihood Estimators
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Recommended preliminary material for this lecture

◦ Supplementary lectures

1. Basic Probability
2. Complexity
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Overview of Mathematics of Data
Towards Learning Machines
The course presents data models, optimization formulations, numerical algorithms, and the associated analysis
techniques with the goal of extracting information &knowledge from data while understanding the trade-offs.

Data Loss Function Model

Algorithm

Time

Computation

Bias

Ethics

RobustnessGeneralizationConvergence

InterpretabilityStorage
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A taxonomy of machine learning

◦ Machine learning in three paradigms:

1. Supervised learning: Learn to predict the label of an unseen sample from a set a labelled examples.

▶ CS-433 (Machine Learning), CS-431/EE-608 (Natural Language Processing)

2. Unsupervised learning: Identify structure within a dataset without having access to solved examples.

▶ CS-503 (Visual Intelligence: Machines and Minds)

3. Reinforcement learning: Learn how to optimally control an agent interacting with an environment.

▶ EE-618 (Theory and Methods for Reinforcement Learning), CS-430 (Intelligent Agents)

◦ More information on ML courses can be found here:

https://www.epfl.ch/research/domains/ml/courses/

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 37

https://www.epfl.ch/research/domains/ml/courses/


An overview of statistical learning by Vapnik

A basic statistical learning framework [7]
A statistical learning problem usually consists of three elements.

1. A generator that produces samples ai ∈ Rp of a random
variable a with an unknown probability distribution Pa.

2. A supervisor that for each ai ∈ Rp, generates a sample bi of a
random variable B with an unknown conditional probability
distribution PB|a .

3. A learning machine that can respond as any function
h(ai) ∈ H◦ of ai in some fixed function space H◦.

◦ Via this framework, we will study classification, regression, and density estimation problems
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A classification example: Cancer prediction

b1 = 1

b2 = 1

bn = �1

(disease)

(disease)

(not disease)

a1

a2

an

◦ Goal: Assist doctors in diagnosis

◦ Generator Pa

▶ Genome data ai: http://genome.ucsc.edu

◦ Supervisor PB|a
▶ Health bi = 1 or −1: Cancer or not
◦ Learning Machine h(ai)
▶ Data scientist: Mathematics of Data
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A classification example: Google Photos

◦ Goal: Search a photo album

◦ Generator Pa

▶ You taking photos ai.
◦ Supervisor PB|a
▶ Labels for the i-th photo bi ∈ {person, action,. . . }
◦ Learning Machine h(ai)
▶ Data scientist: Mathematics of Data
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A classification example: Next word prediction

◦ Goal: Train a ChatGPT to assist human

◦ Generator Pa

▶ An incomplete sentence ai.
◦ Supervisor PB|a
▶ Labels for the next word bi ∈ Vocabulary set.
◦ Learning Machine h(ai)
▶ Data scientist: Mathematics of Data
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A regression example: Travel time prediction

◦ Goal: Estimate travel time

◦ Generator Pa

▶ Pairs of waypoints ai.
◦ Supervisor PB|a
▶ Trip duration bi.
◦ Learning Machine h(ai)
▶ Data scientist: Mathematics of Data
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A regression example: House pricing

(source: https://www.homegate.ch)

ai = [ location, size, orientation, view, distance to public transport, ... ]

bi = [ price ]

◦ Goal: Assist pricing decisions

◦ Generator Pa

▶ Owners, architects, municipality, constructors
◦ Supervisor PB|a
▶ House data (homegate, comparis, immobilier...)
◦ Learning Machine h(ai)
▶ Data scientist: Mathematics of Data
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A density estimation example: Image generation from text prompts

ai = [ ...images...]
bi = [ ...probability... ]

◦ Goal: Generate images via text prompts

◦ Generator Pa

▶ Nature
◦ Supervisor PB|a
▶ Frequency data
◦ Learning Machine h(ai)
▶ Data scientist: Mathematics of Data

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 37



A density estimation example: Uncertainty estimation for MRI

ai = [ ... noise & mask ...]
bi = [ ... images ... ]

◦ Goal: Optimize sampling mask

◦ Generator Pa

▶ Magnetic resonance imaging (MRI) machines
◦ Supervisor PB|a
▶ Frequency data
◦ Learning Machine h(ai)
▶ Data scientist: Mathematics of Data
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Loss function

Definition (Loss function)
A loss function L : B × B → R on a set is a function that satisfies some or all properties of a metric. We use
loss functions in statistical learning to measure the data fidelity L(h(a), b).

Definition (Metric)
Let B be a set. A function d(·, ·) : B×B → R is a metric if ∀b1,2,3 ∈ B :
(a) d(b1, b2) ≥ 0 for all b1 and b2 (nonnegativity)
(b) d(b1, b2) = 0 if and only if b1 = b2 (definiteness)
(c) d(b1, b2) = d(b2, b1) (symmetry)
(d) d(b1, b2) ≤ d(b1, b3) + d(b3, b2) (triangle inequality)

Remarks: ◦ A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b).
◦ Norms induce metrics while pseudo-norms induce pseudo-metrics.
◦ A divergence satisfies (a) and (b) but not necessarily (c) or (d)
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Loss function examples

2 1 0 1 2
b1 × b2

0
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Logistic loss
0-1 loss

Definition (Logistic loss)
For a binary classification problem, the logistic loss for a score value
b1 ∈ R and class label b2 ∈ ±1 is given by

L(b1, b2) = log2(1 + exp(−b1 × b2)).

2 1 0 1 2
b1 b2

0

1

2

3

4

Lo
ss

1 loss
2 loss Definition (ℓq-losses)

For all b1, b2 ∈ Rn × Rn, we can use Lq(b1, b2) = ∥b1 − b2∥q
q , where

ℓq-norm: ∥b∥q
q :=

∑n

i=1 |bi|q for b ∈ Rn and q ∈ [1,∞)

Definition (1-Wasserstein distance)
Let µ and ν be two probability measures on Rd an define their couplings
as Γ(µ, ν) := {π probability measure on Rd × Rd with marginals µ, ν}.

W1(µ, ν) := inf
π∈Γ(µ,ν)

E(x,y)∼π∥x− y ∥
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A risky, non-parametric reformulation of basic statistical learning

Statistical Learning Model [7]
A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables (ai, bi) ∈ A× B, i = 1, . . . , n,
following an unknown probability distribution P.

2. A class (set) H◦ of functions h : A → B.
3. A loss function L : B × B → R, measuring data fidelity.

Definition (Risk)
Let (a, b) follow the probability distribution P and be independent of (a1, b1), . . . , (an, bn). Then, the
(population) risk corresponding to any h ∈ H◦ is its expected loss for a chosen loss function L:

R(h) := E(a,b) [L(h(a), b)] .

Statistical learning seeks to find a h◦ ∈ H◦ that minimizes the population risk, i.e., it solves

h◦ ∈ arg min
h
{R(h) : h ∈ H◦} .

Observations: ◦ Since P is unknown, the optimization problem above is intractable.
◦ Since H◦ is often unknown, we might have a mismatched function class in constraints.
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Empirical risk minimization (ERM)

Empirical risk minimization (ERM) [7]
We approximate h◦ by minimizing the empirical average of the loss instead of the risk. That is, we consider

h⋆ ∈ arg min
h

{
1
n

n∑
i=1

L(h(ai), bi) : h ∈ H

}
,

where H is our best estimate of the function class H◦. Ideally, H ≡ H◦.

Rationale: By the law of large numbers, we can expect that for each h ∈ H,

R(h) := E(a,b) [L(h(a), b)] ≈
1
n

n∑
i=1

L(h(ai), bi)

when n is large enough, with high probability.

Theorem (Strong Law of Large Numbers)
Let X be a real-valued random variable with the finite first moment E[X], and let X1, X2, ..., Xn be an infinite
sequence of independent and identically distributed copies of X. Then, the empirical average of this sequence
X̄n :=

1
n

(X1 + ... + Xn) converges almost surely to E[X]: i.e., P
(

limn→∞X̄n = E[X]
)

= 1.
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An ERM example

Statistical learning with empirical risk minimization (ERM) [7]
We approximate h◦ by minimizing the empirical average of the loss instead of the risk. That is, we consider

h⋆ ∈ arg min
h∈H

{
Rn(h) :=

1
n

n∑
i=1

L(h(ai), bi)

}
.

Observations: ◦ The search space H is possibly infinite dimensional. It is still not solvable!
◦ Sometimes, H is a non-empty set with a corresponding reproducing kernel Hilbert space.
▶ Then, we can find solutions as if the problem was finitely parameterized.
▶ See supplementary lecture on Kernel Methods.

Statistical learning with empirical risk minimization (ERM) [7]
In contrast, when the function h has a parametric form hx(·), we can instead solve

x⋆ ∈ arg min
x∈X

{
Rn(hx) =

1
n

n∑
i=1

L(hx(ai), bi)

}
.
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Basic statistics: Model

Parametric estimation model
A parametric estimation model consists of the following four elements:

1. A parameter space, which is a subset X of Rp

2. A parameter x♮, which is an element of the parameter space
3. A class of probability distributions PX := {Px : x ∈ X}
4. A sample (ai, bi), which follows the distribution bi ∼ Px♮,ai

∈ PX

Example: Gaussian linear model
Let x♮ ∈ Rp. Let bi =

〈
ai, x♮

〉
+ wi for i = 1, . . . , n, where wi ∈ R is a

Gaussian random variable with zero mean and variance σ2 (i.e.,
wi ∼ N (0, σ2)).

◦ Linear model is super general (see Lecture 2).

◦ Models are often wrong! Robustness vs Performance.

◦ Statistical estimation seeks to approximate x♮, given X , PX , and b.
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Basic statistics: Estimator

Definition (Estimator)
An estimator is a mapping that takes X , PX , (ai, bi)i=1,...,n as inputs, and outputs a value (→ x⋆) in X .

Observations: ◦ The output of an estimator depends on the sample, and hence, is random.

◦ The output of an estimator is not necessarily equal to x♮.

Example: The least-squares estimator (LS)
The least-squares estimator is given by

x⋆
LS ∈ arg min

{
1
n

n∑
i=1

(bi − ⟨ai, x⟩)2 : x ∈ Rp

}
.
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Basic statistics: Loss function

Example: The least-squares estimator (LS)
The least-squares estimator is given by

x⋆
LS ∈ arg min

x∈Rp

{ 1
n
∥b−Ax ∥2

2 : x ∈ Rp
}

= arg min

{
1
n

n∑
i=1

(bi − ⟨ai, x⟩)2 : x ∈ Rp

}
,

where we define b := (b1, . . . , bn) and ai to be the i-th row of A.

A statistical learning view of least squares
The LS estimator corresponds to a statistical learning model, for which
▶ the sample is given by (ai, bi) ∈ Rp × R, i = 1, . . . , n,
▶ the function class H is given by H := {hx(·) := ⟨·, x⟩ : x ∈ Rp},

and
▶ the loss function is given by L(hx(a), b) := (b− hx(a))2.

Observation: ◦ Given the estimator x⋆
LS, the learning machine outputs hx⋆

LS
(a) := ⟨a, x⋆

LS⟩.
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One way to choose the loss function

Recall the general setting.

Parametric estimation model
A parametric estimation model consists of the following four elements:

1. A parameter space, which is a subset X of Rp

2. A parameter x♮, which is an element of the parameter space
3. A class of probability distributions PX := {Px : x ∈ X}
4. A sample (ai, bi), which follows the distribution bi ∼ Px♮,ai

∈ PX

Definition (Maximum-likelihood estimator)
The maximum-likelihood (ML) estimator is given by

x⋆
ML ∈ arg min

x∈X
{L(hx(a), b) := − log px(b)} ,

where px(·) denotes the probability density function or probability mass function of Px, for x ∈ X .
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The least squares estimator: An intuitive derivation

Gaussian linear model
Let x♮ ∈ Rp. Let b := Ax♮ + w ∈ Rn for some matrix A ∈ Rn×p, where w is a Gaussian vector with zero
mean and covariance matrix σ2I.

The derivation: The probability density function px(·) is given by

px(b) =
( 1
√

2πσ2

)n

exp
(
−

1
2σ2 ∥b−Ax ∥2

2

)
.

Therefore, the maximum likelihood (ML) estimator is defined as

x⋆
ML ∈ arg min

x

{
− log px(b) = −

n

2
log(2πσ2) +

1
2σ2 ∥b−Ax ∥2

2 : x ∈ Rp
}

,

which is equivalent to

x⋆
ML ∈ arg min

x

{ 1
n
∥b−Ax ∥2

2 : x ∈ Rp
}

.

Observations: ◦ The LS estimator is the ML estimator for the Gaussian linear model.

◦ The loss function is the quadratic loss.
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Statistical learning with ML estimators

◦ A visual summary: From parametric models to learning machines

(ai, bi)n
i=1

modeling−−−−−−−→
parameter x

P (bi|ai, x) independency−−−−−−−−→
identical dist.

px(b) :=
n∏

i=1

P (bi|ai, x)

↓ maximizing w.r.t x
a −→Learning Machine←− x⋆

ML
prediction ↓

hx⋆
ML

(a)

Observations: ◦ Recall x⋆
ML ∈ arg minx∈X {L(hx(a), b) := − log px(b)}.

◦ Maximizing px(b) gives the ML estimator.

◦ Maximizing px(b) and minimizing − log px(b) result in the same solution set.

◦ See Lecture 2 for more examples in classification, imaging, and quantum tomography
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Learning machines result in optimization problems

Definition (M -Estimator)
The learning machine typically has to solve an optimization problem of
the following form:

x⋆
M ∈ arg min

x∈X
{F (x)}

for some function F depending on the sample space X , class of
probability distributions PX , and sample b. The term “M -estimator”
denotes “maximum-likelihood-type estimator” [2].

Example: The least-absolute deviation estimator (LAD)
The least-absolute deviation estimator is given by

x⋆
LAD ∈ arg min

{
1
n

n∑
i=1

|bi − ⟨ai, x⟩| : x ∈ Rp

}
.

Remark: ◦ The LAD estimator is more robust to outliers than the LS estimator.
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Practical Issues

Given an estimator x⋆ ∈ arg minx∈X {F (x)} of x♮, we have two questions:

1. Is the formulation reasonable?
2. What is the role of the data size?
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Standard approach to checking the fidelity

Standard approach
1. Specify a performance criterion or a (pseudo-) metric d(x⋆, x♮) that should be small if x⋆ = x♮.
2. Show that d is actually small in some sense when some condition is satisfied.

Example
Take the ℓ2-error d(x⋆, x♮) := ∥x⋆ − x♮ ∥2

2 as an example. Then we may verify the fidelity via one of the
following ways, where ε denotes a small enough number:

1. E
[
d(x⋆, x♮)

]
≤ ε (expected error),

2. P
(

d(x⋆, x♮) > t
)
≤ ε for any t > 0 (consistency),

3.
√

n(x⋆ − x♮) converges in distribution to N (0, I) (asymptotic normality),
4.
√

n(x⋆ − x♮) converges in distribution to N (0, I) in a local neighborhood (local asymptotic normality).
if some condition is satisfied. Such conditions typically revolve around the data size.

Remark: ◦ Lecture 2 explains these concepts in detail.
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Expected error

Gaussian linear model
Let x♮ ∈ Rp and let A ∈ Rn×p. The samples are given by b = Ax♮ + w, where w is a sample of a Gaussian
random vector w ∼ N (0, σ2I).

Question: ◦ What is the performance of the ML estimator?

x⋆
ML ∈ arg min

x∈Rp

{ 1
n
∥b−Ax ∥2

2

}
.

Theorem (Performance of the LS estimator [5])
If A is a matrix of independent and identically distributed (i.i.d.) standard Gaussian distributed entries, and if
n > p + 1, then

E
[
∥x⋆

ML − x♮ ∥2
2
]

=
p

n− p− 1
σ2 → 0 as

n

p
→∞.
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Performance of the ML estimator
Problem
Let x♮ ∈ Rp be unknown and b1, ..., bn be i.i.d. samples of a random variable B with p.d.f.
px♮ (b) ∈ P := {px(b) : x ∈ Rp}. Estimate x♮ from b1, . . . , bn.

Optimization formulation (ML estimator)

x⋆
ML := arg min

x∈Rp

{
−

1
n

n∑
i=1

log [px(bi)]

}
= arg min

x∈Rp
f(x)

Theorem (Performance of the ML estimator [4, 6])
Under some technical conditions, the random variable x⋆

ML satisfies

lim
n→∞

√
n J−1/2

(
x⋆

ML − x♮
) d= Z ∼ N (0, I), where J := −E

[
∇2

x log [px(B)]
]∣∣

x=x♮

is the Fisher information matrix associated with one sample.

Roughly speaking,

∥
√

n J−1/2
(

x⋆
ML − x♮

)
∥2

2 ∼ Tr (I) = p ⇒ ∥x⋆
ML − x♮ ∥2

2 = O(p/n).
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Example: ML estimation for quantum tomography

Problem (Quantum tomography)
A quantum system of q qubits can be characterized by a density operator, i.e., a Hermitian positive semidefinite
X♮ ∈ Cp×p with p = 2q .
Let b1, . . . , bn be samples of independent random variables B1, . . . , Bn, with probability distribution

P ({bi = k}) = Tr
(

AkX♮
)

, k = 1, . . . , m,

where {A1, . . . , Am} ⊆ Cp×p is a positive operator-valued measure, i.e., a set of Hermitian positive
semidefinite matrices summing to I.
How do we estimate X♮ given {A1, . . . , Am} and b1, . . . , bn?

The ML estimator

X⋆
ML ∈ arg min

X∈Cp×p

{
−

1
n

n∑
i=1

m∑
k=1

I{bi=k} ln [Tr (AkX)] : X = XH , X ⪰ 0

}
.
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Example: ML estimation for quantum tomography

101 102 103

10−1

100

n (numb er of sample s)

‖X̂
M

L
−

X
\ ‖

F

Performance of ML estimator for quantum tomography with 3 qubits

 

 

Numerical re sult

4.5/
√
n
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Caveat Emptor: The ML estimator does not always yield the optimal performance!

Problem
Let x♮ ∈ Rp. Let bi =

〈
ai, x♮

〉
+ wi for i = 1, . . . , n, where wi ∼ N (0, 1).

Let ai = [ 0︸︷︷︸
1

. . . 0︸︷︷︸
i−1

1︸︷︷︸
i

0︸︷︷︸
i+1

. . . 0︸︷︷︸
p

]T be the unit coordinate vector

at the ith coordinate. How do we estimate x♮ given b?

The ML solution
Since b ∼ N (x♮, I), the ML estimator is given by x⋆

ML := b.

James-Stein estimator [3]
For all p ≥ 3, the James-Stein
estimator is given by

x⋆
JS :=

(
1−

p− 2
∥b ∥2

2

)
+

b,

where (a)+ = max(a, 0).

Theorem (Performance comparison: ML vs. James-Stein [3])
For all x♮ ∈ Rp with p ≥ 3, we have

E
[
∥x⋆

JS − x♮ ∥2
2
]

< E
[
∥x⋆

ML − x♮ ∥2
2
]

.

In expectation, the performance of the ML estimator is uniformly
dominated by the performance of the James-Stein estimator!
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Elephant in the room: What happens when n < p?

The linear model and the LS estimator when n < p

Let x♮ ∈ Rp and A ∈ Rn×p. The samples are given by
b = Ax♮ + w, where w denotes the unknown noise.
The LS estimator for x♮ given A and b is defined as

x⋆
LS ∈ arg min

x∈Rp

{
∥b−Ax ∥2

2
}

.

The estimation error ∥x⋆
LS − x♮ ∥2 can be arbitrarily large!

x⋆
candidate = A†b

b = Ax
x1

x2

x3

Thursday, June 19, 14Proposition (The amount of overfitting [1])
Suppose that A ∈ Rn×p is a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have

(1− ϵ)
(

1−
n

p

)
∥x♮ ∥2

2 ≤ ∥x⋆
candidate − x♮ ∥2

2 ≤ (1− ϵ)−1
(

1−
n

p

)
∥x♮ ∥2

2

with probability at least 1− 2 exp
[
−(1/4)(p− n)ϵ2

]
− 2 exp

[
−(1/4)pϵ2

]
, for all ϵ > 0 and x♮ ∈ Rp.
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Wrap up!

▶ Lecture on Monday 9:00 - 11:00
▶ Questions/Self study on Monday 11:00 - 12:00
▶ Lectures on Friday 16:00 - 18:00 for the first 3 weeks, then exercise sessions.
▶ Unsupervised work on Friday 18:00 - 19:00
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