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Logistics

Credits: 6
Lectures: Monday 9:00-12:00 (MA B1 11)
Exercise hours: Friday 16:00-19:00 (BC 07-08)

Prerequisites: Previous coursework in calculus, linear algebra, and probability is required. Familiarity with
optimization is useful.

> Grading: Homework exercises & exam (cf., syllabus).
> Moodle: My courses > Genie electrique et electronique (EL) > Master > EE-556

lions@epfl

syllabus & course outline & HW exercises.

TA’s: Andrej Janchevski (Head TA), Luca Viano, Pedro Abranches, Thomas Pethick, Zhenyu Zhu,
Yongtao Wu, Wanyun Xie.

OLIONS: Stratis Skoulakis, Kimon Antonakopoulos, Angeliki Kamoutsi.
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Logistics for online teaching

> Zoom link for video lectures and exercise hours:

https://go.epfl.ch/mod-zoom
Passcode: 994779

> Mediaspace@EPFL channel for recorded videos:

https://mediaspace.epfl.ch/channel/EE-556%2BMathematics2Bof’2Bdata’253A%2Bfrom/,2Btheory,
2Bto%2Bcomputation/30469

> Moodle:

https://moodle.epfl.ch/course/view.php?id=14220
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Outline

> Overview of Mathematics of Data
> Empirical Risk Minimization

> Statistical Learning with Maximum Likelihood Estimators
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Recommended preliminary material for this lecture

o Supplementary lectures

1. Basic Probability
2. Complexity
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Overview of Mathematics of Data

Towards Learning Machines

The course presents data models, optimization formulations, numerical algorithms, and the associated analysis
techniques with the goal of extracting information &knowledge from data while understanding the trade-offs.

Computation Algorithm Ethics

Storage

y y y
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A taxonomy of machine learning

o Machine learning in three paradigms:

1. Supervised learning: Learn to predict the label of an unseen sample from a set a labelled examples.

> (CS-433 (Machine Learning), CS-431/EE-608 (Natural Language Processing)

2. Unsupervised learning: Identify structure within a dataset without having access to solved examples.

> (CS-503 (Visual Intelligence: Machines and Minds)

3. Reinforcement learning: Learn how to optimally control an agent interacting with an environment.

> EE-618 (Theory and Methods for Reinforcement Learning), CS-430 (Intelligent Agents)

o More information on ML courses can be found here:

https://wuw.epfl.ch/research/domains/ml/courses/
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An overview of statistical learning by Vapnik

A basic statistical learning framework [7]
A statistical learning problem usually consists of three elements.

a; b;
1. A generator that produces samples a; € RP of a random G ‘% S . >
variable a with an unknown probability distribution Pa.
2. A supervisor that for each a; € RP, generates a sample b; of a
random variable B with an unknown conditional probability r h(a,-)
distribution P g, . L RN

3. A learning machine that can respond as any function
h(a;) € H° of a; in some fixed function space #°.

o Via this framework, we will study classification, regression, and density estimation problems
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A classification example: Cancer prediction

17012 [] [] 751§
16 b} a; bl
a =
! A derened 2 L G S 3
e )
a ELL]] 32,330, 000/ br=1 h(az)
-l le LlJ . (isease) L —»
vk (116 } 1
" o Generator Py
S T > Genome data a;: http://genome.ucsc.edu
icare  by=-1 S isor P
a, i 1773, 5001 770,600l 770,700l 70 eel 7 " o Supervisor P g|,
ooet |4t S
» Health b; = 1 or —1: Cancer or not

o Learning Machine h(a;)

o Goal: Assist doctors in diagnosis L .
> Data scientist: Mathematics of Data
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A classification example: Google Photos

ovun

Google Photos &) G a; NI b >
h(a;)
L

o Generator Py

> You taking photos a;.
o Supervisor P g|a

> Labels for the i-th photo b; € {person, action,. ..}
o Learning Machine h(a;)

> Data scientist: Mathematics of Data

Q 2 ih
Photos ~ Search  Sharing  Library

o Goal: Search a photo album
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A classification example: Next word prediction

Google

mathematics of | X G

mathematics of computation

Mathematics for Machine Learning
Book by A. Aldo Faisal, Cheng Soon Ong, and Marc Peter Deisenroth

mathematics of data from theory to computation

mathematics of information

mathematics of information eth

mathematics of data science

of

mathematics of machine learning eth
mathematics of machine learning epfl

mathematics of data science eth

Google Search I'm Feeling Lucky

Report inappropriate predictions
more

o Goal: Train a ChatGPT to assist human
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a; b;

o Generator P,
> An incomplete sentence a;.

o Supervisor P g|a

> Labels for the next word b; € Vocabulary set.

o Learning Machine h(a;)

> Data scientist: Mathematics of Data
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A regression example: Travel time prediction

a; bl
G » S b
h(a;)
L —

oy e @)

Plage de

o Generator Py

> Pairs of waypoints a;.
o Goal: Estimate travel time o Supervisor P 5|,

> Trip duration b;.
o Learning Machine h(a;)

> Data scientist: Mathematics of Data
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A regression example:

-
Type

Rooms

Living space

Year buile

Type
Rooms
Liing space
Lotsize

Year buitt

House pricing

Apartment
55
200m?

1991

villa

250m?
seam?

1965

(source: https://www.homegate.ch)

a; = [ location, size, orientation, view, distance to public transport, ...

b; = [ price ]

o Goal: Assist pricing decisions
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Ecublens

1024 Ecublens VD

1024 Ecublens VD

a; bi
G » S b
h(a;)
L —

o Generator Py

> Owners, architects, municipality, constructors
o Supervisor P g|a

> House data (homegate, comparis, immobilier...)
o Learning Machine h(a;)

> Data scientist: Mathematics of Data
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A density estimation example: Image generation from text prompts

a; bl
G » S >
h(al)
L ——

o Generator Py

> Nature

a; = [ ...images... o Supervisor P g|a

b; = [ ...probability... ] > Frequency data

. ) o Learning Machine h(a;)
o Goal: Generate images via text prompts L .
> Data scientist: Mathematics of Data
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A density estimation example: Uncertainty estimation for MRI

Training Data Mean Estimate  Uncertainty Estimate
Data Posterior sampling
acquisition with a GAN
L Optimize sampling
mask

a; = [ ... noise & mask ...]
b; =[ ... images ... |

o Goal: Optimize sampling mask
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a; b;

o Generator Py

> Magpnetic resonance imaging (MRI) machines
o Supervisor P g|a

> Frequency data
o Learning Machine h(a;)

> Data scientist: Mathematics of Data
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Loss function

Definition (Loss function)

A loss function L : B x B — R on a set is a function that satisfies some or all properties of a metric. We use

loss functions in statistical learning to measure the data fidelity L(h(a),b).
Definition (Metric)

(a) d(b1,b2) > 0 for all by and b2
(b) d(b1,b2) =0 if and only if by = bs
(c) d(bl,bg) d(b2,b1)

(d) d(b1,b2) < d(b1,b3) + d(bs, ba)

Remarks: o A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b).

o Norms induce metrics while pseudo-norms induce pseudo-metrics.

o A divergence satisfies (a) and (b) but not necessarily (c) or (d)
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Let B be a set. A function d(-,-) : Bx B — R is a metric if Vb1,2,3 € B :

(nonnegativity)
(definiteness)
(symmetry)
(triangle inequality)



Loss function examples

Loss
=N

—— Logistic loss
0-1 loss
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Definition (Logistic loss)

For a binary classification problem, the logistic loss for a score value
b1 € R and class label b2 € £1 is given by

L(bl, bz) = 10g2(1 + exp(—b1 X bz)).

Definition (¢,-losses)
For all by,by € R™ x R™, we can use Lg(b1,b2) = ||b1 — ba|

q
q» Where

Lg-norm: ||b||3 := Z?Zl |b;|2 for b € R™ and ¢ € [1,0)

Definition (1-Wasserstein distance)

Let 1 and v be two probability measures on R% an define their couplings
as T'(u,v) := {m probability measure on R% x R? with marginals u, v}.

Wi(p,v) == inf

E ~rll T —
reT (1) (z,y) 7r|| y”
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A risky, non-parametric reformulation of basic statistical learning

Statistical Learning Model [7]
A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables (a;,b;) € AXx B, i=1,...,n,
following an unknown probability distribution P.

2. A class (set) H° of functions h : A — B.
3. A loss function L : B x B — R, measuring data fidelity.

Definition (Risk)

Let (a,b) follow the probability distribution P and be independent of (a1,b1), ..., (an,bn). Then, the
(population) risk corresponding to any h € H° is its expected loss for a chosen loss function L:

R(h) :=E(a,p) [L(h(a),b)] .
Statistical learning seeks to find a h® € H° that minimizes the population risk, i.e., it solves
h° e argm}fn{R(h) theH}.

Observations: o Since P is unknown, the optimization problem above is intractable.

o Since H° is often unknown, we might have a mismatched function class in constraints.
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Empirical risk minimization (ERM)
Empirical risk minimization (ERM) [7]
We approximate h° by minimizing the empirical average of the loss instead of the risk. That is, we consider

h*Eargmm ZL (a;),bi) :heH p,

where H is our best estimate of the function class H°. Ideally, H = H°.

Rationale: By the law of large numbers, we can expect that for each h € H,
R(h) :=E(a p) [L(h(a),b Z L(h(a;)

when n is large enough, with high probability.

Theorem (Strong Law of Large Numbers)

Let X be a real-valued random variable with the finite first moment E[X], and let X1, X3, ..., Xn be an infinite
sequence of independent and identically distributed copies of X. Then, the empirical average of this sequence

_ 1 _
Xn := —(X1 4 ... + X»n) converges almost surely to E[X]: i.e., P(IimnHan = E[X]) =
n

ILHEI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 37



An ERM example

Statistical learning with empirical risk minimization (ERM) [7]

We approximate h° by minimizing the empirical average of the loss instead of the risk. That is, we consider

1 n
h* € argmin { Rn(h) = — ZL(h(ai),b,-)
o " i=1

Observations: o The search space H is possibly infinite dimensional. It is still not solvable!
o Sometimes, H is a non-empty set with a corresponding reproducing kernel Hilbert space.
> Then, we can find solutions as if the problem was finitely parameterized.

> See supplementary lecture on Kernel Methods.

Statistical learning with empirical risk minimization (ERM) [7]
In contrast, when the function h has a parametric form hx(-), we can instead solve

1 n

*E i Rnhxzf th i7bi

x* € argmin § Rulf) = > Llfx(a:), i)
i=1
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Basic statistics: Model

Parametric estimation model
A parametric estimation model consists of the following four elements:
1. A parameter space, which is a subset X of RP
2. A parameter x!, which is an element of the parameter space
3. A class of probability distributions Py := {Px : x € X}
4. A sample (a;,b;), which follows the distribution b; ~ quyai € Px

Example: Gaussian linear model

Let x% € RP. Let b; = <ai,xh> +w; fori=1,...,n, where w; € R is a
Gaussian random variable with zero mean and variance o2 (i.e.,

w; ~ N(0,02)).

o Linear model is super general (see Lecture 2).

o Models are often wrong! Robustness vs Performance.

o Statistical estimation seeks to approximate x“, given X, Py, and b.
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Basic statistics: Estimator

Definition (Estimator)

An estimator is a mapping that takes X, Px, (aj, b;)i=1,...,n as inputs, and outputs a value (— x*) in X.

Observations: o The output of an estimator depends on the sample, and hence, is random.

o The output of an estimator is not necessarily equal to x.

° Example: The least-squares estimator (LS)

The least-squares estimator is given by

n
1
X' € argmin -~ Z(bI —(a;,x))? : x €RP
i=1

ILHEEI]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 37



Basic statistics: Loss function

Example: The least-squares estimator (LS)

The least-squares estimator is given by

1 1
X[ € arg min {7||b—AxH§:xERP}:argmin —
xerp | n n £

n
Z (bi — (@i, x))* : x €RP 3,
=1
where we define b := (b1,...,bn) and a; to be the i-th row of A.

A statistical learning view of least squares
The LS estimator corresponds to a statistical learning model, for which
> the sample is given by (a;,b;) ERP X R, i=1,...,n,

> the function class H is given by H := {hx(:) := (-, x) : x € RP},
and

> the loss function is given by L(hx(a),b) := (b — hx(a))?.

Observation: o Given the estimator X[, the learning machine outputs thS (a) := (a,x{s)-
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One way to choose the loss function

Recall the general setting.

Parametric estimation model
A parametric estimation model consists of the following four elements:
1. A parameter space, which is a subset X of RP
2. A parameter x%, which is an element of the parameter space
3. A class of probability distributions Py := {Px : x € X'}
4. A sample (a;,b;), which follows the distribution b; ~ P

€ Px

xf,a;

Definition (Maximum-likelihood estimator)

The maximum-likelihood (ML) estimator is given by
xy € arg min {L(hx(a), b) := —logp.(b)},
xeX

where p, (-) denotes the probability density function or probability mass function of Px, for x € X.
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The least squares estimator: An intuitive derivation
Gaussian linear model
Let x! € RP. Let b := Ax! +w € R” for some matrix A € R"*P, where w is a Gaussian vector with zero
mean and covariance matrix o21.
The derivation: The probability density function p,(+) is given by
1 n 1
b)=(——=] exp(—==Ib—-Ax|3).
px(b) = (== )" exp (~ 5510 - AxI})
Therefore, the maximum likelihood (ML) estimator is defined as
* : n 2 L 2 P
Xy € arg min —log py(b) = ) log(2mo”) + ﬁ” b—Ax|5:x€RP,,
which is equivalent to
* : 1 A 2. P
xMLGargm;n 5||b7 x||3:x €RP 3.

Observations: o The LS estimator is the ML estimator for the Gaussian linear model.

o The loss function is the quadratic loss.
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Statistical learning with ML estimators

o A visual summary: From parametric models to learning machines

deli d d
(80, b))~ Pbyfag, X) —ot s p (b) 1= | |P(b lai,x)
parameter x identical dist.

J maximizing w.r.t x

. . *
a —Learning Machine <— xy;

prediction |
hxlT/IL (a)

Observations: o Recall x},, € argminkex {L(hx(a),b) := —logpy(b)}.
o Maximizing py (b) gives the ML estimator.

o Maximizing py(b) and minimizing — log py (b) result in the same solution set.

o See Lecture 2 for more examples in classification, imaging, and quantum tomography
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Learning machines result in optimization problems

Definition (A/-Estimator)

The learning machine typically has to solve an optimization problem of
the following form:
X3y € arg min {F(x
i € arg min {F ()}

for some function F' depending on the sample space X, class of
probability distributions Py, and sample b. The term " M-estimator”
denotes “maximum-likelihood-type estimator” [2].

Example: The least-absolute deviation estimator (LAD)

The least-absolute deviation estimator is given by

n
1
X[ap € argmin ¢ — E |b; — (a;,x)| : x €RP
n
i=1

Remark: o The LAD estimator is more robust to outliers than the LS estimator.
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Practical Issues

Given an estimator x* € arg minye x {F(x)} of x!, we have two questions:

1. Is the formulation reasonable?

2. What is the role of the data size?
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Standard approach to checking the fidelity

Standard approach

1. Specify a performance criterion or a (pseudo-) metric d(x*,x!) that should be small if x* = x.

2. Show that d is actually small in some sense when some condition is satisfied.

Example
Take the £a-error d(x*,x%) := || x* — x* |2 as an example. Then we may verify the fidelity via one of the
following ways, where £ denotes a small enough number:
1. E [d(x*,xh)] < e (expected error),
2. P (d(x*,xt‘) > t) < ¢ for any ¢ > 0 (consistency),
3.
4. /n(x* —x%) converges in distribution to A'(0,I) in a local neighborhood (local asymptotic normality).

V/n(x* — x1) converges in distribution to A/(0,I) (asymptotic normality),
if some condition is satisfied. Such conditions typically revolve around the data size.

Remark: o Lecture 2 explains these concepts in detail.
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Expected error

Gaussian linear model

Let x! € RP and let A € R"*P. The samples are given by b = Ax! + w, where w is a sample of a Gaussian
random vector w ~ N (0, o2I).

Question: o What is the performance of the ML estimator?
xp € arg min {le—AxHQ}
ML xERP n 2

Theorem (Performance of the LS estimator [5])
If A is a matrix of independent and identically distributed (i.i.d.) standard Gaussian distributed entries, and if

n > p+1, then
P
n—p—1

E[Hx;\‘AL—th%]: 02 0 as = — oco.
p

MGGl Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 37 EPFL



Performance of the ML estimator

Problem
Let x! € RP be unknown and by, ..., by be i.i.d. samples of a random variable B with p.d.f.
Py () € P := {py(b) : x € RP}. Estimate x% from by,...,by.

Optimization formulation (ML estimator)

n

1

L = i —— 1 b; = i

X = arg min n§ 0g [Py (bi)] argfég;f(x)
i=1
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Performance of the ML estimator

Problem

Let x! € RP be unknown and by, ..., by be i.i.d. samples of a random variable B with p.d.f.
Py () € P := {py(b) : x € RP}. Estimate x% from by,...,by.

Optimization formulation (ML estimator)

n
1
X{ = arg min { —— lo; b; = arg min f(x
ML B == E g [Ps (b3)] 5 il (x)
=il

Theorem (Performance of the ML estimator [4, 6])
Under some technical conditions, the random variable x;\‘/,L satisfies

lim nJ~1/2 (x’,t/,L - xb) Ly ~ N(0,I), where J := —E [V,Q( log [px(B)ﬂ |

n— oo x=x

is the Fisher information matrix associated with one sample.
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Performance of the ML estimator

Problem

Let x! € RP be unknown and by, ..., by be i.i.d. samples of a random variable B with p.d.f.
Py () € P := {py(b) : x € RP}. Estimate x% from by,...,by.

Optimization formulation (ML estimator)

n

1

L = i —— 1 b; = i

X = arg min n§ 0g [Py (bi)] argfélfg,f(x)
i=1

Theorem (Performance of the ML estimator [4, 6])
Under some technical conditions, the random variable x;\‘/,L satisfies

lim nJ~1/2 (x’,t/,L - xb) Ly ~ N(0,I), where J := —E [V,Q( log [px(B)ﬂ |

n— oo x=x

is the Fisher information matrix associated with one sample. Roughly speaking,

I VRI7V2 (3 =) [~ T (D) =p = \ I xh — %7 (13 = O@/n). \
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Example: ML estimation for quantum tomography

Problem (Quantum tomography)

A quantum system of q qubits can be characterized by a density operator, i.e., a Hermitian positive semidefinite
Xb € CPXP with p = 249.
Let by, ...,by, be samples of independent random variables B, ..., By, with probability distribution

P ({b; = k}) :Tr(AkX“), k=1,...,m,

where {Aq,..., Ay} C CPXP js a positive operator-valued measure, i.e., a set of Hermitian positive
semidefinite matrices summing to 1.

How do we estimate X! given {A1,...,Am} and by, ..., b,?

The ML estimator

n

m
1
Xy €arg_min -~ Z I, —ky In[Tr (AxX)] : X = X7 X = 0
i=1 k=1
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Example: ML estimation for quantum tomography

Performance of ML estimator for quantum tomography with 3 qubits

”XM L™ XJ”F

10" 10° 10°

n (number of samples)
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Caveat Emptor: The ML estimator does not always yield the optimal performance!

Problem
Let x" € RP. Let b; = <ai,xh> +w; fori=1,...,n, where w; ~ N(0,1).

1 i—1 i i+l p
at the ith coordinate. How do we estimate x given b?

The ML solution
Since b ~ N (x%,1), the ML estimator is given by x3, :=b.

James-Stein estimator [3] Theorem (Performance comparison: ML vs. James-Stein [3])

For all p > 3, the James-Stein For all x € RP with p > 3, we have

estimator is given by 5 )
E [llx%s — %3] <E [l =y —x"113] -

* b— 2
Wiy 8= - —
5 ( b3 N ’ In expectation, the performance of the ML estimator is uniformly

dominated by the performance of the James-Stein estimator!
where (a)4+ = max(a,0).
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Elephant in the room: What happens when n < p?

X, Ab

* —
candidate —

The linear model and the LS estimator when n < p

Let x! € R? and A € R™*P. The samples are given by
b = Ax" + w, where w denotes the unknown noise.

The LS estimator for x% given A and b is defined as

* . 2
x(s € arg min {||b— Ax|3}.

The estimation error || xs — x ||2 can be arbitrarily large!

Proposition (The amount of overfitting [1])
Suppose that A € R™"*P s a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have

n _ n
(1= (1= 2) 1 1 < Dxamanee == B < 1= 97 (1= 2) 1

with probability at least 1 — 2 exp [—(1/4)(27 = n)62] — 2exp [—(1/4);062], for all e > 0 and x% € RP.
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Wrap up!

> Lecture on Monday 9:00 - 11:00

> Questions/Self study on Monday 11:00 - 12:00

> Lectures on Friday 16:00 - 18:00 for the first 3 weeks, then exercise sessions.
> Unsupervised work on Friday 18:00 - 19:00
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