Theory and Methods for Reinforcement Learning

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 7: Markov Games

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-618 (Spring 2023)

License Information for Theory and Methods for Reinforcement Learning (EE-618)

- ▷ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Games

 \circ The mathematical discussion of games can be traced back to 16th century by Gerolamo Cardano.

• From 17th-19th century, many different games are analyzed, such as the card game le Her and chess game.

o John von Neumann published the paper On the Theory of Games of Strategy in 1928.

o John Nash formalized Nash equilibrium in broad classes of games.

Figure: John von Neumann

Figure: John Nash

• What is normal form game?

• Equilibria

 \circ Dynamics for games

- Iterated best response
- Fictitious play
- Gradient ascent

• What is normal form game?

○ Equilibria

 \circ Dynamics for games

- Iterated best response
- Fictitious play
- Gradient ascent

 \circ There is a set of players/agents: ${\cal I}$

• Joint action: $a = (a_i)_i$, where $a_i \in A_i$ is the action of agent $i \in \mathcal{I}$

• **Reward/Payoff**: $r_i(a)$ is the reward received by agent *i* with a joint action *a*

- \circ The game can be represented as above is called normal form game
- \circ Other types of games:
 - Extensive form games
 - Markov games
 - Continuous action games
 - Cournot oligopolies

Strategies

- Strategy/Policy: $\pi_i \in \Delta(\mathcal{A}_i)$: $\pi_i(a_i)$ is the probability that agent *i* selects action a_i
 - pure strategy (deterministic policy): only play one action
 - mixed strategy (stochastic policy): a distribution over the set of actions
- \circ **Strategy profile**: one strategy of each player $\boldsymbol{\pi} = (\pi_i)_i$
- Each player wants to maximize its payoff
- \circ The expected payoff of player i when a strategy profile π is used

Remark: We will see why mixed strategies can be necessary to consider.

A special case: Two-player games

 \circ The game with two players

- \circ The payoffs of two player normal form games can be represent with matrix forms
- \circ Prisoners dilemma [14]: each agent can choose to cooperate or defect

• Example: if Alex plays defect and Bob plays cooperate they receive 2 and -1 respectively.

 \circ The sum of two players' payoffs are zero, i.e., $r_1(a_1,a_2)=-r_2(a_1,a_2)$

 \circ The payoff of a two-player zero-sum normal form game can be represented with a matrix A

 $\circ A(i, j)$ is the payoff of player 1 (loss of player 2) when choosing *i*-th action and player 2 chooses its *j*-th action

 \circ The expected payoff of player 1 / loss of player 2:

 $r_1(\pi_1, \pi_2) = (\pi_1)^\top A \pi_2$

 \circ Player 1 wants to maximize $(\pi_1)^{ op}A\pi_2$ and player 2 wants to minimize it

EPEL

Response models

• What will a player do if other players' strategies are fixed at $\pi_{-i} \triangleq (\pi_1, \ldots, \pi_{i-1}, \pi_{i+1}, \ldots, \pi_n)$?

• A **best response** of agent i to the policies of the other agents π_{-i} is a policy π_i such that

$$r_{i}\left(\pi_{i}, oldsymbol{\pi}_{-i}
ight) \geq r_{i}\left(\widetilde{\pi}_{i}, oldsymbol{\pi}_{-i}
ight), \quad orall \widetilde{\pi}_{i}$$

• A softmax response of agent i to the policies of the other agents π_{-i} is a policy π_i such that

 $\pi_i(a_i) \propto \exp\left(\lambda r_i(a_i, \boldsymbol{\pi}_{-i})\right)$

Remarks: • A best response can be either deterministic or mixed.

 \circ when $\lambda \rightarrow \infty$ coincides softmax response with best response.

EPEL

• What is normal form game?

• Equilibria

- Dominant Strategy Equilibrium
- Nash Equilibrium
- \circ Dynamics for games
 - Iterated best response
 - Fictitious play
 - Gradient ascent

Dominant strategy equilibrium

• A dominant strategy π_i for player i is a strategy that is a best response against all π_{-i}

$$r_i(\pi_i, \boldsymbol{\pi}_{-i}) \geq r_i\left(\widetilde{\pi}_i, \boldsymbol{\pi}_{-i}\right), \quad \forall \widetilde{\pi}_i, \boldsymbol{\pi}_{-i}$$

o In a dominant strategy equilibrium, every player adopts a dominant strategy.

o Dominant strategy and dominant strategy equilibrium may not exist.

o (defect, defect) is a dominant strategy equilibrium in prisoner dilemma game

• Bob can always improve his payoff by defecting (irrespectable of Alex's strategy)

Nash equilibrium

 \circ In a **Nash equilibrium** (NE) π^* , no player can improve its expected payoff by changing its policy if the other players stick to their policy.

• Or we can say, π_i^{\star} is the best response for each agent *i* if other agents stick to π_{-i}^{\star} .

 \circ In NE, we can write for each agent i

 $r_i(\boldsymbol{\pi}^{\star}) \geq r_i(\pi_i, \boldsymbol{\pi}_{-i}^{\star}), \quad \forall \pi_i.$

• All dominant strategy equilibria are Nash equilibria (the reverse does not hold).

Nash equilibrium - good news

Rock-paper-scissor game

 \circ No dominant strategy equilibrium. No pure NE.

 \circ Each player playing a mixed strategy $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ is a NE.

Theorem (Existence of Nash equilibrium [13])

In a normal form game with finite players and actions, there exists a Nash equilibrium in mixed strategies.

Computing Nash equilibrium

• Consider a game with different payoff matrices

$$r_1(\pi_1, \pi_2) = (\pi_1)^{\top} A \pi_2$$
 (player 1)
 $r_2(\pi_1, \pi_2) = (\pi_1)^{\top} B \pi_2$ (player 2)

• Bad news Computing mixed NE in normal form games is intractable in general [2, 4].

 \circ Good news However, NE of zero-sum games ($A = -B^{\top}$) can be efficiently computed as we will see.

Nash equilibria in two-player zero-sum games

 \circ We can find a Nash equilibrium by solving a minimax formulation

 \circ Consider the following bilinear minimax optimization problems

$$\max_{\substack{\pi_1 \in \Delta^{d_1} \\ \pi_2 \in \Delta^{d_2}}} \min_{\substack{\pi_2 \in \Delta^{d_2}}} (\pi_1)^\top A \pi_2 \quad \text{(player 1)}$$
$$\min_{\substack{\pi_2 \in \Delta^{d_2} \\ \pi_1 \in \Delta^{d_1}}} \max_{\substack{\pi_1 \in \Delta^{d_1}}} (\pi_1)^\top A \pi_2 \quad \text{(player 2)}$$

 \circ NE corresponds to $(\pi^{\star}_1,\pi^{\star}_2)$ such that

$$(\pi_1)^{\top} A \pi_2^{\star} \le (\pi_1^{\star})^{\top} A \pi_2^{\star} \le (\pi_1^{\star})^{\top} A \pi_2, \quad \forall \pi_1, \pi_2$$

 \circ It is also called a saddle point for the function $f(\pi_1, \pi_2) = (\pi_1)^\top A \pi_2$.

lions@epfl

Connection with minimax optimization

 \circ More generally (x^{\star},y^{\star}) is called a saddle point for f if

$$f(x^*, y) \le f(x^*, y^*) \le f(x, y^*)$$
 (1)

Theorem (Minimax theorem)

Let $X \in \mathbb{R}^{d_1}$ and $Y \in \mathbb{R}^{d_2}$ be compact convex sets. If $f : X \times Y \to \mathbb{R}$ is a continous function such that $f(\cdot, y)$ is convex for any y and $f(x, \cdot)$ is concave for any x then

$$\max_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \max_{x \in X} f(x, y).$$
 (minimax equality)

EPEL

Proposition: \circ (x^* , y^*) is a saddle point for f if and only if the minimax equality holds and

$$x^* \in \arg\min_{x \in X} \max_{y \in Y} f(x, y), \quad y^* \in \arg\max_{y \in Y} \min_{x \in X} f(x, y).$$

- \circ What is normal form game?
- ∘ Equilibria
 - Dominant Strategy Equilibrium
 - Nash Equilibrium
 - Correlated Equilibrium
- o Dynamics for games
 - Iterated best response
 - Fictitious play
 - Gradient ascent

 \circ Each player iteratively find the best response to other player's strategies

```
Iterated best response (IBR)

for t = 1, ... do

Each player i updates its strategy \pi_i^{t+1} such that

r_i \left(\pi_i^{t+1}, \pi_{-i}^t\right) \ge r_i \left(\pi_i, \pi_{-i}^t\right), \quad \forall \pi_i
```

end for

Remark: • Players can update simultaneously or sequentially.

Non-convergence of iterated best response - bad news

 \circ Starting from (T,L), two players update simultaneously.

• After 2 iterations, it arrives NE (B,R).

$$\circ \text{ (A,B)} \rightarrow \text{ (B,A)} \rightarrow \text{ (A,B)} \rightarrow \ldots$$

 \circ It avoids NEs (A,A) and (B,B).

Convergence of IBR in potential games - good news

 \circ The potential function for a game is a function $\Phi:\mathcal{A}\to\mathbb{R}$ such that

$$r_{i}\left(a_{i},a_{-i}\right)-r_{i}\left(\widetilde{a}_{i},a_{-i}\right)=\Phi\left(a_{i},a_{-i}\right)-\Phi\left(\widetilde{a}_{i},a_{-i}\right),\quad\forall a_{i},\widetilde{a}_{i}\in\mathcal{A}_{i},a^{-i}\in\mathcal{A}_{-i}.$$

• A game with a potential function is called potential game.

Proposition

If a potential game is finite, it has at least one pure Nash equilibrium. If players use iterated best response sequentially (or one at a time), the dynamic will terminate at a NE after finite step.

Fictitious play

- Feedback In fictitious play each agent *i* counts opponent's actions $N_t(j, a_j)$ for $j \neq i$. The initial counts $N_0(j, a_j)$ can be based on agents' initial guess.
- \circ Behavioural assumption Each agent *i* assumes its opponents are using a stationary mixed strategy the same as empirical distribution of their actions

$$\widetilde{\pi}_j^t(a_j) = \frac{N_t(j, a_j)}{\sum_{\bar{a}_j \in \mathcal{A}_j} N_t(j, \bar{a}_j)}.$$

 \circ Each agent i maximizes their reward assuming other agents are playing $\widetilde{\pi}_{-i}^t$.

$$a_i^{t+1} = \max_{a_i} r_i(a_i, \widetilde{\pi}_{-i}^t).$$

lions@epfl

Non-convergence of fictitious play - bad news

• Fictitious play is not guaranteed to converge.

• Consider the following game (also known as the Shapley game [16])

- $\circ \text{ The policy cycles: } (T,C) \rightarrow (T,R) \rightarrow (M,R) \rightarrow (M,L) \rightarrow (B,L) \rightarrow (B,C) \rightarrow (T,C) \rightarrow \ldots$
- o After one play stays on a wining position long enough, the other player will change its action
- Empirical distributions do not converge.

EPEL

Convergence of fictitious play in some games - good news

 $\circ\,$ Fictitious play converges for two-player zero-sum games

Theorem ([15]) For two-player zero-sum games the empirical distribution of fictitious play converges to a NE, i.e. $(\widetilde{\pi}_1^t, \widetilde{\pi}_2^t) \rightarrow (\pi_1^\star, \pi_2^\star)$ where $(\pi_1^\star, \pi_2^\star)$ is a NE.

Karlin's conjecture [5]

The convergence rate of fictitious play for zero-sum games is $O(1/\sqrt{T})$.

Remark: • Still an open problem

Gradient ascent

• Feedback Assume agent *i* has access to all other mixed strategies π_j for $j \neq i$.

 \circ Take the gradient of value function at π^t : $\frac{\partial r_i(\pi)}{\partial \pi_i(a_i)}\Big|_{\pi=\pi^t}$.

 \circ Apply gradient ascent to each agent

$$\pi_{i}^{t+1}\left(a_{i}\right) = \pi_{i}^{t}\left(a_{i}\right) + \alpha_{i}^{t}\left.\frac{\partial r_{i}\left(\pi\right)}{\partial \pi_{i}\left(a_{i}\right)}\right|_{\boldsymbol{\pi}=\boldsymbol{\pi}^{t}}$$

 \circ Project π_i^{t+1} to a valid probability distribution.

Note that

$$\frac{\partial r_{i}\left(\pi\right)}{\partial \pi_{i}\left(a_{i}\right)}\Big|_{\boldsymbol{\pi}=\boldsymbol{\pi}^{t}}=\left.\frac{\partial}{\partial \pi_{i}\left(a_{i}\right)}\left(\sum_{\boldsymbol{a}}r_{i}(\boldsymbol{a})\prod_{j}\pi_{j}\left(a_{j}\right)\right)\right|_{\boldsymbol{\pi}=\boldsymbol{\pi}_{t}}=\sum_{\boldsymbol{a}_{-i}}r_{i}\left(a_{i},\boldsymbol{a}_{-i}\right)\prod_{j\neq i}\pi_{j}^{t}\left(a_{j}\right).$$

EPFL

Gradient ascent in two-player zero-sum games

• The bilinear minimax optimization

$$\min_{\pi_2 \in \Delta^{d_2}} \max_{\pi_1 \in \Delta^{d_1}} (\pi_1)^\top A \pi_2$$

 \circ Gradient ascent (also called gradient descent ascent or GDA in this case)

$$\begin{split} \pi_1^{t+1} &= \mathcal{P}_{\Delta^{d_1}} \left(\pi_1^t + \alpha_1^t A \pi_2^t \right), \\ \pi_2^{t+1} &= \mathcal{P}_{\Delta^{d_2}} \left(\pi_2^t - \alpha_2^t A^\top \pi_1^t \right). \end{split}$$

• Gradient descent ascent with constant stepsizes (i.e. $\alpha_1^t = \alpha_1$ and $\alpha_2^t = \alpha_2$) does not always converge for bilinear minimax optimization [9].

EPEL

Gradient ascent in two-player zero-sum games - non-convergence

• The function f(x, y) = xy has saddle point (0, 0).

 \circ GDA update $x_{t+1} = x_t - \alpha y_t$, $y_{t+1} = y_t + \alpha x_t$

 \circ Since $x_{t+1}^2+y_{t+1}^2=(1+\alpha^2)(x_t^2+y_t^2),$ it does not converge to the saddle point.

 \circ GDA with constant stepsize may not converge even if f(x,y) is convex-concave!

Extra-gradient - a simple fix to GDA

• Minimax optimization:

$$\min_{x \in X} \max_{y \in Y} f(x, y).$$

• Extra-gradient (EG) update:

$$\begin{aligned} x_{t+\frac{1}{2}} &= \mathcal{P}_X\left(x_t - \alpha \nabla_x f(x_t, y_t)\right), \qquad y_{t+\frac{1}{2}} = \mathcal{P}_Y\left(y_t + \alpha \nabla_y f(x_t, y_t)\right) \\ x_{t+1} &= \mathcal{P}_X\left(x_t - \alpha \nabla_x f(x_{t+\frac{1}{2}}, y_{t+\frac{1}{2}})\right), \quad y_{t+1} = \mathcal{P}_Y\left(y_t + \alpha \nabla_y f(x_{t+\frac{1}{2}}, y_{t+\frac{1}{2}})\right) \end{aligned}$$

Convergence of extra-gradient

 \circ Assumption 1: f(x, y) is convex-concave,

• Assumption 2: f(x, y) is L-smooth,

• Assumption 3: $D_X^2 = \frac{1}{2} \max_{x,x'} \|x - x'\|^2$ and $D_Y^2 = \frac{1}{2} \max_{y,y'} \|y - y'\|^2$ are finite.

Theorem

If the assumptions above holds, then EG with stepsize $\alpha = \frac{1}{2L}$ satisfies

$$f(\bar{x}_T, y) - f(x, \bar{y}_T) \le \frac{2L(D_X^2 + D_Y^2)}{T}.$$

for any $x \in X$ and $y \in Y$ where $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$ and $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T y_t$.

Remarks: • The time average (\bar{x}_T, \bar{y}_T) produced by EG converges to a saddle point.

• For strongly-convex strongly-concave see Mathematics of Data lecture 14 2022 (EE-556) [1]

Beyond normal form games / convex-concave

• So far focused on normal form games (contained in convex-concave)

General zero-sum games

Consider

$$\min_{x \in X} \max_{y \in Y} f(x, y) \tag{2}$$

EPEL

where $f(\cdot, y)$ is nonconvex and $f(x, \cdot)$ is nonconcave.

Remarks: \circ If $f(x,y) = x^{\top}Ay$ and $\mathcal{X} = \Delta$ and $\mathcal{Y} = \Delta$ this reduces to a normal form game.

 $\circ x, y$ can be the parameters of deep neural networks (e.g., generative adversarial networks)

Beyond normal form games / convex-concave

 \circ A Nash equilibrium (NE) is a pair $(x^\star,y^\star)\in\mathcal{X} imes\mathcal{Y}$ for which,

$$f(x^{\star}, y) \le f(x^{\star}, y^{\star}) \le f(x, y^{\star}) \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}$$
(3)

 \circ A local Nash equilibrium (LNE) is a pair $(x^{\star},y^{\star}) \in \mathcal{X} imes \mathcal{Y}$ for which,

 $f(x^{\star}, y) \leq f(x^{\star}, y^{\star}) \leq f(x, y^{\star}) \quad \text{ for all } (x, y) \text{ in a neighborhood } \mathcal{U} \text{ of } (x^{\star}, y^{\star}) \text{ in } \mathcal{X} \times \mathcal{Y}$ (4)

• A first order stationary point (FOSP) is a pair $(x^\star, y^\star) \in \mathcal{X} \times \mathcal{Y}$ for which,

$$\nabla_{x} f(x^{\star}, y^{\star})^{\top} (x - x^{\star}) \ge 0 \quad \forall x \in \mathcal{X}$$

$$\nabla_{y} f(x^{\star}, y^{\star})^{\top} (y - y^{\star}) \le 0 \quad \forall y \in \mathcal{Y}$$
(5)

EPEL

Remarks: \circ NE \Rightarrow LNE \Rightarrow FOSP

 \circ In case f is not convex-concave Nash equilibrium may not exist

Nonconvex-nonconcave - bad news

• Computing FOSP is PPAD-complete (similar to NP-completeness) [6]

 \circ Large family of methods (including extra-gradient) may not converge to FOSP [11]

 \circ Example [11]

$$f(x,y) = y(x-0.5) + \phi(y) - \phi(x) \quad \text{where} \quad \phi(u) = \frac{1}{4}u^2 - \frac{1}{2}u^4 + \frac{1}{6}u^6 \tag{6}$$

Figure: Neither last iterate (red) or time average (blue) of extra-gradient does converge to a FOSP.

EPFL

Summary

- Normal form games:
 - What is normal form game?
 - Equilibrium
 - Algorithms for games

Table: Does the algorithm converge?

Setting (solution concept)	Best response	Fictitious play	GDA	E×tra-gradient
Potential games (NE)	Yes	Yes	Yes	Yes
Normal form games (NE)	No	No	No	No
Zero-sum games (NE)	No	Yes ¹	Yes ²	Yes
general zero-sum games (FOSP)	No	No	No	No

- Remarks: All require full access on the payoff vector (oracle based)
 - Weaker feedback model (loss based):
 - only access to randomly sampled pure strategy of opponents (e.g. Exp3 [10])

¹Rates for fictitious play is still open.

²The time average of GDA converges for an appropriate stepsize selection. However, fixed stepsize does not.

Markov games

o What is Markov game?

- \circ Value functions and Nash equilibrium
- Algorithms for Markov games
 - Nonlinear programming
 - Fictitious play
 - Policy gradient
 - Nash Q-learning

EPFL

Markov games

• A Markov game (MG) can be viewed as a MDP involving multiple agents with their own rewards • Introduced by L.S.Shapley [17] as stochastic games, referred to with a tuple (S, A, P, r, γ)

 \circ A Markov game is an extension of normal form game with multiple stages and a shared state $s \in \mathcal{S}$

 \circ Joint action: $a = (a_i)_i$, where $a_i \in \mathcal{A}_i$ is the action of agent $i \in \mathcal{I}$

• Transition function: P(s' | s, a) is the likelihood of transitioning from a state s to s' under an action a

 \circ **Reward function**: $r_i(s, a)$ is the reward received by agent i at state s with a joint action a

 \circ Discount factor: γ

• Stationary policy: $\pi_i(a_i \mid s)$ is the probability that agent i selects action a_i at state s

lions@epfl

An example

 \circ Consider the interaction between drivers in the traffic as a markov game.

© eyetronic, Adobe Stock

- agents: commuters/drivers in the traffic
- states: locations of all cars
- action: which road to drive for each car
- reward: negative of time spent on the road

Normal form games and Markov games

	action	state	transition	reward	policy	multi-stage
Normal form game	$a_i \in \mathcal{A}_i$	no	no	$r_i(oldsymbol{a})$	$\pi_i(a)$	no
Markov game	$a_i \in \mathcal{A}_i$	$s\in\mathcal{S}$	$P\left(s' \mid s, \boldsymbol{a}\right)$	$r_i(s, \boldsymbol{a})$	$\pi_i(a_i \mid s)$	yes

• We focus on infinite horizon Markov games

 \circ Compared to a normal form game, agents in MG consider not only the current reward of the action... ...but also its effect in the long run!

• Compared to an MDP, MG has multiple agents and the reward also depends on other agents' action.

Markov games

• What is Markov game?

- Value functions and Nash equilibrium
- Algorithms for Markov games
 - Nonlinear programming
 - Fictitious play
 - Policy gradient
 - Nash Q-learning

Value function

• Value function: the expected γ discounted sum of rewards for a player *i* starting from state *s*, when all players play their part of the joint policy $(\pi_i)_{i \in \mathcal{T}}$:

$$V_{i}^{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{+\infty} \gamma^{t} r_{i}\left(s^{t}, \boldsymbol{a}^{t}\right) \mid s^{0} = s, \boldsymbol{a}^{t} \sim \pi\left(\cdot \mid s^{t}\right), s^{t+1} \sim \mathsf{P}\left(\cdot \mid s^{t}, \boldsymbol{a}^{t}\right)\right].$$

• Action-value function:

$$Q_{i}^{\pi}(s, \boldsymbol{a}) = \mathbb{E}\left[\sum_{t=0}^{+\infty} \gamma^{t} r_{i}\left(s^{t}, \boldsymbol{a}^{t}\right) \mid s^{0} = s, \boldsymbol{a}^{0} = \boldsymbol{a}, \boldsymbol{a}^{t} \sim \pi\left(\cdot \mid s^{t}\right), s^{t+1} \sim \mathsf{P}\left(\cdot \mid s^{t}, \boldsymbol{a}^{t}\right)\right].$$

Remarks: • Relation between $Q_i^{\pi}(s, a)$ and $V_i^{\pi}(s)$

$$Q_i^{\pi}(s, \boldsymbol{a}) = r_i(s, \boldsymbol{a}) + \gamma \sum_{s' \in S} \mathsf{P}\left(s' \mid s, \boldsymbol{a}\right) V_i^{\pi}\left(s'\right).$$

• Each agent wants to maximize its value.

Response model – best response

 $\circ~$ The expected reward to agent i from state s when following joint policy π is

$$r_i(s, \boldsymbol{\pi}(\cdot|s)) = \sum_{\boldsymbol{a}} r_i(s, \boldsymbol{a}) \prod_{j \in \mathcal{I}} \pi_j (a_j \mid s).$$

 \circ The probability of transitioning from state s to s' when following π is

$$\mathsf{P}\left(s' \mid s, \pi(\cdot|s)\right) = \sum_{a} \mathsf{P}\left(s' \mid s, a\right) \prod_{j \in \mathcal{I}} \pi_{j}\left(a_{j} \mid s\right).$$

• Best response policy for agent *i* is a policy π_i that maximizes expected utility given the fixed policies of other agents π_{-i} . This best response can be computed by solving the MDP with

$$\begin{split} \mathsf{P}'\left(s' \mid s, a_i\right) &= \mathsf{P}\left(s' \mid s, a_i, \pi_{-i}(s)\right) \\ r'\left(s, a_i\right) &= r_i\left(s, a_i, \pi_{-i}(s)\right). \end{split}$$

lions@epfl Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 40/ 64

Nash equilibrium

- In a Nash equilibrium (NE) π^* , no player can improve its value by changing its policy if the other players stick to their policy.
- Or we can say, π_i^{\star} is the best policy for agent *i* if other agents stick to π_{-i}^{\star} .
- \circ In NE, we can write for each agent i

$$V_i^{\boldsymbol{\pi}^{\star}}(s) \ge V_i^{\pi_i, \boldsymbol{\pi}^{\star}_{-i}}(s), \quad \forall \pi_i, \forall s \in \mathcal{S}.$$

 $\circ \epsilon$ -Nash equilibrium:

$$V_i^{\pi}(s) + \epsilon \ge \max_{\pi_i} V_i^{\pi}(s), \quad \forall i, \forall s \in \mathcal{S}.$$

Existence of Nash equilibrium

Theorem (Existence of Nash equilibrium [8])

All finite Markov games with a discounted infinite horizon have a Nash equilibrium.

Exercise: • Show this with the theorem of the existence of Nash equilibrium in the normal form games.

Hint: • Construct a new normal form game with each player and state pair in the original Markov game, i.e. (i, s), as an agent in the new game.

EPEL

Markov games

- What is Markov game?
- \circ Value functions and Nash equilibrium
- o Algorithms for Markov games
 - Nonlinear programming
 - Fictitious play
 - Policy gradient
 - Nash Q-learning

EPFL

Nonlinear optimization to find NE [7]

o Minimizes the sum of the lookahead utility deviations

- o Constrains the policies to be valid distributions
- o Assume we know reward and transition functions

$$\begin{split} \underset{\pi,V}{\text{minimize}} & \sum_{i\in\mathcal{I}}\sum_{s}\left(V_{i}(s)-Q_{i}(s,\pi(\cdot|s))\right)\\ \text{subject to} & V_{i}(s)\geq Q_{i}\left(s,a_{i},\pi_{-i}(\cdot|s)\right) \text{ for all } i,s,a_{i}\\ & \sum_{a_{i}}\pi_{i}\left(a_{i}\mid s\right)=1 \text{ for all } i,s\\ & \pi_{i}\left(a_{i}\mid s\right)\geq 0 \text{ for all } i,s,a_{i}, \end{split}$$
where $Q_{i}(s,\pi(\cdot|s))=r_{i}(s,\pi(\cdot|s))+\gamma\sum_{s'}\mathsf{P}\left(s'\mid s,\pi(\cdot|s)\right)V_{i}\left(s'\right).$

lions@epfl

Nonlinear optimization: Equivalence between the optimal solution and NE

Theorem (Equivalence between optimal solution and NE[7])

A joint policy π^* is a NE with value V^* if and only if (π^*, V^*) is a global minimum to this nonlinear programming.

Remarks: • The nonlinearity arises in $r_i(s, \pi(\cdot|s))$ and $P(s' | s, \pi(\cdot|s))$.

 \circ The proof of the theorem uses the following lemma.

Lemma

In an MDP, V^{\star} is the optimal value with the optimal policy π^{\star} if and only if

$$V^{\star}(s) = r(s, \pi^{\star}(\cdot|s)) + \sum_{s' \in S} \mathsf{P}\left(s' \mid s, \pi^{\star}(\cdot|s)\right) V^{\star}(s'), \quad \forall s \in S$$
$$V^{\star}(s) \ge r(s, a) + \sum_{s' \in S} \mathsf{P}\left(s' \mid s, a\right) V^{\star}(s'), \quad \forall s \in S, a \in \mathcal{A}.$$

Nonlinear optimization: Equivalence between the optimal solution and NE

 \circ We are ready to prove the theorem.

Proof.

- \circ (\Longrightarrow) Assume π^{\star} is a NE with value V^{\star}
 - 1. The second and third constraints hold trivially.
 - 2. The first constraint makes the optimum at least 0.
 - 3. The lemma implies the first constraint is feasible and the objective value at (π^{\star}, V^{\star}) is 0.

\circ (\Leftarrow) Assume (π^{\star}, V^{\star}) is a global minimum to the nonlinear programming

- 1. The optimum is 0 and is achievable by the reasoning above.
- 2. By the lemma, three constraints and the objective at (π^*, V^*) being 0 implies that π^* is a NE with value V^* .

SPEL

Fictitious play in Markov games

- Required feedback Each agent *i* counts opponent's actions at state *s*: $N_t(j, a_j, s)$ for $j \neq i, s \in S$.
- Behavioural assumption Each agent *i* assumes its opponents use the empirical distribution as the same stationary mixed strategy

$$\widetilde{\pi}_{j}^{t}(a_{j} \mid s) = \frac{N_{t}(j, a_{j}, s)}{\sum_{\bar{a}_{j} \in \mathcal{A}_{j}} N_{t}(j, \bar{a}_{j}, s)}$$

 $\circ~$ Each agent i considers the following MDP,

$$\begin{split} \mathsf{P}^t\left(s'\mid s, a_i\right) &= \mathsf{P}\left(s'\mid s, a_i, \widetilde{\pi}_{-i}^t(s)\right) \\ r^t\left(s, a_i\right) &= r_i\left(s, a_i, \widetilde{\pi}_{-i}^t(s)\right), \end{split}$$

and computes

$$Q_i^t(s, a_i, \widetilde{\pi}_{-i}^t(\cdot|s)).$$

 $\circ~$ Each agent i~ updates their policy as follows

$$\pi_i^{t+1}(s) = \operatorname*{arg\,max}_{a_i} Q_i^t(s, a_i, \widetilde{\pi}_{-i}^t(\cdot|s)) \quad \forall s \in \mathcal{S}.$$

lions@epfl

Policy gradient methods

• Also referred to as gradient ascent.

 $\circ \text{ Take the gradient of value function at } \pi^t : \left. \frac{\partial V_i^{\pi}(s)}{\partial \pi_i(a_i|s)} \right|_{\pi=\pi^t}.$

• Apply gradient ascent to each agent

$$\pi_{i}^{t+1}\left(a_{i} \mid s\right) = \pi_{i}^{t}\left(a_{i} \mid s\right) + \alpha_{i}^{t} \left. \frac{\partial V_{i}^{\pi}\left(s\right)}{\partial \pi_{i}\left(a_{i} \mid s\right)} \right|_{\pi = \pi^{t}}$$

• Project π_i^{t+1} to a valid probability distribution.

EPFL

Policy gradient algorithms in linear quadratic (LQ) games

o Generalization of LQR to multiple agents setting

• Continuous, vector valued state $s \in \mathbb{R}^m$ and action space $a_i \in \mathbb{R}^{d_i}$ for agent i.

 \circ Linear dynamics for state transition: with matrices $A \in \mathbb{R}^{m \times m}$ and $B_i \in \mathbb{R}^{d_i \times m}$

$$s^{t+1} = As^t + \sum_{i=1}^n B_i a_i^t.$$

 \circ Consider the linear feedback policy $a_i = \pi_i(s) = -K_i s$ with $K_i \in \mathbb{R}^{m \times d_i}$.

 \circ Player *i*'s loss function is quadratic function: with $Q_i \in \mathbb{R}^{m \times m}$, $R_i \in \mathbb{R}^{d_i \times d_i}$ and initial state distribution \mathcal{D}_0

$$\ell_i(K_1, ..., K_n) = \mathbb{E}_{s^0 \sim \mathcal{D}_0} \left[\sum_{t=0}^{\infty} (s^t)^T Q_i s^t + (a_i^t)^T R_i a_i^t \right]$$

Non-convergence of policy gradient algorithms in linear quadratic games

• Each player wants to minimize its loss $\ell_i(K_1, \ldots, K_i, ..., K_n)$

 $\circ~(K_1^{\star},...,K_n^{\star})$ is a Nash equilibrium if for each agent i

 $\ell_i\left(K_1^{\star},\ldots,K_i^{\star},\ldots,K_N^{\star}\right) \leq \ell_i\left(K_1^{\star},\ldots,K_i,\ldots,K_N^{\star}\right), \forall K_i \in \mathbb{R}^{d_i \times m}.$

Policy gradient algorithms

$$K_i^{t+1} = K_i^t - \alpha_i \frac{\partial \ell_i}{\partial K_i} (K_1^t, ..., K_n^t).$$

Theorem (Non-convergence of policy gradient in LQ games [12])

There is a LQ game that the set of initial conditions in a neighborhood of the Nash equilibrium from which gradient converges to the Nash equilibrium is of measure zero.

o Remark: When the initial policy is close enough to NE and stepsize is small enough, it still may not converge.

Non-convergence of policy gradient algorithms in linear quadratic games

 \circ Implement policy gradient on two LQ games with two players with dimension $d_1 = d_2 = 1$ and m = 2.

 \circ Nash equilibrium is avoided by the gradient dynamics.

o Players converge to the same cycle from different initializations.

EPFL

Two-player zero-sum Markov games

o What is two-player zero-sum Markov games?

o Bellman operators in two-player zero-sum Markov games

• Algorithms for two-player zero-sum games

- Value iteration
- Policy iteration and its variants

EPEL

Two-player zero-sum Markov games

 $\circ\,$ Markov games with two agents

 \circ Sum of two agents' rewards is 0, i.e. $r_1(s, a_1, a_2) = -r_2(s, a_1, a_2) = r(s, a_1, a_2)$ for any $s \in S$.

• Value function:

$$V^{\pi_{1},\pi_{2}}(s) = E\left[\sum_{t=0}^{+\infty} \gamma^{t} r\left(s_{t}, a_{1}^{t}, a_{2}^{t}\right) \mid s_{0} = s, a_{1}^{t} \sim \pi_{1}\left(\cdot \mid s_{t}\right), a_{2}^{t} \sim \pi_{2}\left(\cdot \mid s_{t}\right), s_{t+1} \sim \mathsf{P}\left(\cdot \mid s_{t}, a_{1}^{t}, a_{2}^{t}\right)\right].$$

• Agent 1 wants to maximize the value function and agent 2 wants to minimize it.

 \circ There exists a unique value for all Nash equilibrium

$$V^{\star}(s) = \min_{\pi_1} \max_{\pi_2} V^{\pi_1, \pi_2}(s) = \max_{\pi_2} \min_{\pi_1} V^{\pi_1, \pi_2}(s).$$

Applications of two-player zero-sum Markov games

 \circ Includes many sequential games. When one wins, the other loses.

• Poker.

 \circ Tennis.

 \circ Go

- agents: players
- states: the states of the board
- action: move in each turn
- reward: zero for all non-terminal steps; the terminal reward at the end of the game: +1 for winning and -1 for losing.

• What is two-player zero-sum Markov games?

o Bellman operators in two-player zero-sum Markov games

• Algorithms for two-player zero-sum games

Bellman operators in two-player zero-sum Markov games

• Let $r(s, \pi_1(s), \pi_2(s))$ the expected immediate reward/cost (player 1/player 2) at state s under policies π_1, π_2 . • Define the operator \mathcal{T}_{π_1} as follows,

$$\left[\mathcal{T}_{\pi_1} V\right](s) = \max_{\pi_1} \min_{\pi_2} \left[r(s, \pi_1(s), \pi_2(s)) + \gamma \sum_{s'} \mathsf{P}(s' \mid s, \pi_1(s), \pi_2(s)) \cdot V(s') \right]$$

 \circ Define the operator \mathcal{T}_{π_2} as follows,

$$\left[\mathcal{T}_{\pi_2} V\right](s) = \min_{\pi_2} \max_{\pi_1} \left[r(s, \pi_1(s), \pi_2(s)) + \gamma \sum_{s'} \mathsf{P}(s' \mid s, \pi_1(s), \pi_2(s)) \cdot V(s') \right]$$

 $\circ~\mathcal{T}_{\pi_1}$ and \mathcal{T}_{π_2} are equivalent. Let $\mathcal{T}\equiv\mathcal{T}_{\pi_1}\equiv\mathcal{T}_{\pi_2}$

 \circ The fixed point of ${\cal T}$ is $V^{\star}.$

lions@epf

• What is two-player zero-sum Markov games?

 \circ Bellman operators in two-player zero-sum Markov games

o Algorithms for two-player zero-sum games

Value iteration for two-player zero-sum Markov games

Value iteration for two-player zero-sum Markov games [17]

for each stage t do

Apply the Bellman operator ${\mathcal T}$ at each iteration

 $V^{t+1} = \mathcal{T}V^t.$

end for

Theorem (Convergence of value iteration)

$$\left\|\mathbf{V}^{t}-\mathbf{V}^{\star}\right\|_{\infty}\leq\gamma^{t}\left\|\mathbf{V}^{0}-\mathbf{V}^{\star}\right\|_{\infty}$$

Policy iteration for two-player zero-sum Markov games

• π_1 is said to be greedy, denoted as $\pi_1 \in \mathcal{G}(V)$ if and only if for each state $s \in S$,

$$\pi_1(\cdot|s) := \underset{\pi_1(\cdot|s)}{\arg\max} \min_{\substack{\pi_2(\cdot|s)\\ \pi_2(\cdot|s)}} \left[r(s, \pi_1(s), \pi_2(s)) + \gamma \sum_{s'} \mathsf{P}(s' \mid s, \pi_1(s), \pi_2(s)) \cdot V(s') \right]$$

Policy iteration for two-player zero-sum Markov games

```
for each stage t do find \pi_1^t \in \mathcal{G}(V^{t-1}) compute V^t = \min_{\pi_2} V^{\pi_1^t, \pi_2} end for
```

Remarks: • The first step requires the solution of |S| linear programs.

• The second step to compute $V^t = \min_{\pi_2} V^{\pi_1,\pi_2}$ requires solving the MDP with transition $\mathbb{E}_{a_1 \sim \pi_1^t(\cdot \mid s)}[P(\cdot \mid s, a_1, a_2)]$ and reward $-\mathbb{E}_{a_1 \sim \pi_1^t(\cdot \mid s)}[r(s, a_1, a_2)].$

lions@epfl

Value and Policy Iteration in zero-sum Markov games

Pros

- Compute Nash Equilibrium.
- Simple to implement.

Cons

- Computationally expensive.
- Model-based (they need the exact description of the Markov game).

Model-free methods for NE

- Policy gradient [3]
- Optimistic mirror decent + actor-critic [18]
- Natural policy gradient + actor-critic [Alacaoglu et al.]

Policy gradient in two-player zero-sum Markov games

Policy gradient in two-player zero-sum Markov games [3]

for each stage i = 1 to ... do

A trajectory $\{(s^t, \alpha_1^t, \alpha_2^t)\}_{t=0}^{H-1}$ is sampled according to policies π_1^i, π_2^i .

• Player 1 updates π_1^{i+1} as follows,

$$\boldsymbol{\pi}_1^{i+1} \leftarrow \boldsymbol{\Pi}_{\mathsf{eucl}} \left[\boldsymbol{\pi}_1^i + \left(\sum_{t=0}^{H-1} r(s^t, \boldsymbol{\alpha}_1^t, \boldsymbol{\alpha}_2^t) \right) \cdot \sum_{t=0}^{H-1} \nabla \log(\boldsymbol{\pi}_1^i(\boldsymbol{a}_1^t | s^t) \right]$$

• Player 2 updates
$$\pi_2^{i+1}$$
 as follows,

$$\pi_2^{i+1} \leftarrow \Pi_{\mathsf{eucl}}\left[\pi_2^i - \left(\sum_{t=0}^{H-1} r(s^t, \alpha_1^t, \alpha_2^t)\right) \cdot \sum_{t=0}^{H-1} \nabla \log(\pi_2^i(a_2^t | s^t)\right]$$

where $\Pi_{\text{eucl}}[\cdot]$ is the euclidean projection to the set of policies. end for

SPEL

Policy gradient in two-player zero-sum Markov games

Theorem (Informal, [3])

Policy-gradient in two-player zero-sum games requires $O(1/\epsilon^{12.5})$ stages to converge to an ϵ -Nash Equilibrium.

Policy gradient in two-player zero-sum Markov games

- Model-free
- Each player needs to learn only her individual experienced payoffs.
- Efficient and simple to implement.

Cons

Huge sample-complexity, PL needs to sample $O(1/\epsilon^{12.5})$ trajectories to find an ϵ -NE.

Other model-free methods for two-player zero-sum Markov games

 \circ Recent methods model-free drastically improve on the sample complexity.

Optimistic gradient decent/ascent with actor-critic [18]

- At each stage i a trajectory $\{(s^t, \alpha_1^t, \alpha_2^t)\}_{t=0}^{H-1}$ is sampled according to π_1^i, π_2^i .
- Agent 1 (resp. agent 2) estimates the $\hat{Q}^i(s, a_1)$ as follows,

$$\hat{Q}^{i}(s,a_{1}) \leftarrow \frac{\sum_{t=0}^{H-1} \mathbf{1}[s^{t} = s, a_{1}^{t} = a_{1}] \cdot \left(r(a_{1}^{t}, a_{2}^{t}, s^{t}) + \gamma V^{i-1}(s^{t+1})\right)}{\sum_{t=0}^{H-1} \mathbf{1}[s^{t} = s, a_{1}^{t} = a_{1}]} \leftarrow \mathsf{Critic}$$

At each state s, optimistic gradient ascent (descent for player 2) uses $\hat{Q}^i(s, a)$ to update $\pi^i(\cdot|s)$.

Convergence [18]

Optimistic gradient decent/ascent with actor-critic in two-player zero-sum games requires $O(1/\epsilon^4)$ stages to converge to an ϵ -Nash Equilibrium.

State of the art [Alacaoglu et. al.]

Natural policy gradient with actor-critic in two-player zero-sum games requires $O(1/\epsilon^2)$ stages to converge to an ϵ -Nash Equilibrium.

Summary

Markov games

- What is Markov game?
- Value functions and Nash equilibria
- Algorithms for Markov games
- Two-player zero-sum Markov games
 - What is two-player zero-sum Markov games?
 - Bellman operators in two-player zero-sum Markov games
 - Algorithms for two-player zero-sum games

EPEL

References |

[1] Volkan Cevher.

Lecture 14: Primal-dual optimization ii: The extra-gradient method (Mathematics of Data 2022). https://www.epfl.ch/labs/lions/wp-content/uploads/2023/02/lecture_14_2022.pdf. 29

- Xi Chen, Xiaotie Deng, and Shang-Hua Teng.
 Settling the complexity of computing two-player nash equilibria. Journal of the ACM (JACM), 56(3):1–57, 2009.
- [3] Constantinos Daskalakis, Dylan J. Foster, and Noah Golowich.

Independent policy gradient methods for competitive reinforcement learning, 2021. 60, 61, 62

[4] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou.

The complexity of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009. 15

[5] Constantinos Daskalakis and Qinxuan Pan.

A counter-example to karlin's strong conjecture for fictitious play.

In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 11-20. IEEE, 2014.

24

EPEL

References II

 [6] Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained min-max optimization. arXiv preprint arXiv:2009.09623, 2020. 32

[7] Jerzy A Filar, Todd A Schultz, Frank Thuijsman, and OJ Vrieze.

Nonlinear programming and stationary equilibria in stochastic games. *Mathematical Programming*, 50(1):227–237, 1991. 44, 45

[8] A. M. Fink.

Equilibrium in a stochastic n-person game.

Journal of Science of the Hiroshima University, Series A-I (Mathematics), 28(1):89 – 93, 1964.

42

 [9] Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol, Gabriel Huang, Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momentum for improved game dynamics.

In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1802–1811, 2019.

26

[10] Elad Hazan.

Introduction to online convex optimization.

Foundations and Trends® in Optimization, 2(3-4):157-325, 2016.

33

References III

```
[11] Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher.
The limits of min-max optimization algorithms: Convergence to spurious non-critical sets.
arXiv preprint arXiv:2006.09065, 2020.
[12] Eric Mazumdar, Lillian J Ratliff, Michael I Jordan, and S Shankar Sastry.
Policy-gradient algorithms have no guarantees of convergence in linear quadratic games.
In AAMAS Conference proceedings, 2020.
```

```
[13] John F Nash Jr.
```

Equilibrium points in n-person games.

Proceedings of the national academy of sciences, 36(1):48-49, 1950.

```
14
```

```
[14] William Poundstone.
```

Prisoner's Dilemma/John Von Neumann, game theory and the puzzle of the bomb.

Anchor, 1993.

```
8
```

```
[15] Julia Robinson.
```

An iterative method of solving a game.

```
Annals of mathematics, pages 296-301, 1951.
```

24

SPEL

References IV

[16] Lloyd Shapley.

Some topics in two-person games.

Advances in game theory, 52:1-29, 1964.

23

[17] Lloyd S Shapley.

Stochastic games.

Proceedings of the national academy of sciences, 39(10):1095–1100, 1953.

35, 58

[18] Chen-Yu Wei, Chung-Wei Lee, Mengxiao Zhang, and Haipeng Luo.

Last-iterate convergence of decentralized optimistic gradient descent/ascent in infinite-horizon competitive markov games, 2021.

60, 63

EPEL