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Recap: Overview of reinforcement learning approaches

Value-based RL (Critic-only)

◦ Learn the optimal value
functions V ⋆, Q⋆

◦ Algorithms: Monte Carlo,
SARSA, Q-learning, etc.

◦ Use temporal difference (low
variance)

◦ Does not scale to large
action spaces

Policy-based RL (Actor-only)

◦ Learn the optimal policy via
gradient methods

◦ Algorithms: PG, NPG,
TRPO, PPO, etc.

◦ Scales to large or continuous
action spaces

◦ High variance, sample
inefficiency
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Actor-Critic (AC) methods

◦ AC methods aim at combining the advantages of actor-only methods and critic-only methods.

Interaction of Actor-Critic [25].

◦ The actor uses the policy gradient to update the learn-
ing policy.

◦ The critic uses temporal difference learning to estimate
the value function.
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Actor-Critic methods

◦ Actor-critic algorithms follow an approximate policy gradient:

∇θJ(πθ) ≈
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Qw(s, a)∇θ log πθ(a | s)]

]
.

∇θJ(πθ) ≈
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Aw(s, a)∇θ log πθ(a | s)]

]
.

◦ Actor: adjust the policy parameter θ using policy gradient using the value function estimated by the critic.

◦ Critic: update the parameter w to estimate action-value or advantage function.

Qw(s, a) ≈ Qπθ (s, a)

Aw(s, a) ≈ Qπθ (s, a)− V πθ (s)

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 5/ 65



Bias in Actor-Critic methods

◦ Recall action value expression of policy gradient

∇θJ(πθ) =
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Qπθ (s, a)∇θ log πθ(a | s)]

]
.

◦ Policy gradient estimators used by actor-critic algorithms:

∇̂θJ(πθ) =
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Qw(s, a)∇θ log πθ(a | s)]

]
.

◦ Approximating the policy gradient using value function approximation Qw could introduce bias.

◦ Luckily, if the value function approximation Qw is chosen carefully, one may avoid such bias.
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Compatible function approximation theorem

Compatible function approximation theorem [26]
Suppose the following two conditions are satisfied:
◦ Value function approximation at w⋆ is compatible to the policy, i.e.,

∇wQw⋆ (s, a) = ∇θ log πθ(a | s).

◦ Value function parameter w⋆ minimizes the mean-squared error, i.e.,

min
w
E

s∼λ
πθ
µ ,a∼πθ(·|s)[(Qw(s, a)−Qπθ (s, a))2].

Then the policy gradient using critic Qw⋆ (s, a) is exact:

∇θJ(θ) =
1

1− γ
E

s∼λ
πθ
µ ,a∼πθ(·|s)[∇θ log πθ(a | s)Qw⋆ (s, a)].

Remarks: ◦ Proof follows immediately from first-order optimality condition.

◦ Example: Qw(s, a) = ∇θ log πθ(a | s)⊤w.
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Variant I: Online Action-Value Actor-Critic

Online Action-Value Actor-Critic Algorithm
Initialize θ0, w0, state s0 ∼ µ, a0 ∼ πθ0 (· | s0).
for each step of the episode t = 0, ..., T do

Obtain (rt, st+1, at+1) from πθt .

Compute policy gradient estimator: ∇̂θJ(πθt ) = Qwt (st, at)∇θ log πθt (at | st).

Actor update θ: θt+1 = θt + αt∇̂θJ(πθt ).
Compute temporal difference: δt = rt + γQwt (st+1, at+1)−Qwt (st, at).
Critic update: wt+1 = wt − βtδt∇wQwt (st, at).

end for

Remarks: ◦ Uses temporal difference to estimate the value function Qπθ .

◦ Examples for Qw: linear value function approximation Qw(s, a) = ϕ(s, a)⊤w.
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Variant II: Advantage Actor-Critic

Advantage Actor-Critic (A2C)
Initialize θ0, w0, state s0 ∼ µ.
for each step of the episode t = 0, ..., T do

Take action at ∼ πθt (· | st), obtain (rt, st+1).
Estimate advantage function: δt = rt + γVwt (st+1)− Vwt (st).
Compute policy gradient estimator: ∇̂θJ(πθt ) = δt∇θ log πθt (at | st).

Actor update: θt+1 = θt + αt∇̂θJ(πθt ).
Critic update: wt+1 = wt − βtδt∇wVwt (st).

end for

Remarks: ◦ Use Vw(s) to approximate V πθ (s), for instance V w(s) ≈ ϕ(s)⊤w.

◦ Use one step lookahead to estimate Qπθ (st, at) ≈ r(st, at) + γV πθ (st+1).

◦ Use advantage function to approximate the policy gradient.
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Various Actor-Critic extensions

◦ Natural Actor-Critic [17]: use TRPO[22] or NPG[9] to update the actor

◦ Actor-Critic with generalized advantage estimator [23]: generalize advantage function with TD(λ)

Âk
t (st, at) = r(st, at) + γr(st+1, at+1) + · · ·+ γkVw(st+k)− Vw(st)

ÂGAE
t (st, at) = (1− λ)

∑∞

k=1
λk−1Âk

t (st, at)

◦ Soft Actor-Critic [7]: use entropy regularization in the objective to improve exploration

max
π
E

[
∞∑

t=0

γtr(st, at) + λ · H(π(·|st))

]
, where H(π(·|s)) = Ea∼π(·|s)[− log π(a|s)]
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Convergence of Actor-Critic methods

Remarks: ◦ The asymptotic analysis of two time-scale actor-critic methods (i.e.,
limt→∞

αt
βt

= 0) was established in [3] and [11].
◦ The proof is based on two-time-scale stochastic approximation and ODE analysis.
◦ Finite-sample analyses of actor-critic methods (tabular or LFA) have been studied

very recently.
◦ This work is based on the bilevel optimization perspective; see e.g., [34].
◦ Indeed, Actor-critic algorithms can be formulated as bilevel optimization:

min
θ

F (θ) = f(θ, w⋆(θ)), (Upper level)

s.t. w⋆(θ) ∈ arg min
w

ℓ(θ, w). (Lower level)
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Deep reinforcement learning = DL + RL

◦ Tabular methods and linear function approximation are insufficient for large-scale RL applications.

◦ Using neural networks seems to be a must.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 12/ 65



Neural networks

◦ Nested composition of (learnable) linear transformation with (fixed) nonlinear activation functions

◦ Example: a single-layer neural network (shallow neural network)

Figure: Networks of increasing width

f(x; W, α) =
m∑

i=1

αi · σ(w⊤
i x)

Activation function σ(·)

◦ Identity: σ(u) = u

◦ Sigmoid: σ(u) = 1
1+exp(−u)

◦ Tanh: σ(u) = tanh(u)
◦ Rectified linear unit (ReLU): σ(u) = max(0, u)
◦ ....
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Deep neural networks

◦ More hidden layers, different activation functions, more general graph structure ....
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Why neural networks?

◦ Universal Approximation
◦ Any continuous function on a compact domain can be (uniformly) approximated to arbitrary accuracy by a

single-hidden layer neural network with a non-polynomial activation function. [Cybenko, 1989; Hornik et
al., 1989; Barron, 1993]

◦ But the number of neurons can be large.

◦ Benefits of depth
◦ A deep network cannot be approximated by a reasonably-sized shallow network.[35]
◦ For example, there exists a function with O(L2) layers and width 2 which requires width O(2L) to

approximate with O(L) layers [27]. For more refined depth separation results see [20].
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Example: ATARI network architecture

Figure: ATARI Network Architecture for Q(s, a): History of frames as input. One output per action. [14]
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Challenges with training neural networks in RL

◦ Deadly triad (Divergence when combining function approximation, bootstrapping, and off-policy learning)

◦ Non i.i.d. data

◦ Sample inefficiency

◦ High variance

◦ Overfitting

◦ Saddle points

◦ ...
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Common Fixes or RL Tricks

◦ Better data: e.g., experience replay (mix online data and a buffer from past experience)
◦ Reduce correlation, allow mini-batch update

◦ Better objective: e.g., use entropy regularization
◦ Improve optimization landscape, encourage exploration

◦ Better optimizers: e.g., adaptive SGD such as Adam and RMSProp
◦ Adaptive learning rates

◦ Better estimation: e.g., use eligibility traces, target works
◦ Reduce overestimation bias, balance bias-variance tradeoff

◦ Better sampling: e.g., use prioritized replay (sample based on priority)
◦ Prioritize transitions on which we can learn much

◦ Better implementation: e.g., parallel implementation (multithreading of CPU)
◦ Speed up training, reduce correlation, allow better exploration

◦ Better architectures: e.g. dueling networks
◦ Encode inductive biases that are good for RL
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Value-based DRL

◦ Idea: use neural networks for value function approximation

◦ Recall Q-learning:

Q Learning
Q(st, at) ← Q(st, at) + αt[rt + γ maxa Q(st+1, a)−Q(st, at)]

Q-learning with function approximation
wt+1 ← wt + αt[rt + γ maxa Qwt (st+1, a)−Qwt (st, at)]∇Qwt (st, at)

◦ Note that Q-learning is not a stochastic gradient descent method.
◦ Naive deep Q-learning could diverge due to sample correlation and moving targets.

◦ Deep Q-Networks (DeepMind, 2015) [14]: combine several techniques for stabilizing Q-learning

◦ Experience replay (better data efficiency and make data more stationary)
◦ Target networks (prevent target objective from changing too fast)
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Deep Q-Networks (DQN)

◦ Main idea: minimize the following mean-square error by SGD (or adaptive SGD)

min
w

L (w) = Es,a,r,s′∼D

[(
r + γ max

a′
Q(s′, a′; w−)−Q(s, a; w)

)2
]

◦ The target parameter w− is held fixed and updated periodically

Figure: A more general view of DQN. Source: https://zhuanlan.zhihu.com/p/468385820
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DQN in playing Atari games [14]

Figure: Five Atari 2600 Games: Pong, Breakout, Space Invaders, Seaquest, Beam Rider

Figure: Average total reward for a fixed number of steps.

◦ DQN source code: https://github.com/deepmind/dqn
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DQN extensions I
◦ Double DQN (DeepMind, 2016) [29]: Use separate networks to select best action and evaluate best action to
reduce oversetimation bias

min
w

L (w) = Es,a,r,s′∼D

[(
r + γQ(s′, arg max

a′
Q(s′, a′; w); w−)−Q(s, a; w)

)2
]

Figure: Value estimates by DQN (orange) and Double DQN (blue) on Atari games. The straight horizontal lines are computed
by running the corresponding agents after learning concluded, and averaging the actual discounted return obtained from each
visited state.
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DQN extensions II

◦ DQN with prioritized experience replay [21]: Pri-
oritize transitions in proportion to the absolute Bell-
man error

p ∝
∣∣∣r + γ max

a′
Q(s′, a′; w)−Q(s, a; w)

∣∣∣
◦ Dueling DQN [31]: Split Q-networks into two
streams to estimate value function and advantage
function

Q(s, a; w, α, β) = V (s; w, β) + Ā(s, a; w, α)
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DQN mega extension

◦ Can these extensions be combined? Yes, Rainbow [8]!
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The big zoo of DQN

Plot of median human-normalized score over all 57
Atari games for each agent

◦ Source code: https://github.com/deepmind/dqn_zoo
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Policy-based/Actor-Critic DRL

◦ Combine the actor-critic approach with Deep Q Network

◦ Asynchronous Advantage Actor-Critic (A3C)) [13]
◦ Soft Actor Critic (SAC) [7]
◦ Deep deterministic policy gradient (DDPG) [12]: continuous control
◦ Twin Delayed DDPG (TD3) [5]: continuous control
◦ ....
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A3C [13]

◦ Idea: advantage actor-critic + deep Q-network + asynchronous implementation

Figure: Comparison for DQN and A3C on five Atari 2600 games. 1-step Q means asynchronous one-step Q-learning.
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DDPG [12] and TD3 [5]

◦ DDPG: deterministic policy gradient + deep Q-network
◦ Select action a ∼ µ(s; θ) +N (0, σ2) (add noise to enhance exploration)
◦ Policy update: ∇θJ(θ) ≈ 1

N

∑
i
∇aQw(si, µ(si; θ))∇θµ(si; θ)

◦ TD3: DDPG + clipped action exploration + delayed policy update + pessimistic double Q-learning
◦ Select action a ∼ µ(s; θ) + ϵ, ϵ ∼ clip(N(0, σ2),−c, c)
◦ Delayed policy update: update critic more frequent than policy

Figure: Learning curves for the OpenAI gym continuous control tasks.
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Summary

◦ Deep Value-based Methods
◦ DQN
◦ Double DQN
◦ Dueling DQN
◦ DQN with prioritized experience replay
◦ Rainbow
◦ ....

◦ Deep Policy-based/Actor-Critic Methods
◦ TRPO
◦ PPO
◦ A3C
◦ SAC
◦ DDPG/TD3
◦ ....

Question: So, which one should we choose in practice? when do they work well?
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Deep RL resources

◦ OpenAI Spinning up: https://spinningup.openai.com/

◦ The awesome list of deep RL (libraries and tutorials): https://github.com/kengz/awesome-deep-rl
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Reinforcement learning

◦ Environment: Markov Decision Process (MDP) M = (S,A, T, γ, µ, r)

◦ Agent: Parameterized deterministic policy πθ : S → A, where θ ∈ Θ

Reinforcement learning (RL) game
At time step t = 0: S0 ∼ µ(·)
for t = 1, 2, . . . do:

agent observes the environment’s state St ∈ S
agent chooses an action At = πθ(St) ∈ A
agent receives a reward Rt+1 = r(St, At)
agent finds itself in a new state St+1 ∼ T (· | St, At)
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Exploration vs. exploitation in RL
◦ Challenge: Exploration vs. exploitation!

◦ Objective (non-concave): maxθ∈Θ J(θ) := E

[∑∞
t=1 γt−1Rt

∣∣∣ πθ,M
]

◦ The environment only reveals the rewards after actions

◦ Exploitation: Maximize objective by choosing the appropriate action

◦ Exploration: Gather information on other actions
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An optimization interpretation

◦ Objective (non-concave): maxθ∈Θ J(θ) := E

[∑∞
t=1 γt−1Rt

∣∣∣ πθ,M
]

◦ Exploitation: Progress in the gradient direction

θt+1 ← θt + ηt
̂∇θJ(θt)

◦ Exploration: Add stochasticity while collecting the episodes

◦ noise injection in the action space [24, 12]

a = πθ(s) +N (0, σ2I)

◦ noise injection in the parameter space [19]

θ̃ = θ +N (0, σ2I)
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Reinforcement learning with Langevin dynamics I

◦ Explore via an infinite dimensional concave-problem (linear in p):

maximize
p∈M(Θ)

E
θ∼p

[J(θ)]

◦ M(Θ) is the (infinite dimensional) space of all probability distributions on Θ.

◦ p⋆ = arg maxp E
θ∼p

[J(θ)] is a delta measure centered at θ⋆ = arg maxθ J(θ).
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Reinforcement learning with Langevin dynamics II

◦ Exploit via a well-known entropy smoothing trick:

maximize
p∈M(Θ)

E
θ∼p

[J(θ)] + βH(p)

◦ H(p) = E
θ∼p

[− log p(θ)] is the entropy of the distribution p.

◦ the optimal solution takes the form p⋆
β(θ) ∝ exp

(
1
β

J(θ)
)

.

◦ Our proposal for explore-exploit

◦ Use Langevin dynamics [32] to draw samples from p⋆
β(θ)

◦ Use homotopy on the smoothing parameter β
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Learning robust policies

◦ Why robust RL? In short: Generalization under environmental changes

◦ upshots: self-driving car in varying environmental conditions

◦ trends: from simple parametric models to super expressive neural networks

◦ challenges: computational costs as well as the difficulty of training

◦ Highlight: Robust Adversarial Reinforcement Learning (RARL) [18]

◦ train an agent neural net

◦ train an adversary neural net

◦ setup a minimax game between the two

◦ Several variants exist [16, 33]

◦ Action Robust RL [28]

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 36/ 65



Two-Player Zero-Sum Markov Game
◦ Players:

◦ Environment: Markov Decision Process (MDP) M = (S,A, Ā, T, γ, r, µ)

◦ Agent: parameterized deterministic policy πθ : S → A, where θ ∈ Θ

◦ Adversary: parameterized deterministic policy νω : S → Ā, where ω ∈ Ω

Two-Player Zero-Sum Markov Game
At time step t = 0: S0 ∼ µ(·)
for t = 1, 2, . . . do:

both players observe the environment’s state St ∈ S
both players choose the actions At = πθ(St) ∈ A, and Āt = νω(St) ∈ Ā
the agent gets a reward Rt+1 = r(St, At, Āt) while the adversary gets −Rt+1

both players find themselves in a new state St+1 ∼ T (· | St, At, Āt)

◦ Performance objective:

max
θ∈Θ

min
ω∈Ω

J(θ, ω) := E

[
∞∑

t=1

γt−1Rt

∣∣∣ πθ, νω ,M

]
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Robust Adversarial Reinforcement Learning (RARL)
◦ A natural pure strategy-based minimax objective

max
θ∈Θ

min
ω∈Ω

J(θ, ω).

◦ θ: an agent neural net

◦ ω: an adversary neural net

◦ highly non-concave/non-convex objective

◦ Theoretical challenges

◦ a saddle point might NOT exist [4]

◦ no provably convergent algorithm

◦ Practical challenges

◦ the simple (alternating) SGD does NOT work well in practice

◦ adaptive methods (Adam, RMSProp,...) highly unstable, heavy tuning
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RARL: From pure to mixed Nash Equilibrium

◦ Objective of RARL is a pure strategy formulation:

max
θ∈Θ

min
ω∈Ω

J(θ, ω).

◦ A new objective of RARL: Our mixed strategy proposal via game theory

max
p∈M(Θ)

min
q∈M(Ω)

Eθ∼pEω∼q [J(θ, ω)] .

◦ where M(Z) B {all (regular) probability measures on Z}.

◦ Existence of NE (p⋆, q⋆): Glicksberg’s existence theorem [6].
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A re-thinking of RARL via the mixed Nash equilibrium
◦ Upshot: Our mixed Nash Equilibrium proposal ≡ bi-linear matrix games

max
p∈M(Θ)

min
q∈M(Ω)

Eθ∼pEω∼q [J(θ, ω)]

⇕
max

p∈M(Θ)
min

q∈M(Ω)
⟨p, Gq⟩

◦ Caveat: Infinite dimensions!!!

◦ Key ingredients moving forward

◦ ⟨p, h⟩ B
∫

hdp for a measure p and function h (Riesz representation)

◦ the linear operator G and its adjoint G†:

(Gq)(θ) B Eω∼q [J(θ, ω)]

(G†p)(ω) B Eθ∼p [J(θ, ω)] ,

where G :M(Ω)→ F(Θ), and G† :M(Θ)→ F(Ω).
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Training Phase

◦ We use the following special adversary with α = 0.1 (Noisy Action Robust MDP):

Noisy Action Robust MDP Game
for t = 1, 2, . . . do:

both players observe the environment’s state St ∈ S
both players choose the actions At = µ(St) ∈ A, and A′

t = ν(St) ∈ A
the resulting action Āt = (1− α)At + αA′

t is executed in the environment M
the agent gets a reward Rt+1 = r(St, Āt) while the adversary gets −Rt+1

both players find themselves in a new state St+1

◦ We train the policy based on specific environment parameters

◦ i.e., standard relative mass variables in OpenAI gym.
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Testing Phase

◦ Robustness under Adversarial Disturbances (x-axis of the heatmap):

◦ measure performance in the presence of an adversarial disturbance.

◦ Robustness to Test Conditions (y-axis of the heatmap):

◦ measure performance with respect to varying test conditions.
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Experimental evaluation via MuJoCo
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A motivation for inverse reinforcement learning (IRL)

◦ The reward function is difficult to design in real world problems

◦ It is easier/more natural to use “demonstrations” by experts
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The RL and IRL dichotomy

IRL RL
Input Expert Demonstrations Reward Function

Output Optimal policy Optimal Policy
Reward function

◦ RL recovers a nearly optimal behavior from reward functions

◦ IRL recovers a nearly optimal behavior from demonstrations by an expert
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Motivation for Robust IRL (This work)
◦ Mismatches between the settings of the expert and the learner

◦ Example: transfer the driving skills among different road conditions, traffic dynamics and car brands

Figure: A Toyota Prius1 and Bugatti la voiture noir 2 have arguably different dynamics!

1https://www.autobild.de/artikel/toyota-prius-3-hybridauto-als-gebrauchtwagen-16425701.html,
2https://www.autobild.de/artikel/toyota-prius-3-hybridauto-als-gebrauchtwagen-16425701.html
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Basics: Markov Decision Processes (MDPs)

◦ A Markov Decision Process (MDP) is a tuple (S,A, γ, T, r, µ)

◦ S is the state space

◦ A is the action space

◦ T : S ×A → ∆S is a mapping from state action pairs to distribution over the state space S

◦ γ is a scalar between 0 and 1 that is known as discount factor

◦ r : S ×A → R is a mapping from state action pairs to a scalar value called reward

◦ µ ∈ ∆S is a probability distribution over states

◦ In particular, T (s′|s, a) denotes the probability of landing in state s′ after taking action a from state s
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From policies to trajectories with a bit more notation

◦ A policy π : S → ∆A is a mapping from a state to a probability distribution over actions

◦ In the sequel, by a trajectory, we mean

τ = (s0, a0, s1, a1, s2, a2, . . . ).

◦ The probability of a trajectory factorizes as follows:

pπ,T (τ) =
∞∏

i=0

T (si+1|si, ai)π(ai|si)µ(s0).
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Optimal policy vs optimal occupancy measure

◦ With the MDP formalism, RL solves the following problem

max
π∈∆A

Eτ∼pπ,T

[
∞∑

t=0

γtr(st, at) | s0 = s

]
:= V π(s) ∀s ∈ S

◦ For IRL, we write the same objective as function of the occupancy measure λ:

max
λ
⟨λ, r⟩ :=

∑
s,a

λ(s, a)r(s, a)

subject to
∑

a

λ(s, a) = γ
∑
s′,a′

T (s|s′, a′)λ(s′, a′) + (1− γ)µ(s) ∀s ∈ S

◦ where the occupancy measure is the discounted expected number of visits for s, a

λπ
T (s, a) = (1− γ)Epπ,T

[
∞∑

t=0

γt1((st,at)=(s,a))

]
.
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Towards an IRL formulation

◦ Recall that the reward function r is unknown

◦ How can we learn from the demonstrations?

◦ we can estimate the expert’s occupancy measure λE
T from expert’s trajectories

◦ Key Fact: ∀π : λπ
T = λE

T =⇒ ∀r ⟨λπ
T , r⟩ = ⟨λE

T , r⟩

◦ A policy π matching the expert’s occupancy measure results in the same performance!

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 50/ 65



IRL is a feasibility problem

◦ A simple feasibility problem

max
π

0

s.t. λπ
T (s, a) = λE

T (s, a) ∀s, a ∈ S ×A

◦ akin to moment-matching

◦ Pick one that maximizes the expected entropy of the policy π

max
π

∑
s

λπ
T (s)Hπ(s)

s.t. λπ
T (s, a) = λE

T (s, a) ∀s, a ∈ S ×A

◦ Hπ(s) = −
∑

a
π(a|s) log π(a|s)

◦ aka maximum causal entropy (MCE) IRL (already introduced in [36])

◦ also has a “dual” purpose
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A critical limitation of MCE-IRL formulation
◦ Need the same dynamics T between expert and learner!

max
π

∑
s

λπ
T (s)Hπ(s)

s.t. λπ
T (s, a) = λE

T (s, a) ∀s, a ∈ S ×A

◦ Factory-produced expert and learner setting is not realistic

Expert Learner
https://www.autoevolution.com/news/samsung-steps-things-up-with-roboray-walking-robot-video-50602.html
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Towards overcoming the limitation of MCE-IRL: Robust MCE IRL

◦ In our work, we consider different transition dynamics:

◦ T E for the expert

◦ T L for the learner

◦ As a running example, We assume that T L is within an uncertainty set centered around: T L, i.e.,

T L,α =
{

T = αT L + (1− α)T̄ ∀T̄ ∈ ∆S
}

MDP Uncertainty Set
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On the generality of the uncertainty set

◦ For α = 0, the set T L,α can correspond to any possible transition dynamics T̄

◦ Example: The expert can be a human

Expert Learner
https://commons.wikimedia.org/wiki/File:Man_walking_icon_1410105361.svg
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Robust MCE IRL formulation

◦ Added twist: the MCE IRL with an additional minimization over the uncertainty set

max
π

min
T ∈T L,α

∑
s

λπ
T (s)Hπ(s)

s.t. λπ
T (s, a) = λE

T E (s, a) ∀s, a ∈ S ×A

◦ We leverage Lagrangian duality for the numerical solutions
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Lagrangian of robust MCE IRL

◦ Introduce the Lagrangian

min
r

max
π

min
T ∈T L,α

∑
s

λπ
T (s)Hπ(s) + ⟨r, λπ

T − λE
T E ⟩ with r ∈ RS×A

◦ the dual variable acts as the unknown reward r

◦ Via Danskin’s theorem, compute the gradients to update the dual with a step-size η at iteration k:

rk+1 ← rk − η(λπk
Tk
− λE

T E ) (Reward Update)

◦ Then, (πk, Tk) is a saddle point of the following min-max problem

max
π

min
T ∈T L,α

∑
s

λπ
T (s)Hπ(s) + ⟨rk, λπ

T ⟩ = max
π

min
T ∈T L,α

⟨rk + Hπ(s), λπ
T ⟩ (Robust MDP)

◦ Can use more sophisticated methodology but this one is something we can analyze
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Subtleties on the policy update step

◦ In Robust MDP, rk + Hπ(s) acts as a reward function in the policy update step

◦ We leverage the idea of solving Robust MDPs via a zero sum Markov games [28, 10], i.e., solving:

max
π

min
πop
⟨rk + Hπ(s), λ

απ+(1−α)πop
T L ⟩

◦ can be solved sampling trajectories only with T L

◦ more efficient than solving the min over the MDP uncertainty set T L,α

◦ the latter would require to sample trajectories from any environment in T L,α
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The algorithm

Algorithm 1 Robust MCE IRL via Markov Game

Input: opponent strength 1− α

Initialize: player policy πpl
0 , opponent policy πop

0 , and initial reward parameters r.
while not converged do

◦ Compute ρ
απ

pl
k

+(1−α)π
op
k

ML by dynamic programming as in MCE IRL(see [2]).
◦ Update reward:

rk+1 ← rk −
(

λ
απ

pl
k

+(1−α)π
op
k

ML − λE
T E

)
(Reward Update)

◦ Fix the reward rk+1 to update πpl and πop s.t. they solve the problem.

(πpl
k+1, πop

k+1) = max
π

min
πop
⟨rk+1 + Hπ(s), λ

απ+(1−α)πop
T L ⟩ (Solve Zero Sum Game)

end while
Output: player policy πpl
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Theoretical guarantees

Theorem (Stylized version of Theorem 9 [30])
For any parameter of the MDP uncertainty set α, let us assume
◦ |r(s, a)| ≤ R ∀s, a ∈ S ×A
◦ R = (1− γ)2

◦ The expert dynamics TE minimizes Robust MDP

◦ ddyn
(

T L, T E
)

= maxs,a

∥∥T L(·|s, a)− T E(·|s, a)
∥∥

1
≤ 1

Then, we have the following bound for the performance in the learner environment T L:

max
π

V π
T L − V πpl

T L ≤ ddyn
(

T L, T E
)

+ 2
[
(1− α)2 + α · ddyn

(
T E , T L

)]
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Comparison of MCE-IRL and Robust MCE-IRL

Corollary (To the stylized version of Theorem 9 [30])
It follows that, for α = 1 (MCE-IRL), using the notation V MCE

T L = V πpl

T L , we have

max
π

V π
T L − V MCE

T L ≤ 3ddyn
(

T L, T E
)

.

For the optimal tuning of α = 1− ddyn(T L,T E)
2 , using the notation, we instead have V Robust

T L = V πpl

T L

max
π

V π
T L − V Robust

T L ≤ 3ddyn
(

T L, T E
)
−

(
ddyn

(
T L, T E

))2

2
.

Remark: ◦ The paper presents a constructive example for which the bound holds with equality for MCE-IRL.
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A simple demonstration
◦ We test our algorithm in a Gridworld problem
◦ The agent starts from a state drawn uniformly at random state
◦ The goal is to reach the top left corner where the reward is non negative

-100

-1

0

Figure: Schematics of the environment. Gridworld environment

◦ We introduce the variable Expert Noise as ϵE , and define the expert dynamics as follows:
T E(s′|s, a) = (1− ϵE)T L(s′|s, a) + ϵEU(s′|s, a) ∀s′, s, a ∈ S × S ×A

where U(·|s, a) is a uniform distribution over the states that are first neighbors of s.
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Effect of the noise

Figure: Effect of the noise on the Gridworld environment when the agent selects the action up (blue arrow).

◦ In this particular example, the agent takes action RIGHT and T L is deterministic.
◦ With probability 1− ϵE , the agent follows the blue arrow.
◦ With probability ϵE , it moves according to the yellow arrows.

◦ The noise is proportional to the mismatch, i.e., ϵE = ddyn(T L,T E)
2

(
1− 1

|S|

)
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Results
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Figure: On the x-axis we report the noise in the expert environment ϵE . On the y-axis we have the performance in the learner
environment. The legend contains the different values of α.

In the tabular experiments, we notice the following:
◦ V MCE

T L , the green line, decays as the expert noise increases.

◦ The other lines represent V Robust
T L for different values of α.

◦ In agreement with the theory the choice α = 1− ϵE performs the best.
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Function approximation for continuous state and action pairs

Figure: Linear function approximation. On the x-axis we report the noise in the expert environment. On the y-axis we have the
performance in the learner environment. The legend contains the different values of α. The black vertical line denotes the noise
in the learner environment.

Figure: Nonlinear function approximation. On the x-axis we report the noise in the expert environment. On the y-axis we have
the performance in the learner environment. The legend contains the different values of α.The black vertical line denotes the
noise in the learner environment.
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Conclusions

◦ Robust formulation of MCE IRL & an efficient solution

◦ Encouraging theoretical analysis showing provable improvements if α is chosen appropriately

◦ Numerical evidence corroborating the performance claims
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Supplementary: Entropic mirror descent iterates in infinite dimension

◦ Negative Shannon entropy and its Fenchel dual: (dz BLebesgue)

◦ Φ(p) =
∫

p log dp
dz

.

◦ Φ⋆(h) = log
∫

eh.

◦ dΦ and dΦ⋆: Fréchet derivatives.3

Theorem (Infinite-dimensional mirror descent, informal)
For a learning rate η, a probability measure p, and an arbitrary function h, we can equivalently define

p+ = MD(p, h) ≡ p+ = dΦ⋆ (dΦ(p)− ηh) ≡ dp+ =
e−ηhdp∫
e−ηhdp

.

Moreover, most the essential ingredients in the analysis of finite-dimensional prox methods can be generalized to
infinite dimension.

◦ Continuous analog of the entropic mirror descent [1]
◦ Mirror-prox also possible [15]

3Under mild regularity conditions on the measure/function.
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Supplementary: Entropic mirror descent in infinite dimension: rates

◦ Algorithm:

Theorem (Convergence Rates)
Let Φ(p) =

∫
dp log dp

dz
. Then

1. Entropic MD ⇒ O(T − 1
2 )-NE.

2. If only stochastic derivatives (Ĝ†p and −Ĝq) are available, then Entropic MD ⇒ O(T − 1
2 )-NE in

expectation.
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