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Overview of Reinforcement Learning Approaches

◦ Value-based RL
▶ Learn the optimal value functions V ⋆, Q⋆

(or the best approximation Vw⋆ , Qw⋆ )
▶ Generate the optimal policy

π⋆(a|s) = arg max
a∈A

Q⋆(s, a)

▶ Algorithms: Monte Carlo, SARSA, Q-learning, etc.

◦ Policy-based RL
▶ Learn the optimal policy π⋆

◦ Model-based RL
▶ Learn the model P and R and then do planning
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Value-based methods

◦ Advantages
▶ Easy to generate policy from the learned value function [14].
▶ Leverage bootstrap and n-step returns instead of full episodes [18], [23, 15].
▶ Easy to control bias-variance tradeoff [24, 22, 6].
▶ Good theory for tabular and linear function approximation settings [20, 17].

◦ Disadvantages:
▶ Do not scale to high-dimensional or continuous action spaces [11].
▶ Instability with off-policy learning under function approximation [2, 5, 4].
▶ Small value error may lead to large policy error [14].
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Policy-based methods

◦ Idea: Parameterize the policy as πθ(a|s) and then find the best parameter θ maximizing the cumulative reward

Policy optimization

max
θ

J(πθ) := E

[
∞∑

t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)].

Observations: ◦ Here µ is the initial state distribution.

◦ Alternatively, one may consider the average reward objective:

Javg(πθ) = Es∼λπθ [V πθ (s)] =
∑

s

λπθ (s)V πθ (s),

where λπ(s) is the occupance measure induced by policy π.

◦ Stochastic policies: πθ(a|s) = P(a|s, θ) is a distribution over action space.
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How to parametrize policies for discrete actions?
◦ Direct parametrization

πθ(a|s) = θs,a, where θs,a ≥ 0 and
∑
a∈A

θs,a = 1.

◦ Softmax policy

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′ )
, where θ ∈ R|A|×|S|.

◦ Log-linear policy

πθ(a|s) =
exp (θ · ϕ(s, a))∑

a′∈A exp (θ · ϕ(s, a′))
, where ϕ(s, a) ∈ Rd and θ ∈ Rd.

◦ Neural softmax policy

πθ(a|s) =
exp (fθ(s, a))∑

a′∈A exp (fθ (s, a′))
, where fθ(s, a) represents a neural network.
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How to parametrize policies for continuous actions?

◦ Continuous probability distributions: Gaussian, Beta, Dirichlet, etc.

Gaussian parametrization

πθ(a|s) =
1

√
2πσθ(s)

exp
(
−

(a− µθ(s))2

2σθ(s)2

)
where µθ(s), σθ(s) are two differentiable function approximators.
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How to optimize over the given policy parameterization?

◦ Gradient-free methods
▶ Hill climbing
▶ Simulated annealing
▶ Evolutionary strategies
▶ ....

◦ Gradient-based methods (our focus)
▶ Policy gradient method [19]
▶ Natural policy gradient method [8]
▶ ....
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How to optimize over the given policy parameterization?

Policy space Π vs. parameter space Θ (figure from [21])
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Policy gradient method

◦ In general, we cannot exactly compute the gradient ∇θJ(πθ) of the objective.

◦ A natural idea is to consider stochastic gradients:

θt+1 ←− θt + αt∇̂θJ(πθt ),

where ∇̂θJ(πθt ) is a stochastic estimate of the gradient at θt.

Q1: How do we construct a good estimate of ∇θJ(πθ)?

Q2: Where does it converge to and how fast?
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Monte Carlo estimation

◦ Consider the following objective: F (θ) = Eξ∼p(ξ)[f(θ, ξ)].

◦ The gradient of the objective can be written as

∇θF (θ) = ∇θ

∫
f(θ, ξ)p(ξ)dξ =

∫
∇θf(θ, ξ)p(ξ)dξ = Eξ∼p(ξ)[∇θf(θ, ξ)].

◦ Here are some unbiased gradient estimators (single-sample and batch):

∇̂θF (θ) = ∇θf(θ, ξ), where ξ ∼ p(ξ).

∇̂θF (θ) =
1
n

∑n

i=1
∇θf(θ, ξi), where ξ1, . . . , ξn ∼ p(ξ).
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Monte Carlo estimation with score functions

◦ Now, consider the following parameterization: F (θ) = Eξ∼pθ(ξ)[f(ξ)].

◦ The gradient of the parameterization can be written as

∇θF (θ) =
∫

f(ξ)∇θpθ(ξ)dξ =
∫

pθ(ξ)f(ξ)∇θ log pθ(ξ)dξ = Eξ∼pθ(ξ)[f(ξ)∇θ log pθ(ξ)].

◦ Here are some unbiased gradient estimators (single-sample and batch):

∇̂θF (θ) = f(ξ)∇θ log pθ(ξ), where ξ ∼ pθ(ξ).

∇̂θF (θ) =
1
n

∑n

i=1
f(ξi)∇θ log pθ(ξi), where ξ1, . . . , ξn ∼ pθ(ξ).
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Parametric policy optimization

◦ Recall the discounted cumulative reward objective:

max
θ

J(πθ) := E

[
∞∑

t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Eτ∼pθ

[R(τ)].

Observations: ◦ τ = (s0, a0, s1, · · · ) is a random trajectory with probability pθ(τ):

pθ(τ) := µ(s0)
∞∏

t=0

πθ(at|st)P(st+1|st, at).

◦ R(τ) =
∑∞

t=0 γtr(st, at) is the total reward over the random trajectory.

◦ We have ∇θJ(πθ) = Eτ∼pθ
[R(τ) · ∇θ log pθ(τ)].

◦ Note that ∇θ log pθ(τ) =
∑∞

t=0∇θ log πθ(at|st).
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Policy gradient theorem I.1: REINFORCE expression

Policy gradient theorem (REINFORCE)

∇θJ(πθ) = Eτ∼pθ

[
R(τ)

(
∞∑

t=0

∇θ log πθ(at|st)

)]
. (1)

Remarks: ◦ The term ∇θ log πθ(a|s) = ∇θπθ(a|s)
πθ(a|s) is called the score function.

◦ For differentiable policies, the score function can often be easily computed.

◦ For example, for log-linear policy πθ(a|s) = exp(θ·ϕ(s,a))∑
a′∈A

exp(θ·ϕ(s,a′))
, we have

∇θ log πθ(a|s) = ϕ(s, a)− Ea∼πθ(·|s)[ϕ(s, a)].

◦ Note that Ea∼πθ [∇θ log πθ(a|s)] = 0.
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Policy gradient estimator

REINFORCE estimator
▶ Generate an episode τ = (s0, a0, r0, s1, . . .) from policy πθ;
▶ Construct ∇̂θJ(πθ) =

(∑∞
t=0 γtrt

)
·
(∑∞

t=0∇θ log πθ(at|st)
)

.

Remarks: ◦ A single trajectory under πθ is enough to obtain an unbiased policy gradient estimator

◦ It is achieved without the knowledge of transition probabilities.

◦ REINFORCE has a high variance due to correlation between R(τ) and {πθ(at|st)}∞
t=1.

◦ Notice that πθ(at2 |st2 ) does not affect
∑t1

t=0 r(st, at) if t2 > t1. Can we use this observation?
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Policy gradient theorem I.2: Action-value expression

Policy gradient theorem (Action-value function)

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

γtQπθ (st, at)∇θ log πθ(at|st)

]
(2)

Remarks: ◦ The action-value expression is given by

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

( ∞∑
t′=t

γt′
r(st′ , at′ )

)
∇θ log πθ(at|st)

]
.

◦ The REINFORCE expression is given by

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

( ∞∑
t′=0

γt′
r(st′ , at′ )

)
∇θ log πθ(at|st)

]
.

◦ If the policy πθ can not be applied to the environment, we can estimate Qπθ via OPE.
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Proof of action-value expression

Proof
For any state s0, we have

∇V πθ (s0) = ∇
∑
a0

πθ (a0|s0) Qπθ (s0, a0) (by definition of Qπθ )

=
∑
a0

∇πθ (a0|s0) Qπθ (s0, a0) +
∑
a0

πθ (a0|s0)∇Qπθ (s0, a0) (by chain rule)

=
∑
a0

∇πθ (a0|s0) Qπθ (s0, a0) +
∑
a0

πθ (a0|s0)∇
(

r (s0, a0) + γ
∑

s1

P(s1|s0, a0)V πθ (s1)
)

=
∑
a0

πθ (a0|s0)∇ log πθ (a0|s0) Qπθ (s0, a0) + γ
∑
a0,s1

πθ (a0|s0) P (s1|s0, a0)∇V πθ (s1).
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Proof of action-value expression (cont’d)

Continued.
By induction, we have

∇θJ(πθ) =
∑

s0

µ(s0)∇V πθ (s0)

= Eτ∼pθ
[Qπθ (s0, a0)∇ log πθ (a0|s0)] + γEτ∼pθ

[∇V πθ (s1)]
= Eτ∼pθ

[Qπθ (s0, a0)∇ log πθ (a0|s0)] + γEτ∼pθ
[Qπθ (s1, a1)∇ log πθ (a1|s1)] + . . .

= Eτ∼pθ

[ ∞∑
t=0

γtQπθ (st, at)∇ log πθ(at|st)
]

.

□
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Policy gradient estimator using reward-to-go

REINFORCE estimator using reward-to-go
▶ Generate an episode τ = (s0, a0, r0, s1, . . .) from policy πθ;
▶ Construct ∇̂θJ(πθ) =

∑∞
t=0 γtGt · ∇θ log πθ(at|st), where Gt =

∑∞
i=t

γi−tri.

Remarks: ◦ The expression above is an unbiased estimator of the policy gradient.

◦ Unfortunately, this estimator might induce high variance.
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Policy gradient theorem I.3: Baseline expression

Policy gradient theorem (Baseline)

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

γt[Qπθ (st, at)− b(st)]∇θ log πθ(at|st)

]
. (3)

Remarks: ◦ For any baseline b(s) that does not depend on the actions:

Ea∼πθ [b(s)∇θ log πθ(a|s)] = 0.

◦ A natural choice of baseline is the value function: b(s) = V πθ (s).

◦ We call Qπθ (s, a)− V πθ (s) := Aπθ (s, a) the advantage function.

◦ Mainly employed as a variance reduction mechanism.
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Proof of baseline expression

Proof.
Notice that

∑
a

πθ(a|s) = 1 for any s ∈ S. For any b(s) that is independent of actions, we have:

Ea∼πθ(·|s) [b(s)∇θ log πθ(a|s)] = b(s)
∑

a

πθ(a|s)
∇θπθ(a|s)

πθ(a|s)

= b(s)
∑

a

∇θπθ(a|s)

= b(s)∇θ

∑
a

πθ(a|s)

= b(s)∇θ1
= 0.

□
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Summary: Policy gradient theorem I

◦ REINFORCE expression:

∇θJ(πθ) = Eτ∼pθ

[
R(τ)

( ∞∑
t=0

∇θ log πθ(at|st)
)]

.

◦ Action-value expression:

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

γtQπθ (st, at)∇θ log πθ(at|st)

]
.

◦ Baseline expression:

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

γt[Qπθ (st, at)− b(st)]∇θ log πθ(at|st)

]
.
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Policy gradient theorem II

◦ Recall the discounted state visitation distribution under policy π as

λπ
µ(s) = (1− γ)

∞∑
t=0

γtP(st = s|s0 ∼ µ, π).

Policy gradient theorem II
▶ Action value expression:

∇θJ(πθ) =
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Qπθ (s, a)∇θ log πθ(a|s)]

]
. (4)

▶ Advantage expression:

∇θJ(πθ) =
1

1− γ
E

s∼λ
πθ
µ

[
Ea∼πθ(·|s) [Aπθ (s, a)∇θ log πθ(a|s)]

]
. (5)

Remark: ◦ The proof follows immediately based on the definition of λπ
µ(s).
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Remarks

◦ Constructing unbiased stochastic policy gradient requires sampling from λπ
µ(s) (Policy gradient theorem II).

◦ This can be achieved by generating (sT , aT ) with a random horizon T ∼ Geometric(1− γ).

◦ Unbiased estimator of Aπθ (s, a) requires two random rollouts to estimate Qπθ (s, a) and V πθ (s) separately.

◦ Similar policy gradient theorems can be obtained for deterministic policies and average reward objectives.
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Exercise: Policy gradient under tabular parameterization

◦ Compute policy gradient under the direct and softmax parametrization in the tabular setting.

Direct parametrization

πθ(a|s) = θs,a,

where θs,a ≥ 0 and
∑

a∈A θs,a = 1.

Softmax policy

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′ )

where θ ∈ R|A|×|S|.

Exercise: ◦ Derive ∂J(πθ)
∂θs,a

via the chain-rule.
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Monte Carlo policy gradient method

REINFORCE: Monte-Carlo policy-gradient method
Initialize policy parameter θ ∈ Rd, step size α > 0, baseline b(·)
for each episode do

Generate an episode s0, a0, r0, ..., sT , aT , rT following πθ

for each step of the episode t = 0, 1, ..., T do

Compute return Gt ←
∑T

i=t
γi−tri

Compute advantage estimate At ← Gt − b(st)
θ ← θ + αγtAt · ∇θ log πθ(at|st)

end for
end for

Remarks: ◦ The policy is updated only after generating a whole trajectory, which may not be efficient.

◦ Can utilize the idea of temporal difference learning to build policy gradient estimators.
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Policy gradient method with value function estimation

Online Actor-Critic Algorithm
Initialize θ0, w0, state s0 ∼ µ,a0 ∼ πθ0 (· | s0)
for each step of the episode t = 0, 1, ..., T do

Obtain (rt, st+1, at+1) from πθt

Compute temporal difference: δt = rt + γQwt (st+1, at+1)−Qwt (st, at)
Compute policy gradient estimator:

∇̂θJ(πθt ) = Qwt (st, at)∇θ log πθt (at | st)

Update θ: θt+1 = θt + α∇̂θJ(πθt )
Update w: wt+1 = wt − βδt∇wQwt (st, at)

end for

Remarks: ◦ Approximating the value function in policy gradient introduces extra bias.

◦ Various ways to estimate the advantage function [16].
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Summary: Policy gradient methods

◦ Advantages
▶ Directly optimize policy parameters (but still need to evaluate value functions)
▶ Can deal with high-dimensional and continuous action spaces
▶ Can learn stochastic policies

◦ Optimization Challenges:
▶ Nonconvex landscape (in general, only converge to stationary points)
▶ Sensitive to stepsize choice
▶ High variance/bias of the policy gradient estimators
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Recap: Policy-based methods

Policy optimization (episodic reward)

max
θ

J(πθ) := E

[
∞∑

t=0

γtr(st, at)|s0 ∼ µ, πθ

]
= Es∼µ[V πθ (s)]

Tabular parametrization
▶ Direct :

πθ(a|s) = θs,a, with θs,a ≥ 0,
∑

a
θs,a = 1

▶ Softmax:

πθ(a|s) =
exp(θs,a)∑

a′∈A exp(θs,a′ )

Non-tabular parametrization
▶ Softmax:

πθ(a|s) =
exp(fθ(s, a))∑

a′∈A exp(fθ(s, a′))

▶ Gaussian:

πθ(a|s) ∼ N
(

µθ(s), σ2
θ(s)
)
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Recap: Policy gradient theorems

◦ Recall that pθ(τ) is the trajectory distribution and λπ
µ(s) is the discounted state visitation distribution.

Policy gradient theorems
▶ REINFORCE expression is given by

∇θJ(πθ) = Eτ∼pθ

[
R(τ)

( ∞∑
t=0

∇θ log πθ(at|st)
)]

.

▶ Action-value expression is given by

∇θJ(πθ) = Eτ∼pθ

[
∞∑

t=0

γtQπθ (st, at)∇θ log πθ(at|st)

]
=

1
1− γ

E
s∼λ

πθ
µ ,a∼πθ(·|s) [Qπθ (s, a)∇θ log πθ(a|s)] .
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Policy gradient in tabular setting

◦ Direct parametrization: πθ(a|s) = θs,a

∂J(πθ)
∂θs,a

=
1

1− γ
λ

πθ
µ (s)Qπθ (s, a)

◦ Softmax parametrization: πθ(a|s) ∝ exp(θs,a)

∂J(πθ)
∂θs,a

=
1

1− γ
λ

πθ
µ (s)πθ(a|s)Aπθ (s, a)

Proofs: ◦ Recall that ∇θJ(πθ) = 1
1−γ

∑
s

λ
πθ
µ (s)

∑
a

Qπθ (s, a)∇θπθ(a|s).

◦ Direct case: ∂πθ(a|s)
∂θs′,a′

= 1{s = s′, a = a′}.

◦ Softmax case: ∂πθ(a|s)
∂θs′,a′

= πθ(a|s)1{s = s′, a = a′} − πθ(a|s)πθ(a′|s)1{s = s′}.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 31/ 61



Optimization challenge I: Nonconcavity

◦ In general, the objective J(πθ) is nonconcave.

◦ This holds even for tabular setting with direct or softmax parametrization.

a1: move up, a2: move right

Example (direct parametrization)

V π(s1) = π(a2|s1)π(a1|s2)r.

▶ Consider πmid = π1+π2
2 , where

π1(a2|s1) = 3/4, π1(a1|s2) = 3/4;
π2(a2|s1) = 1/4, π2(a1|s2) = 1/4;
πmid(a2|s1) = 1/2, πmid(a1|s2) = 1/2.

▶ V π1 (s1) = 9
16 r, V π2 (s1) = 1

16 r.

▶ V πmid (s1) = 1
4 r < 1

2 (V π1 (s1) + V π2 (s1)).
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Optimization challenge I: Nonconcavity

◦ In general, the objective J(πθ) is nonconcave.

◦ This holds even for tabular setting with direct or softmax parametrization.

a1: move up, a2: move right

Example (softmax parameterzation)

θ = (θa1,s1 , θa2,s1 , θa1,s2 , θa2,s2 ),

V πθ (s1) =
eθa2,s1

eθa1,s1 + eθa2,s1

eθa1,s2

eθa1,s2 + eθa2,s2
r.

▶ Consider

θ1 = (log 1, log 3, log 3, log 1),
θ2 = (− log 1,− log 3,− log 3,− log 1),
θmid = (θ1 + θ2)/2 = (0, 0, 0, 0).

▶ V πθ1 (s1) = 9
16 r, V πθ2 (s1) = 1

16 r.

▶ V
πθmid (s1) = 1

4 r < 1
2 (V πθ1 (s1) + V πθ2 (s1)).

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 33/ 61



Convergence to stationary points (see Lecture 1)

Convergence of exact policy gradient method: θt+1 = θt + αt∇θJ(πθt
) (Nesterov, 2004 [13])

If the objective J(πθ) is L-smooth and set αt = 1
L

, then we have the following guarantee:

min
t=0,...,T −1

∥∇θJ(πθt )∥2
2 ≤

2L(J(πθ⋆ )− J(πθ0 ))
T

.

Convergence of stochastic policy gradient method: θt+1 = θt + αt∇̂θJ(πθt
)

(Ghadimi and Lan, 2013 [7])
If the objective J(πθ) is L-smooth and ∇̂θJ(πθ) is unbiased and has bounded variance by σ2, then with a
proper choice of the step-size, we have the following guarantee:

min
t=0,...,T −1

E
[
∥∇θJ(πθt )∥2

2
]

= O

(√
L(J(πθ⋆ )− J(πθ0 ))σ2

T

)
.

Questions: Can these rates be further improved? Do stationary points imply good performance?
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Optimization challenge II: Vanishing gradient and saddle points

◦ In general, there are no guarantees on the quality of stationary points.

◦ Vanishing gradients can happen when using softmax parametrization.

◦ Vanishing gradients can happen when lacking sufficient exploration [1].

Figure: Softmax function: eθ

1+eθ = 1
1+e−θ .

Figure: Example with H + 2 states and γ = H
H+1 : rewards are

everywhere 0 except at sH+1. For small order p and θ such
that θs,a1 < 1

4 for all s [1]: ∥∇pV πθ (s0)∥ ≤
(

1
3

)H/4
.
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A simple example

Figure: MDP with 2 states and 2 actions

Figure: V π(B) under direct parametrization
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A simple example (cont’d)

Figure: PG with different initial points
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A simple example (cont’d)

Figure: PG with different stepsizes
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Fundamental questions

Question 1
When do policy gradient methods converge to an optimal solution? If so, how fast?

Remarks: ◦ Optimization wisdom: GD/SGD could converge to the global optima for “convex-like” functions:

J(π⋆)− J(π) = O(∥∇J(π)∥).

◦ Focus on tabular setting with exact gradient.

Question 2
How to avoid vanishing gradients and improve the convergence?

Remarks: ◦ Optimization wisdom: Use divergence with good curvature information.

◦ Switch to natural policy gradient by exploiting geometry.
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Performance difference lemma (PDL)

Performance difference lemma (Kakade and Langford, 2002 [9])
For any two policy π, π′, the following holds

J(π)− J(π′) =
1

1− γ
Es∼λπ

µ, a∼π(·|s)
[
Aπ′

(s, a)
]

.

Remarks: ◦ Here λπ
µ(s) = (1− γ)E[

∑∞
t=0 γt1{st=s}|s0 ∼ µ, π] is the state visitation distribution.

◦ Here Aπ(s, a) = Qπ(s, a)− V π(s) is the advantage function.

◦ Can be used to show policy improvement theorem for policy iteration (self-exercise).

◦ Can also be used to show policy gradient theorem (self-exercise).

◦ Proof follows from definition of value functions.
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Proof of performance difference lemma

Derivation: V π(s)− V π′
(s) = Eτ∼pπ(τ)

[ ∞∑
t=0

γtr(st, at)|s0 = s
]
− V π′

(s)

= Eτ∼pπ(τ)
[ ∞∑

t=0

γt
(

r(st, at) + V π′
(st)− V π′

(st)
)
|s0 = s

]
− V π′

(s)

= Eτ∼pπ(τ)
[ ∞∑

t=0

γt
(

r(st, at) + γV π′
(st+1)− V π′

(st)
)
|s0 = s

]
= Eτ∼pπ(τ)

[ ∞∑
t=0

γt
(

r(st, at) + γEst+1∼P (·|st,at)[V π′
(st+1)]− V π′

(st)
)
|s0 = s

]
= Eτ∼pπ(τ)

[ ∞∑
t=0

γt
(

Qπ′
(st, at)− V π′

(st)
)
|s0 = s

]
= Eτ∼pπ(τ)

[ ∞∑
t=0

γtAπ′
(st, at)|s0 = s

]
Remark: ◦ We use a telescoping trick to go from line 2 to line 3!
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Key insight: Policy optimization is convex-like in the full policy space

◦ Performance difference lemma:

J(π⋆)− J(π) =
1

1− γ

∑
s

λπ⋆

µ (s)
∑

a

π⋆(a|s)Aπ(s, a).

◦ Policy gradient theorem (tabular setting):

∂J(π)
∂π(a|s)

=
1

1− γ
λπ

µ(s)Qπ(s, a) (direct parametrization).

∂J(π)
∂π(a|s)

=
1

1− γ
λπ

µ(s)π(a|s)Aπ(s, a) (softmax parametrization).

◦ This seems to imply gradient dominance type properties:

J(π⋆)− J(π) = O(∥∇J(π)∥),

which is crucial to ensure global optimality.
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Policy optimization

◦ We first consider the direct parametrization in the tabular setting.

Policy optimization under direct parametrization

max
π∈∆(A)|S|

J(π) := Es∼µ[V π(s)],

where ∆(A)|S| = {π : π(a|s) ≥ 0,
∑

a∈A π(a|s) = 1, ∀s}. For brevity, we denote this set as ∆.

Remarks: ◦ If π ∈ ∆ is optimal, then it satisfies the first-order optimality condition:

⟨π̄ − π,∇J(π)⟩ ≤ 0, ∀ π̄ ∈ ∆,

or equivalently, maxπ̄∈∆ ⟨π̄ − π,∇J(π)⟩ = 0.

◦ Does the reverse statement hold?
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Gradient dominance property

Gradient mapping domination

J(π⋆)− J(π) ≤
∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
×max

π̄∈∆
⟨π̄ − π,∇J(π)⟩.

Remarks: ◦ Any first-order stationary point is thus globally optimal.

◦ The term
∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞

is called the distribution mismatch coefficient.

◦ This coefficient captures the hardness of the exploration problem.

◦ Note that in the vanishing gradient example, this coefficient can be exponentially large.

◦ Note that maxπ

∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
≤ 1

1−γ

∥∥∥λπ⋆

µ

µ

∥∥∥
∞

, since ∀π, λπ
µ(s) ≥ (1− γ)µ(s).

◦ Proof follows by combining performance difference lemma and policy gradient theorem.
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Proof of gradient dominance

Derivation: J(π⋆)− J(π) =
1

1− γ

∑
s

λπ⋆

µ (s)
∑

a

π⋆(a|s)Aπ(s, a)

=
1

1− γ

∑
s

λπ⋆

µ (s)
λπ

µ(s)
λπ

µ(s)
∑

a

π⋆(a|s)Aπ(s, a)

≤
1

1− γ

∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
×max

π̄∈∆

∑
s,a

λπ
µ(s)π̄(a|s)Aπ(s, a)

=
1

1− γ

∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
×max

π̄∈∆

∑
s,a

λπ
µ(s)(π̄(a|s)− π(a|s))Aπ(s, a)

=
1

1− γ

∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
×max

π̄∈∆

∑
s,a

λπ
µ(s)(π̄(a|s)− π(a|s))Qπ(s, a)

=
∥∥∥λπ⋆

µ

λπ
µ

∥∥∥
∞
×max

π̄∈∆
⟨π̄ − π,∇J(π)⟩.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 45/ 61



Projected policy gradient method

Projected policy gradient method
By projected policy gradient method, we mean the iteration invariant below

πt+1 = Π∆(πt + η∇J(πt)),

where the projection is given by Π∆(π) = arg minπ′∈∆ ∥π − π′∥2
2.

Remarks: ◦ Take a gradient ascent step and project onto the simplex set (can be computed efficiently).

◦ Generalized gradient mapping: G(πt) = 1
η

(πt+1 − πt), or equivalently, πt+1 = πt + ηG(πt).

◦ If π is optimal, then G(π) = 0. (why?)

◦ Convergence on gradient mapping [12]: If J(π) is L-smooth, then we have

min
t≤T
∥G(πt)∥2

2 ≤
2L(J(π⋆)− J(π0))

T
.
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Convergence of projected policy gradient method

Theorem (Agarwal et al., 2020 [1])
Assume access to exact gradient. Let η = (1−γ)3

2γ|A| . Then, the following holds

min
t<T

J(π⋆)− J(πt) ≤
8
√

γ|S||A|

(1− γ)3
√

T

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥
∞

.

Proof sketch: ◦ Show that the objective J(π) is L-smooth with L = 2γ|A|
(1−γ)3 and J(π) ≤ 1

1−γ
.

◦ Invoke convergence on gradient mapping: mint≤T ∥G(πt)∥2
2 ≤

2L(J(π⋆)−J(π0))
T

.

◦ Invoke the relationship between gradient mapping and approximation of stationary point [12]:

max
π̄∈∆
⟨π̄ − πt+1,∇J(πt+1)⟩ ≤ (1 + Lη) · ∥G(πt)∥2 · ∥πt+1 − πt∥2.

◦ Use the gradient dominance for global convergence.
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A closer look at the convergence

Theorem (Agarwal et al., 2020 [1])
Assume access to exact gradient. Let η = (1−γ)3

2γ|A| . Then, the following holds

min
t<T

J(π⋆)− J(πt) ≤
8
√

γ|S||A|

(1− γ)3
√

T

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥
∞

.

Remarks: ◦ We have Large constants in the bound and a slow rate in T .

◦ Analysis can be refined with improved convergence rate of O
(

1
T

)
using Nesterov’s result [13].

◦ In the tabular setting, VI or PI converges linearly, which is much faster.

◦ Linear convergence of PG can be shown with larger step-sizes through line-search [3].
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A closer look at the PG method

◦ The projected PG update can also be viewed as

πt+1 := Π∆(πt + η∇J(πt))

= arg max
π∈∆

{
⟨∇J(πt), π⟩ −

1
2η
∥π − πt∥2

2

}
.

◦ As η →∞, this reduces to the policy iteration update:

πt+1(·|s) = arg max
π(·|s)∈∆(A)

∑
a

π(s|a)Qπt (s, a).

◦ In other words, policy gradient method can be viewed as an approximation of policy iteration

arg max
π∈∆

{
⟨∇J(πt), π⟩ −

1
2η
∥π − πt∥2

2

}
= arg max

π∈∆

{
⟨Qπt , π⟩λπt

µ
−

1
2η′ ∥π − πt∥2

2

}
, (6)

where ∂J(π)
∂π(a|s) = 1

1−γ
λπ

µ(s)Qπ(s, a) and ⟨·, ·⟩λπ
µ

is the reweighted inner product by λπ
µ.
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From gradient descent to mirror descent: Exploiting the non-euclidean geometry

◦ We can adapt PG in the simplex with mirror descent updates:

πt+1 := arg max
π∈∆

{
⟨∇J(πt), π⟩ −

1
η

∑
s

λπt
µ (s)KL (π(·|s)||πt(·|s))

}
,

where KL (p||q) =
∑

i
pi log

(
pi
qi

)
is the Kullback-Leibler divergence.

◦ The policy mirror descent update can be further simplified as

πt+1(a|s) = πt(a|s)
exp(ηQt(s, a)/(1− γ))∑

a′ πt(a′|s) exp(ηQt(s, a′)/(1− γ))
.

◦ This is akin to natural policy gradient under softmax parameterization.

◦ As η →∞, this also reduces to the policy iteration update.
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Policy optimization

◦ We now consider the softmax parametrization in the tabular setting.

Policy optimization under softmax parametrization

max
θ

J(πθ) := Es∼µ[V πθ (s)], where πθ(a|s) =
exp(θs,a)∑
a′ exp(θs,a′ )

.

Softmax policy gradient method

θt+1 = θt + η∇θJ(πθt ), where
∂J(θ)
∂θs,a

=
1

1− γ
λ

πθ
µ (s)πθ(a|s)Aπθ (s, a).

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 51/ 61



Gradient dominance and global convergence

Gradient dominance (Mei et al., 2020 [10])

J(π⋆)− J(πθ) ≤ [min
s

πθ(a⋆(s)|s)]−1√S ·

∥∥∥∥λπ⋆

µ

λ
πθ
µ

∥∥∥∥
∞

· ∥∇θJ(πθ)∥2.

Convergence of softmax policy gradient (Mei et al., 2020 [10])
Assume access to exact gradient, let η ≤ (1−γ)3

8 . Then, the following holds

J(π⋆)− J(πθT
) ≤

16|S|
c2(1− γ)5T

∥∥∥∥λπ⋆

µ

µ

∥∥∥∥2

∞

,

where c = [mins,t πθt (a⋆(s)|s)]−1 > 0.

Remark: ◦ Proof follows similarly as the tabular setting with slow rate and large constants in the bound.
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Natural policy gradient method (NPG)

Natural policy gradient (Kakade, 2002 [8])
By natural policy gradient (NPG), we mean the following iteration invariant below:

θt+1 = θt + η(Fθt )†∇J(πθt ),

where
▶ Fθ is the Fisher information matrix:

Fθ = E
s∼λ

πθ
µ ,a∼πθ(·|s)

[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]
.

▶ C† is the pseudoinverse of the matrix C.
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NPG under softmax parameterization

◦ Consider πθ(a|s) = exp(θs,a)∑
a′ exp(θs,a′ )

and denote πt = πθt .

NPG parameter update

θt+1 = θt +
η

1− γ
Aπθt .

NPG policy update = policy mirror descent

πt+1(a|s) = πt(a|s)
exp(ηAπt (s, a)/(1− γ))∑

a′ πt(a′|s) exp(ηAπt (s, a′)/(1− γ))
.
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Convergence of NPG

Convergence of NPG with softmax parameterization [1]
Assume access to Aπθ . For any η ≥ (1− γ)2 log |A| and T > 0, we have the following

J(π⋆)− J(πθT
) ≤

2
(1− γ)2T

.

Remarks: ◦ Dimension-free convergence, no dependence on |A|, |S|.

◦ No dependence on distribution mismatch coefficient.

Questions: Why? What about function approximation setting? Can we further improve the convergence?
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Next week!

◦ Recap on policy gradient methods

◦ A deeper look at the natural policy gradient method
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