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Recap: Policy optimization

max
θ

J(πθ) := E

[
∞∑

t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)]

Tabular parametrization
▶ Direct:

πθ(a|s) = θs,a, with θs,a ≥ 0,
∑

a
θs,a = 1

▶ Softmax:

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′ )

Non-tabular parametrization
▶ Softmax:

πθ(a|s) =
exp(fθ(s, a))∑

a′∈A exp(fθ(s, a′))

▶ Gaussian:

πθ(a|s) ∼ N
(

µθ(s), σ2
θ(s)
)
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Recap: Policy gradient methods

max
θ

J(πθ) := E

[
∞∑

t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)]

Exact policy gradient method

θt+1 ←− θt + αt∇θJ(πθt ),

where ∇θJ(πθt ) is the full gradient of the performance objective.

Stochastic policy gradient method

θt+1 ←− θt + αt∇̂θJ(πθt ),

where ∇̂θJ(πθt ) is a stochastic estimate of the full gradient of the performance objective and is used in
▶ REINFORCE [18]
▶ REINFORCE with baseline
▶ Actor-Critic [11]
▶ ...
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Previous lecture

Question 1 (Non-concavity)
When do policy gradient methods converge to an optimal solution? If so, how fast?

Remarks: ◦ Optimization wisdom: GD/SGD can converge to the global optima for “convex-like” functions:

J(π⋆)− J(π) = O(∥∇J(π)∥) or O(∥G(π)∥)

◦ Take-away: Despite nonconcavity, PG converges to the optimal policy, in a sublinear or linear rate.

Question 2 (Vanishing gradient)
How to avoid vanishing gradients and further improve the convergence?

Remarks: ◦ Optimization wisdom: Use divergence with good curvature information.

◦ Take-away: Natural policy gradient achieves a faster convergence with better constants.
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This lecture

Question 3 (theory)
◦ Why does NPG achieve a better convergence?

◦ How can we further improve the algorithm?

Question 4 (practice)
◦ How do we extend the algorithms to function approximation settings?

◦ How do we extend the algorithms to online settings without computing exact gradient?

◦ How do we extend the algorithms to off-policy settings?

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 6/ 58



Revisit gradient descent

◦ Consider the optimization problem minx∈Rd f(x).

▶ Gradient descent (GD):
xt+1 = xt − η∇f(xt).

▶ Equivalent regularized form:

xt+1 = arg min
x

{
∇f(xt)⊤(x− xt) +

1
2η
∥x− xt∥2

2
}

.

▶ Equivalent trust region form:

xt+1 = arg min
x

∇f(xt)⊤(x− xt), s.t. ∥x− xt∥2
2 ≤ δ.

Question: ◦ Would GD give the same trajectory under invertible linear transformations (x→ Ay)?
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Gradient descent revisited

Figure: GD is not invariant w.r.t. linear transformation.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 8/ 58



Recall Bregman divergences

Bregman divergence
Let ω : X → R be continuously differentiable and 1-strongly convex w.r.t. some norm ∥ · ∥ on X . The Bregman
divergence Dω associated to ω is defined as

Dω(x, y) = ω(x)− ω(y)−∇ω(y)T (x− y),

for any x, y ∈ X .

Examples: ◦ Euclidean distance: ω(x) = 1
2∥x∥

2
2, Dω(x, y) = 1

2∥x− y∥2
2.

◦ Mahalanobis distance: ω(x) = 1
2 xT Qx (where Q ⪰ I), Dω(x, y) = 1

2 (x− y)T Q(x− y).

◦ Kullback-Leibler divergence: X = {x ∈ Rd
+ :
∑d

i=1 xi = 1}, ω(x) =
∑d

i=1 xi log xi

Dω(x, y) = KL(x||y) :=
∑d

i=1
xi log

xi

yi
.
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Background: Mirror descent

Mirror descent (Nemirovski & Yudin, 1983)
For a given strongly convex function ω, the iterates of mirror descent [4] are given by

xt+1 = arg min
x∈X

{Dω(x, xt) + ηt⟨∇f(xt), x− xt⟩}.

Examples: ◦ Gradient descent: X ⊆ Rd, ω(x) = 1
2∥x∥

2
2, Dω(x, xt) = 1

2∥x− xt∥2
2.

xt+1 = ΠX (xt − ηt∇f(xt)).

◦ Entropic mirror descent [4]: X = ∆d, ω(x) =
∑d

i=1 xi log xi, Dω(x, xt) = KL(x||xt).

xt+1 ∝ xt ⊙ exp(−ηt∇f(xt)),

where ⊙ is element-wise multiplication and exp(·) is applied element-wise.

◦ Entropic Mirror Descent attains nearly dimension-free convergence (Chapter 4 of [5]).

◦ See Lecture 3 Supplementary Material for more details and examples.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 10/ 58



Background: Fisher information and KL divergence

Fisher Information Matrix
Consider a smooth parametrization of distributions θ 7→ pθ(·), the Fisher information matrix is defined as

Fθ = Ez∼pθ [∇θ log pθ(z)∇θ log pθ(z)⊤].

Remarks: ◦ It is an invariant metric on the space of the parameters.

◦ Fisher information matrix is the Hessian of KL divergence.

Fθ0 =
∂2

∂θ2 KL(pθ0 ||pθ)
∣∣
θ=θ0

.

◦ The second-order Taylor expansion of KL divergence is given by

KL(pθ0 ||pθ) ≈
1
2

(θ − θ0)⊤Fθ0 (θ − θ0).
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Background: Natural gradient descent

◦ Consider the optimization problem minx∈∆ f(x) and represent x by pθ(·).

▶ Natural gradient descent (Amari, 1998):

θt+1 = θt − η(Fθt )†∇f(θt).

▶ Equivalent regularized form:

θt+1 = arg min
θ

{
∇f(θt)⊤(θ − θt) +

1
2η

(θ − θt)⊤Fθt (θ − θt)
}

.

▶ Equivalent trust region form:

θt+1 = arg min
θ

∇f(θt)⊤(θ − θt), s.t.
1
2

(θ − θt)⊤Fθt (θ − θt) ≤ δ.
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Natural policy gradient method for policy optimization

max
θ

J(πθ) := E

[
∞∑

t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)]

Natural policy gradient (Kakade, 2002)[10]
For a stepsize η > 0, the iterates of natural policy gradient are given by

θt+1 = θt + η(Fθt )†∇θJ(πθt ).

Remarks: ◦ Fθ is the Fisher Information Matrix:

Fθ = E
s∼λ

πθ
µ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]
.

◦ ∇θJ(πθ) is the policy gradient:

∇θJ(πθ) =
1

1− γ
E

s∼λ
πθ
µ ,a∼πθ(·|s) [∇θ log πθ(a|s)Aπθ (s, a)] .

◦ C† is the Moore–Penrose inverse of the matrix C.
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Interpretation of NPG

◦ NPG can be viewed as repeatedly solving the quadratic approximation of the subproblem:

θt+1 ≈ arg max
θ

{
J(πθ), s.t. KL (pθt (τ)||pθ(τ)) ≤ δ

}
,

where pθ(τ) is the probability of the random trajectory τ = (s0, a0, r1, . . . , ...).

Explanation: ◦ Approximate the objective with the first-order Taylor expansion: ∇J(πθt )⊤(θ − θt).

◦ Approximate the constraint with the second-order Taylor expansion:

KL (pθt (τ)||pθ(τ)) ≤ δ →
1
2

(θ − θt)⊤Fθt (θ − θt) ≤ δ.

Question: ◦ How can we compute the iterates of natural policy gradient efficiently?
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Computing natural policy gradient

Equivalent form of NPG (Appendix C.3 [3])
Let w⋆(θ) be such that

(1− γ)(Fθ)†∇θJ(πθ) = w⋆(θ).

Then, w⋆(θ) is the solution to the following least squares minimization problem:

w⋆(θ) ∈ arg min
w
E

s∼λ
πθ
µ ,a∼πθ(·|s)

[(
w⊤∇θ log πθ(a|s)−Aπθ (s, a)

)2
]

. (1)

Remarks: ◦ The proof follows immediately by first-order optimality condition.

◦ Equivalently, we can rewrite NPG as:

θt+1 = θt +
η

1− γ
w⋆(θt).

◦ w⋆(θt) can be obtained by solving (1) via conjugate gradients, SGD, and other solvers.
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Side story

Compatible function approximation (Sutton et al., 1999)[16]
Let Aw⋆ (s, a) be defined as w

Aw⋆ (s, a) := w⋆ · ∇θ log πθ(a|s)

where w⋆ is as defined in (1). Then we have

∇θJ(πθ) =
1

1− γ
Fθ · w⋆ =

1
1− γ

E
s∼λ

πθ
µ ,a∼πθ(·|s) [∇θ log πθ(a|s)Aw⋆ (s, a)] .

Remarks: ◦ One can obtain unbiased policy gradient with Aw⋆ (s, a)

▶ This is the best linear approximation of Aπθ (s, a) using feature maps ∇ log πθ(s, a).

◦ Advantage value function approximation Aπθ (s, a) ≈ w⊤ϕ(s, a) can introduce bias.
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Example 1: Tabular NPG under softmax parameterization

NPG parameter update
Consider the softmax parameterization πθ(a|s) = exp(θs,a)∑

a′ exp(θs,a′ )
and denote πt = πθt , the induced NPG

parameter update corresponds to the following

θt+1 = θt +
η

1− γ
Aπt .

NPG policy update = policy mirror descent
In policy space, the induced update corresponds to the following

πt+1(a|s) = πt(a|s)
exp(ηAπt (s, a)/(1− γ))

Zt(s)
.
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Example 2: NPG with linear function approximation

NPG parameter update
Consider πθ(a|s) = exp(θ⊤ϕ(s,a))∑

a′ exp(θ⊤ϕ(s,a′))
and denote πt = πθt . The induced NPG parameter update corresponds

to the following

θt+1 = θt +
η

1− γ
wt, where wt = arg min

w
E

s∼λ
πθ
µ ,a∼πθ(·|s)

[(
w⊤ϕ̄(s, a)−Aπθ (s, a)

)2
]

.

NPG policy update = policy mirror descent
Notice that the parameterizations can be chosen to result in the familiar mirror descent updates on policies:

πt+1(a|s) = πt(a|s)
exp(ηw⊤

t ϕ(s, a)/(1− γ))
Zt(s)

.
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Convergence of tabular NPG with softmax parametrization

NPG policy update = policy mirror descent

πt+1(a|s) = πt(a|s)
exp(ηAπt (s, a)/(1− γ))

Zt(s)

Convergence of tabular NPG [3]
In the tabular setting, for any η ≥ (1− γ)2 log |A| and T > 0, the tabular NPG satisfies

J(π⋆)− J(πT ) ≤
2

(1− γ)2T
.

Remarks: ◦ Nearly dimension-free convergence, no dependence on |A|, |S|.

◦ No dependence on distribution mismatch coefficient.

Question: ◦ What is the computational cost of this (nearly) dimension-free method?
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Proof of tabular NPG convergence

Lemma (Policy Improvement)

J(π)− J(πt) =
1
η
Es∼λπ

µ
[KL(π(·|s)||πt(·|s))−KL(π(·|s)||πt+1(·|s)) + log Zt(s)] .

Proof sketch: ◦ Recall from Performance Difference Lemma:

J(π)− J(πt) =
1

1− γ
Es∼λπ

µ,a∼π(a|s)[Aπt (s, a)].

◦ From the update rule πt+1(a|s) = πt(a|s) exp(ηAπt (s,a)/(1−γ))
Zs

, we have

Aπt (s, a) =
1− γ

η
log

πt+1(a|s)Zt(s)
πt(a|s)

.

◦ Combing these two equations, we have the above lemma.
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Proof of Tabular NPG convergence

Proof.
◦ Setting π = π⋆ in the previous lemma and telescoping from t = 0, . . . , T − 1

1
T

T −1∑
t=0

J(π⋆)− J(πt) ≤
1

ηT
E

s∼λπ⋆
µ

[KL(π⋆(·|s)||π0(·|s))] +
1

ηT

T∑
t=0

E
s∼λπ⋆

µ
[log Zt(s)] .

◦ Setting π = πt+1 in the previous lemma, we have

J(πt+1)− J(πt) ≥
1
η
E

s∼λ
πt+1
µ

[log Zt(s)] ≥
1− γ

η
Es∼µ [log Zt(s)] ≥ 0, ∀µ.

◦ Combining these two equations and the fact that J(π) ≥ 1
1−γ

implies that

1
T

T −1∑
t=0

J(π⋆)− J(πt) ≤
log |A|

ηT
+

1
(1− γ)2T

.

□
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Sample-based NPG

Sample-based NPG (informal)
◦ Use N -step SGD to estimate wt ≈ w⋆(θt)

◦ Update θt+1 = θt + η
1−γ

wt

Sample-based NPG
Initialize policy parameter θ0 ∈ Rd, step size η > 0, α > 0
for t = 0, 1, . . . , T − 1 do

Initialize w0, denote πt = πθt

for n = 0, 1, . . . , N − 1 do
Obtain sample s ∼ λπt

µ , a ∼ πt(·|s)

Obtain an estimate Â(s, a) for Aπt (s, a)
Update w: w ← w − α(w⊤∇θ log πt(a|s)− Â(s, a)) · ∇θ log πt(a|s)

end for
Set wt = w (or the average)
Update θt+1 = θt + η

1−γ
wt

end for
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How to sample from an occupancy measure and estimate Â(s, a)?
Sampling routine for λπ

µ

Input : a policy π.
Sample T ∼ Geom(1− γ) and s0 ∼ µ.
for t = 0, 1, . . . , T − 1 do

Sample at ∼ π(·|st).
Sample st+1 ∼ P(·|st, at).

end for
Output : (sT , aT ).

An estimation routine for Q̂(s, a)
Input: a policy π.
Sample (sT , aT ) ∼ λπ

µ, Initialize Q̂ = 0.
while True do

Sample sT +1 ∼ P(·|sT , aT ).
Sample aT +1 ∼ π(·|sT ).
Set Q̂ = Q̂ + rT +1.
Set T = T + 1.
With probility 1− γ terminate.

end while
Output : Q̂.

Remarks: ◦ See Algorithm 1 in [3].

◦ We sample from the occupancy measure by generating (sT , aT ) with T ∼ Geometric(1− γ).

◦ Q̂ is an unbiased estimate of Q(sT , aT ).

◦ An unbiased estimate of V (sT ) can be obtained with the same algorithm.

◦ An unbiased estimate of A can be obtained as Q̂− V̂ .
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How good is our approximation of w⋆?

◦ Following [3], we introduce the loss function.

L(w; π, λ) = Es,a∼λ

[
(Aπ(s, a)− wT∇ log πθ(s, a))2

]
.

◦ Its gradient is 2Es,a∼λ

[
(Aπ(s, a)− wT∇ log πθ(s, a))∇ log πθ(s, a)

]
.

◦ Using the estimate Â(s, a), we build the stochastic gradient:

2
[
(Â(ŝ, â)− wT∇ log πθ(ŝ, â))∇ log πθ(ŝ, â)

]
◦ ŝ, â are sampled from λπt

µ as described in previous slide.

◦ We approximate w⋆ with N steps of SGD and we quantify the following errors:

▶ ϵstat = L(wt; πt, λπt
µ )−minw:||w||≤B L(w; πt, λπt

µ ).

▶ ϵbias = minw:||w||≤B L(w; πt, λπt
µ ).

▶ The bound B is in the order of 1
1−γ

.
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Convergence of sample-based NPG with function approximation

Convergence of sampled-based NPG (informal)

E

[
min
t≤T

J(πθ⋆ )− J(πθt )
]
≤ O

(
1

1− γ

√
2 log |A|

T
+
√

κϵstat + √ϵbias

)
,

where ϵstat is how close wt is to a w⋆(θt) (statistical error) and ϵbias is how good the best policy in the class is
(function approximation error).

Remarks: ◦ Using N iterations of SGD as explained in the previous slide we can get ϵstat = O(N−1/2).

◦ ϵbias = 0 under the so called “realizability” assumption for the features i.e.,

∀π ∈ Π, ∃θ s.t. Qπ(s, a) = θT ϕ(s, a) ∀s, a ∈ S ×A.

◦ Hence, we get

E

[
min
t<T

J(πθ⋆ )− J(πθt )
]
≤ O

( 1
T 1/2 +

1
N1/4

)
.

◦ Given that an ϵ-stationary point is achieved with T = O(ϵ−2) and N = O(ϵ−4).

◦ Total sample complexity is O(ϵ−6).
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Other remarks on the NPG bound

Remarks: ◦ κ quantifies how exploratory the initial distribution is.

◦ Requiring a bounded κ is a strong assumption.

◦ We discuss later how to incorporate exploration in policy gradient.

◦ Notice that if ϵstat = 0 and ϵbias = 0, we get a rate O(
√

T ).

◦ This is not optimal for tabular setting.

◦ Indeed, we have proven rate O(T −1) for Tabular NPG.

◦ In the tabular setting, the NPG updates attain monotonic progress.

◦ This is not necessarily true for general smooth policy parameterization.

◦ The proof in latter case is based on the no regret property of NPG.

◦ NPG update rule is equivalent to
▶ MDP-Experts [8].
▶ Mirror Descent Modified Policy Iteration [9].
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Popular Baselines

TRPO (ICML, 2015)

PPO (arXiv, 2017)

OpenAI implementation: https://github.com/openai/baselines
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Trust Region Policy Optimization (TRPO)

TRPO (key idea) [14]

max
θ

E
s∼λ

πθt
µ ,a∼πθt

(·|s)

[
πθ(a | s)
πθt (a | s)

Aπθt (s, a)
]

,

s.t. E
s∼λ

πθt
µ

[KL(πθ(· | s)∥πθt (· | s))] ≤ δ.

Remarks: ◦ The surrogate objective can be viewed as linear approximation in π of J(πθ):

J(π) = J(πt) +
1

1− γ
Es∼λπ

µ,a∼π(a|s)[Aπt (s, a)]. (PDL)

◦ It can be approximated by a natural policy gradient step.

◦ Line-search can ensure performance improvement and no constraint violation.
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TRPO: A detailed look at the implementation.

◦ We explain how TRPO is implemented in the widely used OpenAI library [1].

◦ We consider a first order approximation of the objective.

E
s∼λ

πθt
µ ,a∼πθt

(·|s)

[
πθ(a | s)
πθt (a | s)

Aπθt (s, a)
]
≈ ⟨∇θJ(θk), θ − θk⟩

◦ And a second order expansion of the constraints

E
s∼λ

πθt
µ

[KL(πθ(· | s)∥πθt (· | s))] ≈ (θ − θk)T F (θk)(θ − θk)

◦ Therefore, the practical implementation (almost) boils down to natural policy gradient.

◦ The subtle difference is that TRPO executes line seach along the direction F (θk)†∇θJ(θk).

◦ The goal is the select the largest possible step size η such that

xt+1 = xt + ηF (θk)†∇θJ(θk)

satisfies the original constraints.
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Equivalence between MDP-E [8] and TRPO

◦ The previous result proves that TRPO produces a monotonically improving sequence of policies.

◦ We can prove a stronger result noticing that TRPO is equivalent to MDP-E [8, 13].

MDP-Experts (MDP-E)
Initialize policy π0, learning rate η

for t = 0, 1, . . . , T − 1 do
Evaluate Qπt (s, a) for every state action pair.
πt+1(a|s) ∝ πt(a|s) exp ηQπt (s, a).

end for
Output : A policy sampled uniformly at random from the sequence π0, . . . , πT −1.

Remarks: ◦ Check out the course Online Learning in Games!

◦ MDP-E is a no-regret algorithm for adversarially changing rewards.

◦ Therefore, it converges to the optimal policy for a fixed reward.
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Equivalence between MD-MPI [9] and TRPO

◦ TRPO has been interpreted also as a regularized dynamic programming scheme.

◦ Indeed, it falls under the general template of Mirror descent modified policy iteration (MD-MPI)

MD-MPI {
πt+1(·|s) = arg maxπ

[
r(s, a) + γ

∑
s′ P (s′|s, a)Vt(s′)

]
+ KL(π(·|s)||πt(·|s))

Vt+1(s) = (T πt )m Vt(s)

◦ Recall that T πt is the Bellman expectation operator associated to the policy πt.

◦ TRPO is recovered with m =∞.

◦ Many other algorithms can be captured under this framework [9].
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Generalizing TRPO via MD-MPI

◦ Generalizations can be achieved using any other Bregman divergence.

◦ When the dynamics are not known we consider errors ϵt and ϵ′
t in both steps.

◦ ϵt and ϵ′
t are vectors of dimension S quantifying the error at each state.{

πt+1(·|s) s.t. Jt(π⋆
t (·|s))− Jt(πt+1(·|s)) ≤ ϵ′

t

Vt+1(s) = (T πt )m Vt(s) + ϵt

with

Jt(π(·|s)) =

[
r(s, a) + γ

∑
s′

P (s′|s, a)Vt(s′)

]
−D(π(·|s)||πt(·|s))

π⋆
t (·|s) = arg max

π

Jt(π(·|s))

◦ Generalization of TRPO can be achieved changing m.

◦ A further generalization is to consider regularization also in the evaluation step.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 32/ 58



TRPO error propagation via MD-MPI

◦ It is possible to prove that the errors accumulate in additive way.

Theorem
After T iterate of MD-MPI, the suboptimality of the value function is bounded as

max
s

V πT (s)− V π⋆
(s) ≤ O

(
1

(1− γ)2

(
T∑

t=1

∥ϵt∥∞ +
T∑

t=1

∥∥ϵ′
t

∥∥
∞

)
+

1
(1− γ)2T

)

◦ The error propagation can be improved adding the effect of Bregman divergence also in the evaluation step.

◦ To this end, define the Bregman regularized Bellman operator associated to the divergence Dw.

(T π
wV )(s) = Ea∼π(·|s)

[
r(s, a) + γ

∑
s′

P(s′|s, a)V (s′)

]
︸                                                             ︷︷                                                             ︸

T π

−w(π(·|s))
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MD-MPI with Bregman regularized evaluation

◦ Using the Bregman regularized Bellman operator, we can define the following new scheme [9, 17]{
πt+1(·|s) s.t. Jt(π⋆

t (·|s))− Jt(πt+1(·|s)) ≤ ϵ′
t

Vt+1(s) = (T πt
w )m Vt(s) + ϵt

Theorem
Take m = 1 and w(π(·|s)) =< π(·|s), log π(·|s) > and assume ϵ′

t = 0 for all t, then after T iterate of the
scheme above we obtain

max
s

V ⋆(s)− V πT (s) ≤ O

(
1

1− γ

∥∥∥∥∥ 1
T

T∑
t=1

ϵt

∥∥∥∥∥
∞

+
1

(1− γ)T

)

◦ Better dependence on the effective horizon (1− γ)−1.

◦ Better error propagation, notice that by Jensen
∥∥ 1

T

∑T

t=1 ϵt

∥∥ ≤ 1
T

∑T

t=1 ∥ϵt∥.
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Exploration in Policy Gradient methods
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◦ When the transition dynamics of the agent are unknown the agent needs to explore the state space.

◦ Unless the initial state distribution is exploratory enough to guarantee κ small.

◦ Recall that κ is a constant appearing in the bound for sample based NPG.

◦ Recall, in the first coding exercise that we studied two different exploration techniques (ϵ-greedy and UCB).

◦ Can we incorporate these techniques in policy gradient ?
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Provable exploration in policy gradient

◦ We present OPPO [6] that incorporates exploration in policy gradient for finite horizon MDP.

◦ The idea is to perform TRPO updates with optimistic estimates of the value function.

◦ We look at the finite horizon case because in the infinite horizon case it is more difficult to perform exploration.

◦ The main difficulty is the bonus design for the infinite horizon.

Theorem
Let π1, π2, . . . , πT the sequence of policies generated by OPPO. Then it holds that

T∑
t=1

V ⋆(s1)− V πt (s1) ≤ O
(√

T
)

◦ This holds also when the reward function can change adversarially from episode to episode.
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Key idea : Optimism

◦ Optimism means to overestimate the value of Qπt (s, a) at every state action pairs.

◦ Formally, it means that Qh(s, a) satisfies

V t
h(s) = Ea∼π(·|s)[Qt

h(s, a)]

Qt
h(s, a) ≥ rt

h(s, a) +
∑

s′

P(s′|s, a)V t
h(s′) (Optimism)

◦ Notice that Qπt (s, a) would be the fixed point of the second expression.

◦ At the same time we need an estimate that is not too optimistic.

rt
h(s, a) +

∑
s′

P(s′|s, a)V t
h(s′) + 2bt

h(s, a) ≥ Qt
h(s, a) (Bounded Optimism)

◦ bt
h(s, a) needs to be decreasing with the number of visits for (s, a).

◦ This ensures that Qt
h(s, a)→ Qπt

h
(s, a)
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Estimate transition and bonuses

◦ In order to do this, we compute the empirical average of the transition dynamics.

◦ We set the function bt
h(s, a) proportional to the square root of the inverse number of visits for s, a.

◦ Intuition The more often we visit a state, the more we expect the uncertainty to reduce.

Estimating transitions and bonuses
for t = 0, 1, . . . , T − 1 do

for h = 0, 1, . . . , H − 1 do
Visit the state action pair (st

h, at
h) and next state st

h+1.

Update counts Nh(st
h, at

h, st
h+1)← Nh(st

h, at
h, st

h+1) + 1, N(st
h, at

h)← N(st
h, at

h) + 1.

Estimate transtion P̂h(s′|s, a) = Nh(s,a,s′)
Nh(s,a)+1 for all s, a, s′.

Compute exploration bonuses bh(s, a) ≈
√

1
N(st

h
,at

h
) .

end for
end for
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Estimate optimistic value function

◦ Having estimated P̂h(s′|s, a) and the bonus bt
h(s, a), we can compute Qt

h(s, a) as follows.

Backward induction to estimate Qt.
Initialize Qt

H+1(s, a) = 0.
for h = H, . . . , 1 do

Recurse backward to compute Qt
h

Qt
h(s, a) = rt

h(s, a) + bt
h(s, a) +

∑
s′,a′

P̂h(s′|s, a)πh+1(a′|s′)Qt
h+1(s′, a′)

Qt
h(s, a) = clip(Qt

h(s, a); 0, H − h + 1)

end for

◦ If it holds that
∣∣∑

s′ (P̂h(s′|s, a)− Ph(s′|s, a))V (s′)
∣∣ ≤ bh(s, a).

◦ This construction ensures that Optimism and Bounded Optimism hold.
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The complete algorithm.
◦ The overall algorithm resambles MDP-E but with an optimistic evaluation step.

OPPO [6] (simplified version)
Initialize policy parameter θ0 ∈ Rd, step size η > 0, α > 0
for t = 0, 1, . . . , T − 1 do

Policy Evaluation
Estimate bonus and transitions bh(s, a) and P̂h(s′|s, a)

Compute optimistic value functions Qt
h

Policy Improvement
Update policies at every h, s, a with a TRPO step

πt+1,h(a|s) ∝ πt,h(a|s) exp ηQh(s, a)

end for

◦ To prove the regret bound one proves that Regret(T) ≤ O
(∑H

h=1

∑T

t=1 bt
h(st

h, at
h)
)

.

◦ Next, one shows that
∑H

h=1

∑T

t=1 bt
h(st

h, at
h) ≤ O(

√
T ).
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PC-PG: Policy Cover Guided Policy Gradient [2]

◦ It is a more involved exploration technique suitable for infinite horizon problem.

◦ The intuition is to generate a favourable exploratory distribution to make the mismatch coefficients small.

◦ Indeed, recall that from the gradient dominance theorem, we have

J(π⋆)− J(πθ) ≤

∥∥∥∥λπ⋆

µ

λπ
µ

∥∥∥∥
∞

×max
π̄∈∆
⟨π̄ − π,∇J(π)⟩

≤
1

1− γ

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥
∞

×max
π̄∈∆
⟨π̄ − π,∇J(π)⟩

◦ Notice that if the initial distribution was exploratory, the mismatch coefficients would be small.

◦ For example, if µ is uniform then

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥
∞

≤ |S|.

◦ The idea behind PC-PG is to construct a "virtual" initial distribution that ensures exploration.
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PC-PG’s main idea

◦ The idea is to learn a collection of policies (πi)N
i=1 such that.

ρ(s, a) =
1
N

N∑
i=1

λ
πi
N (s, a) ≥ β ∀s, a.

◦ To this end, at every iteration, define the bonuses

b(s, a) =
1

1− γ
· 1 {ρ̂(s, a) ≤ β}

◦ ρ̂ is an empirical estimate of the policy cover.

◦ At this point, we can apply Sample Based NPG with ρ as initial distribution.

◦ We modify the reward to encourage the extension of the cover support.
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The PC-PG algorithm

PC-PG [2] (simplified version)
for t = 1, . . . , T do

Policy Evaluation
Sample M tuples D = {si, ai}M

i=1.
Estimate Q̂(si, ai) for any (si, ai) ∈ D.
Update counts N(si, ai) = N(si, ai) + 1 for all (si, ai) ∈ D.
Estimate ρ̂(s, a) ∝ N(s, a).
Compute bonus.

b(s, a) =
1

1− γ
· 1 {ρ̂(s, a) ≤ β}

Policy Improvement
πt+1(a|s) ∝ πt(a|s) exp η

(
Q̂(s, a) + b(s, a)

)
end for

◦ The sample complexity no longer scales with the concentrability coefficients.

◦ However, the dependence on ϵ deteriorates to O(ϵ−11).

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 43/ 58



A closer look to baselines

◦ We mentioned that the baselines are used as a variance reduction mechanism.

◦ Actually, one can prove which choice for the baseline guarantees minimum variance.

Theorem
Consider the gradient with baseline ∇̂θJ(πθ) =

∑∞
t=1 (Qπθ (st, at)− b(st))∇ log πθ(at|st) for a trajectory

τ ∼ pθ.
Then, b⋆(s) = arg minb:S→R

[
Var
[
∇̂θJ(πθ)|s

]]
satisfies

b⋆(s) =
∥Qπθ (s, a) log πθ(a|s)∥
∥∇ log πθ(a|s)∥

.
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Proof.
Start noticing that

Var
[
∇̂θJ(πθ)|s

]
= E
[∥∥∇̂θJ(πθ)

∥∥2
|s
]
−
∥∥E [∇̂θJ(πθ)|s

]∥∥2

= E
[∥∥∇̂θJ(πθ)

∥∥2
|s
]
−
∥∥Ea∼πθ(·|s) [Qπθ (s, a)∇ log πθ(a|s)]

∥∥2

Therefore ∇bVar
[
∇̂θJ(πθ)|s

]
= ∇bE

[∥∥∇̂θJ(πθ)
∥∥2
|s
]

. Developing the norm squared and differentianting, we
get

∇bE

[∥∥∇̂θJ(πθ)
∥∥2
|s
]

= 2
(

b(s)Ea∼πθ(·|s)
[
∥∇ log πθ(a|s)∥2]− Ea∼πθ(·|s)

[
Qπθ (s, a) ∥∇ log πθ(a|s)∥2])

Therefore, the proof is concluded setting b⋆ to minimize the latter expression. □
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Is it always good to minimize variance ?

◦ The answer is no. Because, reducing the variance of the baseline can hinder exploration.

◦ As a result, the minimum variance baseline may lead to a suboptimal policy.

◦ Here we describe the result in [7].

Theorem
Theorem 1 in [7] There exists a three-arm bandit where using the stochastic natural gradient on a softmax
parameterized policy with the minimum-variance baseline can lead to convergence to a suboptimal policy with
positive probability, and there is a different baseline (with larger variance) which results in convergence to the
optimal policy with probability 1.
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Explore the baseline effect

◦ The optimal policy plays the action in right corner.

◦ That is where the trajectories with baselines b+
θ

and V πθ converge to .

◦ In the other cases, there are some trajectories converging to the top corner.

◦ These results confirm the issue with the minimum variance baseline.
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Unbounded variance case. [12]

◦ Consider a bandit experiment with stochastic rewards with an action dependent distribution R(a).

◦ A common unbiased estimator is constructed using importance sampling.

◦ Using an action â ∼ π and observe r ∼ R(â).

r̂(a) =
r

π(a)
1(a = â)

◦ If we consider an additional baselines, we get the estimator

r̂(a) =
r − b

π(a)
1(a = â)

◦ The variance is unbounded no matter how b is chosen.
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Proximal Policy Optimization (PPO2)

PPO (key idea) [15]

max
θ

E
s′∼λ

πθt
µ ,a∼πθt

(·|s)
min
{

πθ(a|s)
πθt (a|s)

Aπθt (s, a), clip
(

πθ(a|s)
πθt (a|s)

; 1− ϵ; 1 + ϵ

)
Aπθt (s, a)

}

Remarks: ◦ PPO penalizes large deviation from the current policy directly inside the objective
function through clipping the ratio πθ

πθt
.

clip(x; 1− ϵ; 1 + ϵ) =

1− ϵ, if x < 1− ϵ

1 + ϵ, if x > 1 + ϵ

x, otherwise

◦ Run SGD. No need to deal with the KL divergence or trust region constraints.

◦ Vastly adopted in practice but little is known about its theoretical properties.
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Numerical Performance [15]
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More Applications

Figure: PPO performs well in many locomotion task and games.

◦ Some links:
▶ https://www.youtube.com/watch?v=hx_bgoTF7bs
▶ https://openai.com/blog/openai-baselines-ppo/
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Summary

Figure from Schulman’s slide on PPO in 2017.
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Summary

Vanilla Policy Gradient Gradient Descent
REINFORCE Stochastic Gradient Descent

Natural Policy Gradient
Mirror DescentTRPO

PPO
Conservative Policy Iteration Frank Wolfe

... ...
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Algorithms comparison.

◦ The main algorithms are summarized in the next table.

Algorithm NMC1 ϵstat = 0 NMC ϵstat > 0 EFH2 EIH3

Vanilla PG ✗ ✗ ✗ ✗
NPG ✓ ✗ ✗ ✗

TRPO ✓ ✗ ✗ ✗
MD-MPI ✓ ✗ ✗ ✗
OPPO ✓ ✓ ✓ ✗
PC-PG ✓ ✓ ✓ ✓

Remarks: ◦ Recall that a drawback of PC-PG is the extremely high sample complexity.

◦ The use of baselines can be beneficial but the right baseline is difficult to pick.

◦ PPO is a very practical algorithm.

1NMC: No Mismatch Coefficients.
2Exploration in Finite Horizon
3Exploration in Infinite Horizon
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