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Recap: Policy optimization

oo
max J(m9) == E | D 7'r(se,ar)lso ~ 1,70 | = EanuV7(s)]
t=0
Tabular parametrization Non-tabular parametrization
> Direct: > Softmax:

exp(fo(s, a))

no(als) = 0s,q, with 05,4 > O’Zaes’“ =1 mg(als) = 5 exp(fo(5,a))
a’c A ’

> Gaussian:

mo(als) ~ N (1o (s), 53(s))

> Softmax:

exp(0s,a)
o’ €A eXp(es,a’)

mo(als) = 5
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Recap: Policy gradient methods

oo

max J(rg) =B | D y'r(se,ar)lso ~ 7 | = BanulV7(5)]
t=0

Exact policy gradient method

0t+1 — 0 + athJ(ﬂgt)7

where Vg J(mg, ) is the full gradient of the performance objective.

Stochastic policy gradient method

Ory1 «—— 01 + at@g(](ﬂgt),

where @gJ(ﬂ'gt) is a stochastic estimate of the full gradient of the performance objective and is used in
> REINFORCE [18]
> REINFORCE with baseline
> Actor-Critic [11]
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Previous lecture

Question 1 (Non-concavity)

When do policy gradient methods converge to an optimal solution? If so, how fast?

Question 2 (Vanishing gradient)

How to avoid vanishing gradients and further improve the convergence?

IHEI{l  Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 5/ 58 EPFL



Previous lecture

Question 1 (Non-concavity)

When do policy gradient methods converge to an optimal solution? If so, how fast?

Remarks: o Optimization wisdom: GD/SGD can converge to the global optima for “convex-like” functions:
J(7*) = J(m) = O(|VI(m)|) or O(IG(m)II)

o Take-away: Despite nonconcavity, PG converges to the optimal policy, in a sublinear or linear rate.

Question 2 (Vanishing gradient)

How to avoid vanishing gradients and further improve the convergence?
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Previous lecture

Question 1 (Non-concavity)

When do policy gradient methods converge to an optimal solution? If so, how fast?
Remarks: o Optimization wisdom: GD/SGD can converge to the global optima for “convex-like” functions:
J(7*) = J(m) = O(IVJ (m)|]) or O(|G(m)II)
o Take-away: Despite nonconcavity, PG converges to the optimal policy, in a sublinear or linear rate.
Question 2 (Vanishing gradient)
How to avoid vanishing gradients and further improve the convergence?

Remarks: o Optimization wisdom: Use divergence with good curvature information.

o Take-away: Natural policy gradient achieves a faster convergence with better constants.
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This lecture

Question 3 (theory)
o Why does NPG achieve a better convergence?

o How can we further improve the algorithm?

Question 4 (practice)
o How do we extend the algorithms to function approximation settings?
o How do we extend the algorithms to online settings without computing exact gradient?

o How do we extend the algorithms to off-policy settings?
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Revisit gradient descent

o Consider the optimization problem min, cza f(x).

> Gradient descent (GD):
Xi+1 = x¢ — NV f(xe).
> Equivalent regularized form:

1
X¢+1 = arg min {Vf(xt)—r(x —x¢) + %Hx - xtHg}
P

> Equivalent trust region form:
Xer1 = argmin V£ (x¢) T (x — x¢), s.t. [|x — x¢]|3 < 6.

X

Question: o Would GD give the same trajectory under invertible linear transformations (z — Ay)?
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Gradient descent revisited

X2 V2

X1 Y1

Figure: GD is not invariant w.r.t. linear transformation.
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Recall Bregman divergences

Bregman divergence

Let w : X — R be continuously differentiable and 1-strongly convex w.r.t. some norm || - || on X. The Bregman
divergence D, associated to w is defined as

Dy(x,y) = w(x) —w(y) — Vo) T (x —y),

for any x,y € X.

Examples: o Euclidean distance: w(x) = 2||x[12, D, (x,y) = 3|Ix — y||3.
o Mahalanobis distance: w(x) = %XTQX (where Q = I), Dy, (x,y) = %(x -NTQ(x-y).
. . d d
o Kullback-Leibler divergence: X = {x € R‘i : Zz’:l z; =1}, wx) = Zi:l z;logz;
d

s
D, (x,y) = KL(x|y) := E ‘ 1£E7; log j
i= i
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Background: Mirror descent

Mirror descent (Nemirovski & Yudin, 1983)

For a given strongly convex function w, the iterates of mirror descent [4] are given by

xt+1 = argmin{ Dy, (x,x¢) + 0 (V f(x¢),x — x¢) }
xEX

Examples: o Gradient descent: X C R?, w(x) = %||x|

2, Du(x,x1) = 3x — x|2.
X1 = My (x¢ — eV f(xe)).

o Entropic mirror descent [4]: X = Ay, w(x) = Zil x; logx;, Dy(x,x¢) = KL(x|x¢).

3
xt4+1 X Xt O exp(—ntV f(xt)),
where © is element-wise multiplication and exp(-) is applied element-wise.
o Entropic Mirror Descent attains nearly dimension-free convergence (Chapter 4 of [5]).

o See Lecture 3 Supplementary Material for more details and examples.
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Background: Fisher information and KL divergence

Fisher Information Matrix
Consider a smooth parametrization of distributions 6 — pg(-), the Fisher information matrix is defined as

Fg = E.rp, [Vo log po(2) Ve log pe(2) ).

Remarks: o It is an invariant metric on the space of the parameters.

o Fisher information matrix is the Hessian of KL divergence.

82
Fyy = 202 KL(pg, ||p6)‘9:90 .
o The second-order Taylor expansion of KL divergence is given by

1
KL(pg, o) = 5(9 —00) " Fyy (0 — 60).
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Background: Natural gradient descent

o Consider the optimization problem minyca f(x) and represent x by pg(-).

> Natural gradient descent (Amari, 1998):
01 = 0 — n(Fo,) IV (0r).

> Equivalent regularized form:
1
Orp1 = argmin {VF(0:) T (0 — 00) + —(0 — 0,) T Fp, (0 — 02) }.
0 2n
> Equivalent trust region form:

Op11 = argmin V£(0:)T (0 — 0), sit. %(9 —0,)TFy, (0 01) < 6.
0
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Natural policy gradient method for policy optimization

o0
max J(m9) = E | D y'r(ss,ar)lso ~ 1,70 | = BanuV7(s)]
t=0

Natural policy gradient (Kakade, 2002)[10]
For a stepsize n > 0, the iterates of natural policy gradient are given by

Ory1 = 0t + W(Fet)TVBJ(“Gz)~

Remarks: o Fy is the Fisher Information Matrix:

Fy=E [Vg log mg(a|s)Vg log 7rg(a|s)T] .

seAL? sanmg(-]s)

o Vg J(mg) is the policy gradient:

1
VoJ(mg) = SE Vo logmg(als)AT0 (s, a)].

SNAZH,QNW{,(,‘S) [
o C' is the Moore—Penrose inverse of the matrix C.
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Interpretation of NPG

o NPG can be viewed as repeatedly solving the quadratic approximation of the subproblem:

Os41 ~ argmax { J(mg), st. KL (pg, (7)|pe (7)) < 6},
0
where pg(7) is the probability of the random trajectory 7 = (S0, @0, 71, .., ...).

Explanation: o Approximate the objective with the first-order Taylor expansion: VJ(mg,)T (6 — 0y).

o Approximate the constraint with the second-order Taylor expansion:

KL (o, (Mo (1) €6 = 50— 09T Fo, (0~ ) <.

Question: o How can we compute the iterates of natural policy gradient efficiently?
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Computing natural policy gradient

Equivalent form of NPG (Appendix C.3 [3])

Let w*(0) be such that
(1 —7)(Fp) Vg J(mg) = w*(6).

Then, w*(0) is the solution to the following least squares minimization problem:

* . = 2
w*(0) € argn}inESNAzg,a~w9(.|s) [(wTV@ logmg(als) — A 0(s7a)) } . (1)

Remarks: o The proof follows immediately by first-order optimality condition.

o Equivalently, we can rewrite NPG as:
_ n *
041 = 0 + ——w™(64).
11—~

o w*(f¢) can be obtained by solving (1) via conjugate gradients, SGD, and other solvers.
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Side story

Compatible function approximation (Sutton et al., 1999)[16]
Let Ay (s,a) be defined as w
Ay (s,a) :=w” - Vg log mg(als)

where w* is as defined in (1). Then we have

1 1
VoJ(mg) = ﬁFg w* = ——F

g SN)‘ZQ ,armg(+|s) [Vo log mg(als)Awx (s, a)] .

Remarks: o One can obtain unbiased policy gradient with A« (s, a)

> This is the best linear approximation of A™6 (s, a) using feature maps V log 7y (s, a).

o Advantage value function approximation A™0(s,a) ~ w' ¢(s,a) can introduce bias.
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Example 1: Tabular NPG under softmax parameterization

NPG parameter update

exp(fs,a)

Consider the softmax parameterization mg(als) = Z T and denote 7y = 7y, , the induced NPG
exp ’
@’ s,a

parameter update corresponds to the following

n

7147”‘
11—+

Ory1 = 0t +

NPG policy update = policy mirror descent

In policy space, the induced update corresponds to the following

_ exp(nAT™t(s,a)/(1 — 7))
41 (als) = me(als) AB) .
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Example 2: NPG with linear function approximation

NPG parameter update
g _ __exp(0" ¢(s,0)) _ .
Consider mg(als) = Z GETYS) and denote 7y = 7g,. The induced NPG parameter update corresponds
, €Xp s,a
to the following

_ 7 _ 5 T % 2
Ot+1 =0 + mwt, where w; = arg n};nESNAZQ’GNM(M) [(w &(s,a) — A™0 (s,a)) :| 5

NPG policy update = policy mirror descent
Notice that the parameterizations can be chosen to result in the familiar mirror descent updates on policies:

exp(nw/ ¢(s,a)/(1 — 7))
Z(s) ’

me41(als) = me(als)
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Convergence of tabular NPG with softmax parametrization

NPG policy update = policy mirror descent

exp(nA™ (s,a)/(1 — 7))
Z(s)

mi+1(als) = me(als)

Convergence of tabular NPG [3]
In the tabular setting, for any n > (1 — v)2log|.A| and T > 0, the tabular NPG satisfies

2
J(m*) —J < —mrr.
(") = Jr) <
Remarks: o Nearly dimension-free convergence, no dependence on |AJ,|S|.

o No dependence on distribution mismatch coefficient.

Question: o What is the computational cost of this (nearly) dimension-free method?
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Proof of tabular NPG convergence

Lemma (Policy Improvement)
J(m) = J(me) = %Esmg [KL(m(-|8) e (-|s)) — KL(m(-|s)[me41(:|s)) + log Ze(s)] -

Proof sketch: o Recall from Performance Difference Lemma:

1
‘](ﬂ-) - J(ﬂ—t) = 7Es~k”,a~ﬂ(a\s)["4”t (Sva)}'
T—v

o

)exp(nA” (s,a)/(1=7))

s

o From the update rule 71 (als) = m¢(als , we have

AT (s, 0) = L7 Jog TerL(Al9) Ze(s)
me(als)

o Combing these two equations, we have the above lemma.
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Proof of Tabular NPG convergence

Proof.
o Setting ™ = 7* in the previous lemma and telescoping from t =0,...,7 — 1
T—=
Z — J(m) < niTESNw KL(x* Cls)lmo(1s)] + — ZESNW llog Z(s)]

t=0

o Setting ™ = 741 in the previous lemma, we have

1—
J(me41) — J(me) 2 —E__ w41 [log Ze(s)] > T’YESNH [log Z¢(s)] > 0,Vp.
i

S|+

o Combining these two equations and the fact that J(7w) > ﬁ implies that

T—1

1 log | Al 1

= J(m*)—J <

TZ (r) = Jlme) < == + T er
t=0

ICLHEEIN  Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he®@ethz.ch & volkan.cevher@epfl.ch Slide 21/ 58



Sample-based NPG
Sample-based NPG (informal)

o Use N-step SGD to estimate w; = w*(6;)

o Update 01 = 0; + ﬁwt

Sample-based NPG
Initialize policy parameter 6y € R, step size n > 0, a > 0
fort=0,1,...,7 — 1 do
Initialize wg, denote m¢ = my,
forn=0,1,...,N — 1 do
Obtain sample s ~ At a ~ m¢(-|s)
Obtain an estimate A(s, a) for A™ (s, a)
Update w: w + w — a(w | Vg log me(als) — A(s,a)) - Vg log 7t (als)
end for
Set wi = w (or the average)
Update 0141 = 6+ + %wt

end for
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How to sample from an occupancy measure and estimate A(s,a)?
Sampling routine for A7 An estimation routine for Q(s, a)

Input : a policy . Input: a policy .

Sample T' ~ Geom(1 — ) and sp ~ p.

fort=0,1,...,7— 1 do while True do
Sample a; ~ 7(-|st). Sample spy1 ~ P(:|sp,ar).
Sample s¢y1 ~ P(¢|st, at). Sample ap41 ~ 7(:|sT).
end for SetQ=Q+TT+1.
Output : (s7,ar). Set T =T + 1.
With probility 1 — v terminate.
end while
Output : Q.

Remarks: o See Algorithm 1 in [3].

o We sample from the occupancy measure by generating (st, ar) with T' ~ Geometric(1 — 7).

o Q is an unbiased estimate of Q(sT,ar).

o An unbiased estimate of V(s7) can be obtained with the same algorithm.

o An unbiased estimate of A can be obtained as @ — V.
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How good is our approximation of w*?
o Following [3], we introduce the loss function.
. — ™ T 2
L(w;m,A) = Eq qnn [(A7(5,0) — wT Viogma(s, a))?] .
o Its gradient is 2E; o~ [(A" (s,a) —wTVlogmy(s,a))V logmy(s, a)].
o Using the estimate A(s, a), we build the stochastic gradient:
2 [(A(3,a) — w" Vlog my(3,a))V log (3, a) |

o §,a are sampled from )\z* as described in previous slide.

o We approximate w* with N steps of SGD and we quantify the following errors:
> estat = L(’wz; Tty )\Zt) - minU”HwHSB L(U};7Tt7 )\Et)
> ebias = Milly,:||w||<B L(w; e, AL").

» The bound B is in the order of ﬁ
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Convergence of sample-based NPG with function approximation

Convergence of sampled-based NPG (informal)

1 2log |A|

E ir%i;l‘](ﬂ'e*) — J(mq, ):| <0 iV 7 + VKeéstat + /ébias |

where €gtat is how close wy is to a w*(0;) (statistical error) and epias is how good the best policy in the class is
(function approximation error).

Remarks: o Using N iterations of SGD as explained in the previous slide we can get estat = O(N_I/Q).
0 €pias = 0 under the so called “realizability” assumption for the features i.e.,
vrell, 30 st. Q"(s,a)= 9T¢>(s,a) Vs,a € S x A.

o Hence, we get

R 1 1
E [?il;lz](ﬂ'g*) — J(Wgt)} < O(T1/2 + W)

o Given that an e-stationary point is achieved with T'= O(e~2) and N = O(e™%).
o Total sample complexity is O(e~).
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Other remarks on the NPG bound

Remarks: o Kk quantifies how exploratory the initial distribution is.
o Requiring a bounded & is a strong assumption.
o We discuss later how to incorporate exploration in policy gradient.
o Notice that if €stat = 0 and epias = 0, we get a rate O( \/T)
o This is not optimal for tabular setting.
o Indeed, we have proven rate O(T 1) for Tabular NPG.
o In the tabular setting, the NPG updates attain monotonic progress.
o This is not necessarily true for general smooth policy parameterization.
o The proof in latter case is based on the no regret property of NPG.

o NPG update rule is equivalent to
> MDP-Experts [8].
> Mirror Descent Modified Policy lteration [9].
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Popular Baselines

Trust Region Policy Optimization

John Schulman JOSCHU @EECS.BERKELEY.EDU
Sergey Levine SLEVINE@EECS.BERKELEY.EDU
Philipp Moritz PCMORITZ@EECS.BERKELEY.EDU
Michael Jordan JORDAN@CS.BERKELEY.EDU
Pieter Abbeel PABBEEL @CS.BERKELEY.EDU

University of California, Berkeley, Department of Electrical Engineering and Computer Sciences

TRPO (ICML, 2015)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl
{joschu, filip, prafulla, alec, oleg}@openai.com

PPO (arXiv, 2017)

OpenAl implementation: https://github.com/openai/baselines
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https://github.com/openai/baselines

Trust Region Policy Optimization (TRPO)

TRPO (key idea) [14]

max B, 70(@18) ymo, (5 0|,
0 svA tanmg (Cls) | g, (a | s)
st. B o, [KL(mo(- | 8)llma, (- | 9))] < &
"
Remarks: o The surrogate objective can be viewed as linear approximation in 7 of J(mg):

1
J(TI') = J(ﬂ-t) + ﬁESNAE,aNW(MS)[ATH (57 a)] (PDL)

o It can be approximated by a natural policy gradient step.

o Line-search can ensure performance improvement and no constraint violation.
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TRPO: A detailed look at the implementation.

o We explain how TRPO is implemented in the widely used OpenAl library [1].

o We consider a first order approximation of the objective.

mo(a | 5)
N)\ng ~ .
s~A thanmg (Cls) | mg, (a ] s)

AT0t (s,a) | = (VoJ(0k),0 — Ok)

o And a second order expansion of the constraints

E,_ymo KL (- | 9)lmo, (| )] & (0 = 04)TF(8)(0 — 65)

o Therefore, the practical implementation (almost) boils down to natural policy gradient.
o The subtle difference is that TRPO executes line seach along the direction F(6;,)TVyJ(04).

o The goal is the select the largest possible step size 1 such that
Top1 = @ +1F(0k) VoI (6x)

satisfies the original constraints.

ICLHEIN  Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he®@ethz.ch & volkan.cevher@epfl.ch Slide 29/ 58



Equivalence between MDP-E [8] and TRPO

o The previous result proves that TRPO produces a monotonically improving sequence of policies.

o We can prove a stronger result noticing that TRPO is equivalent to MDP-E [8, 13].

MDP-Experts (MDP-E)
Initialize policy g, learning rate n
fort=0,1,...,7—1 do
Evaluate Q7 (s, a) for every state action pair.

me41(als) o< mi(als) expnQ™ (s, ).

end for
Output : A policy sampled uniformly at random from the sequence 7, ..., Tp_1.
Remarks: o Check out the course Online Learning in Games!

o MDP-E is a no-regret algorithm for adversarially changing rewards.

o Therefore, it converges to the optimal policy for a fixed reward.
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Equivalence between MD-MPI [9] and TRPO

o TRPO has been interpreted also as a regularized dynamic programming scheme.

o Indeed, it falls under the general template of Mirror descent modified policy iteration (MD-MPI)

MD-MPI

{m+1(~|8) = argmax, [r(s,a) +7 Y, P(s'|s, a)Vi(s')] + KL(x(|s)||m(]s))
Via1(s) = (T™)™ Vi(s)

o Recall that 7™t is the Bellman expectation operator associated to the policy 7.
o TRPO is recovered with m = oo.

o Many other algorithms can be captured under this framework [9].
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Generalizing TRPO via MD-MPI

o Generalizations can be achieved using any other Bregman divergence.
o When the dynamics are not known we consider errors €; and €} in both steps.

o € and €} are vectors of dimension S quantifying the error at each state.

me41(c[s) st Je(mp(]s)) — Je(meva(tls)) < e
Vig1(s) = (T™)" Vi(s) + e

with
Jie(m(c|s)) = T(Sﬁa)-%“fZP(S/IS’G)Vt(S/) = D(w(-|s)l|me(:]s))

5 (-s) = arg max Jy (m(-]s))

o Generalization of TRPO can be achieved changing m.

o A further generalization is to consider regularization also in the evaluation step.
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TRPO error propagation via MD-MPI
o It is possible to prove that the errors accumulate in additive way.

Theorem
After T iterate of MD-MPI, the suboptimality of the value function is bounded as

T T
* 1 1
max V"7 (s) = VT () SO | =5 ;II@Hw;HeiHM LTS EYs

o The error propagation can be improved adding the effect of Bregman divergence also in the evaluation step.

o To this end, define the Bregman regularized Bellman operator associated to the divergence D,,.

(TEV)(S) = Bann(ls) |7(5:0) +7 Y P(s/]s,)V(s') | —w((:]s))

T
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MD-MPI with Bregman regularized evaluation

o Using the Bregman regularized Bellman operator, we can define the following new scheme [9, 17]

w1 (c]s) st Je(mE(ls)) = Je(mer1(c]s)) < e
Vir1(s) = (To )™ Va(s) + e

Theorem

Take m =1 and w(w(:|s)) =< m(:|s),log 7(-|s) > and assume €; = 0 for all t, then after T iterate of the
scheme above we obtain

1 1 1
maxV*(s) = VT () <O | — || = E - -
Sax (s) (s) < €t +

i=1 |lss

o Better dependence on the effective horizon (1 — )~ L.

. . 1 T 1 T
o Better error propagation, notice that by Jensen HT thl etH <= Zz:l let]].
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Exploration in Policy Gradient methods

s00  ——  g-greedy
oo UCB

125000
100000

75000

50000

Reward collected so far

25000

125 150 175 200
166

000 02  0s0 075 100
Iteration

o When the transition dynamics of the agent are unknown the agent needs to explore the state space.

o Unless the initial state distribution is exploratory enough to guarantee x small.

o Recall that  is a constant appearing in the bound for sample based NPG.

o Recall, in the first coding exercise that we studied two different exploration techniques (e-greedy and UCB).

o Can we incorporate these techniques in policy gradient ?
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Provable exploration in policy gradient

o We present OPPO [6] that incorporates exploration in policy gradient for finite horizon MDP.
o The idea is to perform TRPO updates with optimistic estimates of the value function.
o We look at the finite horizon case because in the infinite horizon case it is more difficult to perform exploration.

o The main difficulty is the bonus design for the infinite horizon.

Theorem
Let w1, 72, ..., the sequence of policies generated by OPPO. Then it holds that

T
Zv*(sl) ~V™(s1) <0 (VT)

t=1

o This holds also when the reward function can change adversarially from episode to episode.
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Key idea : Optimism

o Optimism means to overestimate the value of Q™ (s,a) at every state action pairs.

o Formally, it means that Qp (s, a) satisfies
V}f(s) = Ea~7r(< |s) [QZ(S, a)}

Qt (s,a) > 7} (s,a) + Z P(s'|s,a)ViE(s") (Optimism)

o Notice that Q™ (s,a) would be the fixed point of the second expression.

o At the same time we need an estimate that is not too optimistic.

rt(s,a) + Z P(s'|s,a)Vii(s") + 20, (s,a) > QF (s,a) (Bounded Optimism)
S/

o b! (s,a) needs to be decreasing with the number of visits for (s, a).

o This ensures that Q! (s,a) — Q" (s, a)

ICLHEIN  Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he®@ethz.ch & volkan.cevher@epfl.ch Slide 37/ 58



Estimate transition and bonuses

o In order to do this, we compute the empirical average of the transition dynamics.
o We set the function bZ(s,a) proportional to the square root of the inverse number of visits for s, a.

o Intuition The more often we visit a state, the more we expect the uncertainty to reduce.

Estimating transitions and bonuses

fort=0,1,...,7 — 1 do
for h=0,1,...,H —1do
Visit the state action pair (s}, a},) and next state s} _ .

Update counts Ny, (s}, a}, s} 1) < Nu(s),,af, s}, 1) + 1, N(sj,,a}) < N(s}.a},) + 1.

. . 5 / _ Np(s,a,s’) /
Estimate transtion Py (s'|s,a) = AN CRAEST for all s,a,s’.
Compute exploration bonuses by, (s, a) ~ /7]\](32’%).

end for
end for
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Estimate optimistic value function

o Having estimated P}, (s’|s,a) and the bonus bt (s,a), we can compute Q! (s,a) as follows.

Backward induction to estimate Q?.

Initialize Q% (s,a) = 0.
for h—H,...,1do

Recurse backward to compute Qfl

Qh(s,a) = h(s,0) + b (5,0) + Y _ Pa(s'ls, a)mns1 (0l ) @y (s, @)

s’ a’

Qh(s,a) = clip(Qj,(s,a);0, H — h + 1)

end for
o If it holds that |-, (Py(s']s,a) — Pu(s'|s,a)V(s")| < bn(s, a).

o This construction ensures that Optimism and Bounded Optimism hold.
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The complete algorithm.
o The overall algorithm resambles MDP-E but with an optimistic evaluation step.

OPPO [6] (simplified version)

Initialize policy parameter 6y € R%, step size p > 0, o > 0
fort=0,1,...,7 — 1 do

Policy Evaluation
Estimate bonus and transitions by, (s,a) and Py (s’|s,a)

Compute optimistic value functions Q’;L

Policy Improvement
Update policies at every h, s, a with a TRPO step

Ty+1,n(als) o< m p(als) expnQp (s, a)

end for

o To prove the regret bound one proves that Regret(T) < (’)(Zthl ZZ;I bt (st a%)).
o Next, one shows that Zf:l Zthl bt (st,at) < O(VT).
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PC-PG: Policy Cover Guided Policy Gradient [2]

o It is a more involved exploration technique suitable for infinite horizon problem.
o The intuition is to generate a favourable exploratory distribution to make the mismatch coefficients small.

o Indeed, recall that from the gradient dominance theorem, we have

An”
J(*) — J(mg) < || == X max(w — 7w, VJ(r))
AL o TEA

1 ||
< — || X max(7w — m, VJ(r))
1—7 ol TEA

o Notice that if the initial distribution was exploratory, the mismatch coefficients would be small.

AT
o For example, if p is uniform then % <IS8].

[e’s}

o The idea behind PC-PG is to construct a "virtual" initial distribution that ensures exploration.
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PC-PG’s main idea

o The idea is to learn a collection of policies (m)gil such that.

N
1 )
pls.a)= 5 Y AN(s.0) 28 Vsa.
i=1
o To this end, at every iteration, define the bonuses
1 R
b(s,@) = T - 1{p(s,0) < B}
-
o p is an empirical estimate of the policy cover.
o At this point, we can apply Sample Based NPG with p as initial distribution.

o We modify the reward to encourage the extension of the cover support.

ICLHEIN  Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he®@ethz.ch & volkan.cevher@epfl.ch Slide 42/ 58



The PC-PG algorithm

PC-PG [2] (simplified version)

fort=1,...,7 do
Policy Evaluation
Sample M tuples D = {s;, ai}f\il.
Estimate Q(s,-,ai) for any (s;,a;) € D.
Update counts N(s;,a;) = N(si,a;) + 1 for all (s;,a;) € D.
Estimate p(s,a) o< N(s,a).
Compute bonus.

1
b(s,a) = =

~

-1{p(s,a) < B}
Policy Improvement
mi4+1(als) o< m(als) expn (Q(s, a) + b(s, a))
end for
o The sample complexity no longer scales with the concentrability coefficients.

o However, the dependence on ¢ deteriorates to O(¢~11).
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A closer look to baselines

o We mentioned that the baselines are used as a variance reduction mechanism.

o Actually, one can prove which choice for the baseline guarantees minimum variance.

Theorem

Consider the gradient with baseline Vg J(mg) = 221 (Q™0 (s¢,at) — b(st)) Viog mg(at|st) for a trajectory
T ~ pg.

Then, b*(s) = argming. g_,5 [Var [VgJ(ﬂg)|s” satisfies

* o HQWG(&Q) log7rg(a|s)H
") = Vg mEs)
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Proof.
Start noticing that

Var [Sos(m)ls] =2 [[|Fo (o) || - |[& [Fos(mals] |

=E |:H%9J(7F9)H2 \s} — ”EGNW('IS) Qe (s,a)Vlog;Trg(oL|s)]H2

= ~ 2
Therefore Vj, Var [VgJ(ﬂ'g)lS] = V,E |:HV9J(7F9)H \s} Developing the norm squared and differentianting, we
get

VpE [|{$9J(7T9)||2|5:| =2 (b( )E a~g(-|s) [HVlogﬂe(al | ] Eonmg(-ls) [Q“G(s,a) ||Vlog7r9(a|s)|\2])

Therefore, the proof is concluded setting b* to minimize the latter expression. o
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Is it always good to minimize variance ?

o The answer is no. Because, reducing the variance of the baseline can hinder exploration.
o As a result, the minimum variance baseline may lead to a suboptimal policy.

o Here we describe the result in [7].

Theorem

Theorem 1 in [7] There exists a three-arm bandit where using the stochastic natural gradient on a softmax
parameterized policy with the minimum-variance baseline can lead to convergence to a suboptimal policy with
positive probability, and there is a different baseline (with larger variance) which results in convergence to the
optimal policy with probability 1.
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Explore the baseline effect

(a) by = b5 —1f2 (b) b = b3 (0) b = b +1/2 (d) by = V™

o The optimal policy plays the action in right corner.
o That is where the trajectories with baselines bg' and V7™ converge to .
o In the other cases, there are some trajectories converging to the top corner.

o These results confirm the issue with the minimum variance baseline.
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Unbounded variance case. [12]

o Consider a bandit experiment with stochastic rewards with an action dependent distribution R(a).
o A common unbiased estimator is constructed using importance sampling.

o Using an action & ~ 7 and observe r ~ R(a).

(a)

o If we consider an additional baselines, we get the estimator

?la) = 1(a=a)

7la) = 7;l_;l)bl(a, =a)

o The variance is unbounded no matter how b is chosen.
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Proximal Policy Optimization (PP0O2)

PPO (key idea) [15]

) molals) ,xy [ mo(als) . e
mgtx ES,N)\ZGt,aNTrgt(‘lS)mln{A t(s,a),clip| ———<;1—¢1+¢)A™% (s,a)

7o, (als) 7o, (als)

Remarks: o PPO penalizes large deviation from the current policy directly inside the objective
. . - . ™9
function through clipping the ratio o, "

l—¢ ifz<l—c¢
clip(z;l1—gl+e) =< 1+¢ ifz>1+e¢
x, otherwise

o Run SGD. No need to deal with the KL divergence or trust region constraints.

o Vastly adopted in practice but little is known about its theoretical properties.
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Numerical Performance [15]
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More Applications

The agent learns to run, jump, crouch and climb.

Robots Locomotion Muti-agent Games
Figure: PPO performs well in many locomotion task and games.

o Some links:
> https://www.youtube.com/watch?v=hx_bgoTF7bs
> https://openai.com/blog/openai-baselines-ppo/
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https://www.youtube.com/watch?v=hx_bgoTF7bs
https://openai.com/blog/openai-baselines-ppo/

Summary

Vanilla Policy
Gradient

Theory

Natural Policy
Gradient

TRPO

ACKTR & PPO Practlce

Figure from Schulman'’s slide on PPO in 2017.
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Summary

Gradient Dominance
Regularization

Policy Optimization Nonconvex Optimization

Vanilla Policy Gradient Gradient Descent
REINFORCE Stochastic Gradient Descent
Natural Policy Gradient
TRPO Mirror Descent
PPO
Conservative Policy lteration Frank Wolfe
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Algorithms comparison.

o The main algorithms are summarized in the next table.

Algorithm | NMCT egtat =0 | NMC €estay > 0 | EFH? | EIH3
Vanilla PG X X X X
NPG X X X
TRPO X X X
MD-MPI X X X
OPPO X
PC-PG
Remarks: o Recall that a drawback of PC-PG is the extremely high sample complexity.

o The use of baselines can be beneficial but the right baseline is difficult to pick.

o PPO is a very practical algorithm.

INMC: No Mismatch Coefficients.
2E><p|oration in Finite Horizon
3E><p|oration in Infinite Horizon
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