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Recap - Reinforcement learning objective

◦ Reinforcement Learning: Sequential decision making in unknown environment

◦ Markov decision process: M = (S,A, P, r, µ, γ)

◦ Stationary stochastic policy π : S → ∆(A), at ∼ π(·|st)

◦ State-value function: V π(s) := E

[∑∞
t=0 γ

tr(st, at)|s0 = s, π

]
◦ Performance objective: maxπ(1 − γ)

∑
s∈S µ(s)V π(s)

Challenges: ◦ Infer long-term consequences based on limited, noisy short-term feedback.

◦ Unknown dynamics - Knowledge only through sampled experience.

◦ Large state and actions spaces.

◦ Highly nonconvex objective.
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Motivation

◦ Approximate dynamic programming

▶ Attempts to find approximate fixed-point solutions to the (nonlinear) Bellman equation.

▶ Pros:

+ Well-studied setting for tabular MDPs that comes with theoretical convergence guarantees.

▶ See Lecture 2.

+ Deep-learning variants (e.g., DQN [19]) are powerful.

▶ Cons:

– Training can oscillate or even diverge under the simplest parameterizations or in offline settings.

▶ For divergent examples for TD-learning with nonlinear parameterizations, see e.g., Ex 6.6 and 6.7 in [3].

▶ For divergent example for approximate VI with linear parameterizations, see e.g., Ex. 6.11 in [3].

– Incompatible with classical machine-learning tools that are rooted in convex optimization.
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Motivation (cont’d)

◦ The linear programming approach (this lecture)

▶ Introduces the linear programming (LP) approach, i.e., an alternative convex viewpoint that formulates the
RL problem as a linear program.

▶ Overviews recent scalable algorithms with theoretical guarantees rooted in the LP approach.

▶ Highlights how historical key limitations have been eliminated.
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Revisiting Bellman optimality equation

◦ Finding V ⋆ satisfying Bellman optimality equation can be written as a feasibility problem:

min
V

0

s.t. V (s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V (s′)

]
, ∀ s ∈ S.

◦ The only feasibile point is V ⋆.

◦ The above constraints are nonlinear in V .
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Relaxation of Bellman optimality condition
◦ The Bellman optimality equation suggests that V ⋆ is the “least feasible solution" of all V ∈ R|S| satisfying

V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A.

◦ Note that the new inequality constraint is linear in V =⇒ Linear Programming (LP) .

Figure: Graphical interpretation of Bellman inequality
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Solving MDPs with LP - Primal LP formulation

Primal LP
Let µ(s) > 0, s ∈ S be the initial distribution (or any positive weights).

min
V

(1 − γ)
∑
s∈S

µ(s)V (s)

s.t. V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A.
(P)

Remarks: ◦ The optimal value function V ⋆ is the unique solution to the above LP.

◦ Number of decision variables: |S|, number of constraints: |S||A|.

◦ An optimal (deterministic) policy is the associated greedy policy

π⋆(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s)

]
. (1)

◦ The factor (1 − γ) in the objective ensures that the dual variables are in the simplex.
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Solving MDPs with LP - Primal LP formulation (cont’d)

Corollary (LP Formulation and V ⋆)

V ⋆ is the unique optimal solution to the above LP formulation for any positive weights {µ(s)}.

Proof Sketch
◦ First, we establish that V ⋆ is a feasible solution.
◦ Then, we need to show that V ⋆ minimizes the objective.
◦ By the monotonicity property of the Bellman operator, we get that V ≥ V ⋆, for any feasible V .

Remark: ◦ The unique optimizer does not depend on the positive weights {µ(s)}.

◦ Slide 21 discusses how does the choice of {µ(s)} affect the performance guarantees of
approximate linear programming schemes.
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A closer look at the primal LP

Recall: Primal LP
Let µ(s) > 0, s ∈ S be the initial distribution (or any positive weights).

min
V

(1 − γ)
∑
s∈S

µ(s)V (s)

s.t. V (s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)V (s′), ∀ s ∈ S, a ∈ A.
(P)

Observations: ◦ Any V ⋆ is feasible as

V
⋆(s) = T V ⋆(s) ≥ r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′), ∀(s, a) ∈ S × A.

This implies feasibility.

◦ For any feasible V , we have V ≥ T V . By monotonicity of the Bellman operator T , we have

V ≥ T V ≥ T 2
V ≥ · · · ≥ T ∞

V = V
⋆
.

This implies optimality.
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Solving MDPs with LP - Dual LP formulation

Dual LP

max
λ

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1 − γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S,

λ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A.

(D)

Remarks: ◦ The number of decision variables: |S||A|.

◦ The number of constraints: |S| + |S||A|.

◦ The constraints implicitly implies the decision variables are in the probability simplex.

◦ The solution to the dual LP, λ⋆, corresponds to the state-action occupancy of π⋆.
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A closer look at the dual LP

◦ For any policy π and s0 ∼ µ, define the state-action visitation distribution λπ(s, a) as

λπ(s, a) := (1 − γ)
∞∑
t=0

γtP(st = s, at = a | s0 ∼ µ, π)

◦ We can write

(1 − γ)Es∼µ[V π(s)] = (1 − γ)E
[∑∞

t=0
γtr(st, at) | s0 ∼ µ, π

]
⇒ primal objective (P)

= (1 − γ)
∑

s∈S,a∈A

∞∑
t=0

γtP(st = s, at = a | s0 ∼ µ, π) r(s, a)

=
∑
s∈S

∑
a∈A

λπ(s, a)r(s, a) ⇒ dual objective (D)
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A closer look at the dual LP (cont’d)

Recall: Dual LP

max
λ

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1 − γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S,

λ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A.

(D)

Observations: ◦ Easy to verify that λπ(s, a) satisfies the constraints in the dual LP.

◦ By Markov property, we have (see supplementary material for details)

λπ(s, a) = (1 − γ)µ(s)π(a|s) + γ
∑
s′,a′

π(a|s)P(s|s′, a′)λπ(s′, a′).

Summing over a implies feasibility.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 13/ 50



A closer look at the dual LP (cont’d)

Dual LP

max
λ

∑
s∈S

∑
a∈A

r(s, a)λ(s, a)

s.t.
∑
a∈A

λ(s, a) = (1 − γ)µ(s) + γ
∑

s′∈S,a′∈A

P(s|s′, a′)λ(s′, a′), ∀ s ∈ S,

λ(s, a) ≥ 0, ∀ s ∈ S, a ∈ A.

(D)

Observations: ◦ For any λ feasible to the dual LP, we can define a policy

πλ(a | s) =
λ(s, a)∑
a∈A λ(s, a)

.

It then holds λπλ = λ.

◦ Note that λ⋆(s, a) = λπ
⋆ (s, a) and π⋆(a | s) = λ⋆(s,a)∑

a∈A
λ⋆(s,a)

. (self-check)

◦ Optimal policy does not depend on µ. (LP sensitivity analysis)
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Finding the optimal policy

◦ Primal LP approach:
▶ Solve primal LP to obtain for the optimal value function V ⋆

▶ Then construct the optimal policy (deterministic) through the greedy policy

π⋆(s) ∈ arg max
a∈A

[
r(s, a) + γ

∑
s′∈S

P(s′|s, a)V ⋆(s′)
]
.

◦ Dual LP approach:
▶ Solve the dual LP to obtain the optimal state-action occupancy λ⋆

▶ Then construct the optimal policy (randomized) by

π⋆(a | s) =
λ⋆(s, a)∑
a∈A λ⋆(s, a)

.

◦ Reference: See [29] (Section 6.9)
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Linear Programming - Summary

Primal LP:
min

V ∈R|S|
(1 − γ)⟨µ, V ⟩

s.t. EV ≥ r + γPV .
(P)

◦ Primal LP over value functions

◦ |S| decision variables and |S||A| constraints

◦ ∀ V primal feasible ⇒ V ⋆ ≤ V

◦ Optimal value function V ⋆ is the optimizer

◦ Optimal policy is the associated greedy policy

Dual LP
max

λ∈R|S||A|
⟨λ, r⟩

s.t. E⊺λ = (1 − γ)µ+ γP ⊺λ, λ ≥ 0.
(D)

◦ Dual LP over occupancy measures

◦ |S||A| variables and |S| + |S||A| constraints

◦ ∀ policy π, the induced λπ is dual feasible

◦ ∀ feasible λ ⇒ πλ has occupancy measure λ

◦ We have λ⋆ = λπ
⋆ and π⋆ = πλ⋆
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Dynamic programming vs Linear programming (exact solutions)

Algorithm Component Output

Value Iteration (VI) Bellman Optimality Operator T V ⋆ (control)

Policy Iteration (PI) (Multiple) Bellman Operator T π + Greedy Policy π⋆ (control)

Linear Programming (LP) LP solver (Simplex, Interior Point Method) V ⋆, π⋆ (control)

Dynamic Programming:
◦ Simple iterative updates.
◦ Polynomial complexity in |S| and |A|.
◦ Works better for small problems.

Linear Programming:
◦ Rich library of fast LP solvers.
◦ Polynomial complexity in |S| and |A|.
◦ Works better for large problems.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 17/ 50



The LP approach - Pros and Cons

◦ Why is this useful?

▶ Defining optimality is simple: no value functions, no fixed-point equations, just the numerical objective.

▶ Easily comprehensible with an optimization background.

▶ A disciplined convex optimization template with a rich set of algorithms.

◦ End User License Agreement:

▶ Need to ensure
∑

a∈A λ(s, a) > 0 to extract a policy.

▶ Number of variables is large.

▶ Intractable number of constraints.

▶ Constraints may be not satisfied when working with function approximators.
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Beyond exact solutions - A bit of history of approximate linear programming (ALP)

◦ [Manne 1960] [18]

▶ Formulated the primal LP over value functions and showed equivalence to Bellman equations.

◦ [Borkar 1988] [4] and [Hérnandez-Lerma & Lasserre 1996, 1999] [11, 12]

▶ Studied the LP approach to MDPs with continuous state and action spaces.

▶ The corresponding LPs are infinite-dimensional.

◦ [Schweitzer & Seidman 1982] [33]

▶ Proposed linear function approximators to reduce the number of decision variables

▶ Proposed a relaxation to reduce the number of constraints.

◦ [De Farias & Van Roy 2003, 2004] [7, 8]

▶ Analyzed the reduction [Schweitzer & Seidman 1982] [33].

▶ Inspired some follow-up work in RL [Petrik et al. 2009,2010] [27, 26], [Desai et al. 2012] [9],
[Abbasi-Yadkori et al. 2014] [1], [Lakshminarayanan et al. 2018] [16].
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Prior works in ALP - Linear function approximation

Large-scale MDPs ⇒ Large-scale optimization

◦ Reduce the number of decision variables by projecting onto a lower-dimensional subspace.

▶ Let ϕ1, . . . , ϕk : S → R be k basis functions (or features).

▶ Φ :=
[
ϕ1 . . . ϕk

]
∈ R|S|×k is the corresponding feature matrix.

▶ The (ALP) is obtained by adding the linear constraint V = Φθ =
∑k

i=1 θiϕi to the original primal LP (P).

Approximate linear program [Schweitzer & Seidman 1982] [33]

min
θ∈Rk

(1 − γ)
∑
s∈S

µ(s)(Φθ)(s)

s.t. (Φθ)(s) ≥ r(s, a) + γ
∑
s′∈S

P(s′|s, a)(Φθ)(s′), ∀ s ∈ S, a ∈ A.
(ALP)
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Prior works in ALP - Linear function approximation (cont’d)

Assumptions: ◦ The set {ϕ1, . . . , ϕk} is linearly independent.

◦ 1 ∈ span
(

{ϕ1, . . . , ϕk}
)

:= {Φθ | θ ∈ Rk}. This ensures that (ALP) is feasible [7] .

◦ The values
∑

s′∈S P(s′|s, a)ϕi(s′) and µ⊺ϕi, i = 1, . . . , k, can be accessed in O(1) time.

Quality of the approximate solution (Th.2 in [De Farias & Van Roy 2003] [7])

∥V ⋆ − V
⋆

ALP∥1,µ ≤
2

1 − γ
min
θ

∥V ⋆ − Φθ∥∞.︸                        ︷︷                        ︸
εapprox: approximation error

Notation: ◦ θ⋆ALP is optimal to (ALP) and V ⋆ALP = Φθ⋆ALP is the approximate value function.

◦ ∥V ∥1,µ :=
∑

s∈S µ(s)|V (s)| is the µ-weighted ℓ1-norm, where µ > 0.

◦ Φθ⋆ is the ∥ · ∥∞-norm projection of V ⋆ to the subspace V = Φθ.

◦ εapprox := minθ ∥V ⋆ − Φθ∥∞ = ∥V ⋆ − Φθ⋆∥∞ is called the approximation error.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 21/ 50



Prior works in ALP - Linear function approximation (cont’d)

Quality of the approximate solution

∥V ⋆ − V
⋆

ALP∥1,µ ≤
2

1 − γ
εapprox.

Remarks:

◦ εapprox = minθ ∥V ⋆ − Φθ∥∞ captures the
approximation power of the feature map.

◦ If V ⋆ ∈ span
(
ϕ1, . . . , ϕk

)
, then V ⋆ = Φθ⋆ALP.

◦ In general, ∥V ⋆ − V ⋆ALP∥1,µ = O(εapprox).

◦ Focus on finding a good basis, leaving the search
of the “right” weights to an LP solver.

Figure: Graphical interpretation of ALP [7]
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Prior works in ALP - Constraint sampling
◦ Reduce the number of constraints by constraint sampling.

▶ (x, a) is treated as an uncertainty parameter.

▶ S × A is the uncertainty space.

▶ P is a probability distribution on S × A.

▶ {(si, ai)}Ni=1 i.i.d. samples on (S × A,P).

▶ N ⊂ Rk is a bounding set.

▶ The relaxed LP (RLP) is obtained from (ALP) by restricting θ ∈ N with N sampled constraints.

Relaxed linear program [De Farias & Van Roy 2001] [8]

min
θ∈N

(1 − γ)
∑
s∈S

µ(s)(Φθ)(s)

s.t. (Φθ)(si) ≥ r(si, ai) + γ
∑
s′∈S

P(s′|si, ai)(Φθ)(s′), ∀ i = 1, . . . , N.
(RLP)
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Prior works in ALP - Constraint sampling (cont’d)

Assumptions: ◦ The set N ⊂ Rk is compact, i.e., bounded and closed.

◦ The optimal solution θ⋆ALP to (ALP) is in N .

◦ The sampling probability distribution is P ∝ λπ
⋆ , i.e., the state-action visitation

distribution induced by an optimal policy π⋆.

How many samples give a good solution (Th.3.1 in [De Farias & Van Roy 2004] [8])
Let ε, δ ∈ (0, 1). If N ≥ Õ

( 4k log( 1
δ

)
(1−γ)ε

supθ∈N ∥V ⋆−Φθ∥∞
µ⊺V ⋆

)
, then with probability at least 1 − δ, we have

∥V ⋆ − V
⋆

RLP∥1,µ ≤ ∥V ⋆ − V
⋆

ALP∥1,µ + ε∥V ⋆∥1,µ,

where the probability is taken over the random sampling of constraints.

Notation: ◦ θ⋆RLP is optimal to (RLP) and V ⋆RLP = Φθ⋆RLP is the approximate value function.

◦ ε ∈ (0, 1) is the desired approximation accuracy.

◦ δ ∈ (0, 1) is the desired confidence level.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 24/ 50



Prior works in ALP - Constraint sampling (cont’d)

Remarks: ◦ (RLP) is a relaxation of (ALP).

◦ The constraint θ ∈ N ensures that the optimal value of (RLP) is bounded.

◦ The relaxed linear program (RLP) is random.

◦ θ⋆RLP and V ⋆RLP = Φθ⋆RLP are random variables.

◦ A lower bound on the number of samples needed to achieve an ε-accurate solution with
probability at least 1 − δ, is called the sample complexity of the problem.

◦ The sample complexity bound depends on the choice of the bounding set N .

◦ The sample complexity bound requires access to samples from the optimal state-action
visitation distribution (which is not known a priori).
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Common theme of all prior ALP works

◦ Reduce the number of decision variables by projecting on a low-dimensional subspace.

◦ Reduce the number of constraints (e.g., by constraint sampling).

◦ Solve the resulted LP with generic solver.

◦ Analyze the quality of the approximate solution.

◦ Either scale badly with the size of the state-action spaces or

◦ Require access to samples from a distribution that depends on the optimal policy.

◦ Require knowledge of dynamics or access to a simulator.

◦ Focus mainly on the approximation of the optimal value function but not so much on extracting a nearly
optimal policy.

Is this the best we can do?

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 26/ 50



Some notation: towards an unconstrained problem.

◦ We will write an equivalent unconstrained problem.

◦ To simplify the notation, we need to introduce a couple of operators:
▶ E : RS×A → RS such that (EV )(s, a) = V (s).
▶ P : RS×A → RS such that (PV )(s, a) =

∑
s′ P(s′|s, a)V (s′).

◦ Their adjoints are given by
▶ ET : RS → RS×A such that (ETλ)(s) =

∑
a
λ(s, a).

▶ PT : RS → RS×A such that (PTλ)(s′) =
∑

s,a
P(s′|s, a)λ(s, a).
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Towards the Lagrangian

◦ Instead of working solely with the primal or dual LP formulation, we work with an object between them

◦ Introducing the Lagrangian multipliers vector λ ∈ R|S||A|, we can write the Lagrangian as follows:

Primal LP:
min

V ∈R|S|
(1 − γ)⟨µ, V ⟩

s.t. EV ≥ r + γPV .
(P)

Dual LP
max

λ∈R|S||A|
⟨λ, r⟩

s.t. E⊺λ = (1 − γ)µ+ γP ⊺λ, λ ≥ 0.
(D)

⇕

Saddle point formulation

min
V

max
λ≥0

(1 − γ)⟨µ , V ⟩ + ⟨λ , r + γPV − EV ⟩. (Saddle-point problem)

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 28/ 50



Minimax optimization

Bilinear min-max template

min
x∈X

max
y∈Y

f(x) + ⟨Ax,y⟩ − h(y),

where X ⊆ Rp and Y ⊆ Rn.
▶ f : X → R is convex.
▶ h : Y → R is convex.

Convex-concave min-max template

min
x∈X

max
y∈Y

Φ(x,y), (2)

where Φ(x,y) is convex in x and concave in y.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 29/ 50



Basic algorithms for minimax
◦ Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y].

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

GDA
OGDA
EG
PP
Critical point

Figure: Trajectory of different algorithms for a simple bilinear game minx maxy xy.

◦ (In)Famous algorithms
▶ Gradient Descent Ascent (GDA)
▶ Proximal point method (PPM)
▶ Extra-gradient (EG)
▶ Optimistic Gradient Descent Ascent (OGDA)
▶ Reflected-Forward-Backward-Splitting (RFBS)

◦ EG and OGDA are approximations of the PPM
▶ zk+1 = zk − ηV (zk).
▶ zk+1 = zk − ηV (zk+1).
▶ zk+1 = zk − ηV (zk − αV (zk−1))
▶ zk+1 = zk − η[2V (zk) − V (zk−1)]
▶ zk+1 = zk − ηV (2zk − zk−1)
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Primal-dual π-learning

Saddle point formulation

min
V

max
λ∈∆S×A

(1 − γ)⟨µ , V ⟩ + ⟨λ , r + γPV − EV ⟩. (Saddle-point problem)

◦ For known dynamics, it can be solved via primal-dual updates:

▶ Vk+1 = Vk − η
(

(γP − E)⊺λk + µ
)

.

▶ λk+1 ∝ λk ⊙ eη(r+γPVk−EVk), where ⊙ denotes entry wise multiplication.

◦ Gradients are expectations under the occupancy measure iterates λk and the transition law P

⇒ efficient stochastic implementation [Chen et al. 2018] [6], [Jin & Sidford. 2018] [13].

▶ State-of-the-art sample complexity for solving small MDPs.

▶ O
(

|S||A| log( 1
δ

)
(1−γ)4ε2

)
samples for finding an ε-optimal policy with probability at least 1 − δ.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 31/ 50



Scaling up

Large-scale MDPs ⇒ Large-scale optimization

◦ Parameterize λ and V via linear functions

▶ λν = Ψν, for some feature matrix Ψ ∈ R|S|A||×n

▶ Vθ = Φθ, for some feature matrix Φ ∈ R|S|×m

Assumption: The columns of Ψ are probability distributions.

Relaxed saddle point formulation

min
θ

max
ν∈∆[n]

(1 − γ)⟨µ , Φθ⟩ + ⟨ν , Ψ⊺(r + γPΦθ − EΦθ)⟩
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Scaling up (cont’d)

Relaxed saddle point formulation

min
θ

max
ν∈∆[n]

(1 − γ)⟨µ , Φθ⟩ + ⟨ν , Ψ⊺(r + γPΦθ − EΦθ)⟩

◦ Primal-dual updates:

▶ θk+1 = θk − η
(

(γPΦ − EΦ)⊺Ψνk + Φ⊺µ
)

,

▶ νk+1 ∝ νk ⊙ eηΨ⊺(r+γPΦθk−EΦθk).

◦ Implementable with only sample access to the columns of Ψ and the transition law P [Chen et al. 2018] [6].

▶ O
(
nm log( 1

δ
)

(1−γ)4ε2

)
samples for finding an ε+ εapprox-optimal policy with probability at least 1 − δ.

▶ εapprox captures the expressivity of the approximation architecture.
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Proximal point method (PPM)

◦ Consider the following smooth unconstrained optimization problem: minx∈Rp f(x)

Proximal point method for convex minimization.
For a step-size τ > 0, PPM can be written as follows

xk+1 = arg min
x∈Rp

{
f(x) +

1
2τ

∥x − xk∥2
}

:= proxτf (xk) (3)

Observations: ◦ The optimality condition of (3) reveals a simpler PPM recursion for smooth f :

xk+1 = xk − τ∇f(xk+1).

◦ PPM is an implicit, non-practical algorithm since we need the point xk+1 for its update.

◦ Each step of PPM can be as hard as solving the original problem.

◦ Convergence properties are well understood due to Rockafellar [32].
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PPM and minimax optimization

PPM applied to the minimax template: minx∈Rd maxy∈Rn Φ(x, y)
Define z = [x,y]⊤ and V(z) = [∇xΦ(x,y),−∇yΦ(x,y)]⊤. PPM iterations with a step-size τ > 0 is given by

zk+1 = zk − τV(zk+1).

Derivation: ◦ For τ > 0, (xk+1,yk+1) is the unique solution to the saddle point problem,

min
x∈Rd

max
y∈Rn

Φ(x,y) +
1

2τ
∥x − xk∥2 −

1
2τ

∥y − yk∥2 (4)

◦ Writing the optimality condition of the update in (4)

xk+1 = xk − τ∇xΦ(xk+1,yk+1), yk+1 = yk + τ∇yΦ(xk+1,yk+1) (5)

Observation: ◦ PPM is an implicit algorithm.

◦ For the bilinear problem, PPM is implementable!
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Proximal point methods in the Bregman setup

Definition: Bregman distance
Let ω : X → R be a distance generating function where ω is 1−strongly convex w.r.t. some norm ∥ · ∥ on the
underlying space and is continuously differentiable. The Bregman distance induced by ω(·) is given by

Dω(z, z′) = ω(z) − ω(z′) − ∇ω(z′)⊤(z − z′).

◦ The proximal point method in the Bregman setup reads as follows:

xk+1 = arg min
x∈Rp

{
f(x) +

1
τ
Dω(x,xk)

}
Remarks: ◦ Choosing the negative entropy as a generating function ω(x) = ⟨x, log x⟩, we obtain the

KL divergence. Such ω(x) is 1-strongly convex in ∥ · ∥1 norm.

◦ This choice will allow to avoid projection in the simplex constraints and it improves the
dependence on the domain dimension.

◦ Now, we will see PPM in action on the Lagrangian.
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REPS: A success story

◦ REPS is widely popular in the robotics community.

◦ It applies proximal point to the Dual LP.

◦ A robot trained with REPS manages to play table tennis.

Figure: Source: Relative Entropy Policy Search [25]
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Towards REPS: Proximal point on the Dual LP

◦ Recall: Proximal point is generally an implicit method.

◦ However, for a linear objective PPM can be implemented.

◦ Hence, we can apply proximal point updates on the Lagrangian, which is just a bilinear form.

Recall: Dual LP

λk = argmaxλ∈∆⟨λ, r⟩

s.t. ETλ = γPTλ+ (1 − γ)µ.

Remarks: ◦ The problem in the current form suffers from |S| many constraints.
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The Lagrangian: Towards an unconstrained problem.

◦ The corresponding Lagrangian is:

max
λ∈∆

min
V

⟨λ, r⟩ + ⟨V, γPTλ− ETλ⟩ + (1 − γ)⟨V, µ⟩.

◦ Applying proximal point we obtain the following update:

λk = argmaxλ∈∆ min
V

⟨λ, r⟩ + ⟨V, γPTλ− ETλ⟩ + (1 − γ)⟨V, µ⟩︸                                                                    ︷︷                                                                    ︸
:=f(λ)

−
1
η
DKL(λ, λk−1).
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KKT conditions on the Lagrangian update.

Derivation: ◦ We notice by convexity of the Bregman divergence that the update is convex in λ.

◦ We introduce an auxiliary problem for any V as follows:

λVk = argmaxλ∈∆ ⟨λ, r⟩ + ⟨V, γPTλ− ETλ⟩ + (1 − γ)⟨V, µ⟩ −
1
η
DKL(λ, λk−1).

◦ By optimality conditions, it must hold

r + γPV − EV −
1
η

∇λDKL(λVk , λk−1) = 0.

◦ Thus, λVk can be computed in closed form for any V

λVk (s, a) =
λk−1(s, a)er(s,a)+γ(PV )(s,a)−(EV )(s,a)∑
s,a

λk−1(s, a)er(s,a)+γ(PV )(s,a)−(EV )(s,a) .
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The unconstrained problem

◦ We can leverage the KKT conditions to write an unconstrained problem where the only decision variable is V :

min
V

⟨λVk , r⟩ + ⟨V, γPTλVk − ETλVk ⟩ + (1 − γ)⟨V, µ⟩ −
1
η
DKL(λVk , λk−1).

◦ With some calculus, we have the following compact form.

Unconstrained problem (REPS)

Vk = min
V

(1 − γ)⟨µ, V ⟩ +
1
η

log
∑
s,a

λk−1(s, a)er(s,a)+γ(PV )(s,a)−(EV )(s,a).

Remarks: ◦ The decision variable V has dimension |S|.

◦ The objective is convex and smooth with Lipschitz continuous gradient.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 41/ 50



The REPS algorithm [25]

Algorithm: REPS
Initialize λ0 (for example uniform)
for each iteration k = 1, . . . ,K do

Solve the problem

Vk = min
V

(1 − γ)⟨µ, V ⟩ +
1
η

log
∑
s,a

λk−1(s, a)er(s,a)+γ(PV )(s,a)−(EV )(s,a)

Update the occupancy measure:

λk(s, a) ∝ λk−1(s, a)er(s,a)+γ(PVk)(s,a)−(EVk)(s,a)

end for
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Sample complexity of REPS [24]

Algorithm Oracle Output

REPS Exact gradient O
(

|S|3/2

(1−γ)2ϵ2

)
REPS Stochastic Biased Gradients O

(
|S|3/2

(1−γ)8β2ϵ8

)
Remarks: ◦ The exact gradient case achieves the best-known sample complexity, e.g., comparable to

NPG (see Lecture 5)

◦ The sample complexity with stochastic gradients degrades.

◦ For the stochastic gradient case, one needs to assume that λk(s, a) ≥ β > 0. It solves the
exploration problem by assumption.
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Off-policy reinforcement learning (aka batch reinforcement learning)

◦ Learn to control from a previously collected dataset.

◦ Important for safety-critical applications, where deploying a suboptimal policy during learning is impossible.

▶ Think about drug testing.

Remarks: ◦ This setting is distinct from IRL, where the data is given by an “expert” policy.

◦ In this setting, we do have access to a reward signal from previous experience.

◦ We assume that the data covers the state-action space sufficiently well.
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Off-policy reinforcement learning: The formalism

◦ In off-policy RL, we focus on the usual objective, which is:

J(π) = Es∼µ

[
∞∑
t=0

γtr(st, at) | s0 = s, π

]
.

◦ However, we assume access only to samples from a fixed policy π̃.

Remarks: ◦ The policy π̃ represents the policy previously used to collect the experience dataset.

◦ In drug testing, π̃ may represent the policy used by the human doctors (not necessarily optimal).

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 45/ 50



A useful subproblem: Offline policy evaluation

◦ We saw that often we find an optimal policy via learning the state-action value function:

Qπ(s, a) = E

[
∞∑
t=0

γtr(st, at) | s0 = s, a0 = a, π

]
.

◦ However, we assume access only to samples from a fixed policy π̃.

◦ Estimating Qπ(s, a) using samples from π̃ is known as offline policy evaluation.

◦ Next, we derive a convex programming approach to compute Qπ(s, a).

Self-study: ◦ Compare to the derivation of the Primal LP to compute V ⋆.
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An offline policy evaluation (OPE) approach

OPE via f -divergences
Let g be the convex conjugate of an f -divergence. [21] proposes to use the following formulation via Qπ :

Qπ = argminQEλπ̃g(r − LπQ) + (1 − γ)⟨Q, c⟩, (OPE)

where c(s, a) = π(a|s)µ(s) is the joint state-action distribution.

Remarks: ◦ Recall the operator Lπ :

(LπQ)(s, a) = Q(s, a) − γ
∑
s′,a′

P (s′|s, a)π(a′|s′)Q(s′, a′).

◦ The problem (OPE) is convex and smooth in Q because g is convex.

◦ The problem (OPE) is unconstrained and g acts like a loss function.

◦ A biased objective estimate can be obtained by sampling from c and λπ̃ .

◦ The name offline comes from not needing samples from λπ .
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From policy evaluation to policy optimization

◦ Maximizing (OPE) objective over π gives us a policy optimization objective.

◦ The resulting formulation is dubbed as AlgaeDICE [23].

AlgaeDICE

π⋆ ∈ argmaxπ min
Q

(1 − γ)⟨c,Q⟩ + Eλπ̃g (r − LπQ)

Remarks: ◦ We only need to sample from the initial distribution µ, the policy π, and the offline policy π̃.

◦ We only interact with the environment via π̃.
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An alternative offline policy evaluation from the Lagrangian perspective [34]

◦ The approach in [34] PRO-RL exploits the Lagrangian of (LP) formulation.

◦ It has the same underpinnings of REPS adapted for the offline RL.

PRO-RL [34]
Let h be a strongly convex function. The PRO-RL approach uses the following formulation:

max
λ∈∆

min
V

⟨λ, r + γPV − V ⟩ + (1 − γ)⟨µ, V ⟩ −
1
η
E(s,a)∼λπ̃

(
h
( λ(s, a)
λπ̃(s, a)

))
Remarks: ◦ The inner product with λ are equivalent to expectations with samples drawn from λ:

⟨λ, r + γPV − V ⟩ = E(s,a)∼λ [r(s, a) + γPV (s, a) − V (s)] .

◦ [34] proposes to optimize an empirical objective obtained from samples.

◦ AlgaeDICE is a Q-based offline RL approach, whereas PRO-RL is value-based.
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Guarantees for PRO-RL

Algorithm Main assumptions Samples for ϵ-optimal policy

PRO-RL λ⋆(s,a)
λπ̃(s,a) ≤ B < ∞, h(·) is Mh-strongly convex O

(
B|S|

(1−γ)4ϵ6Mf

)

Remarks: ◦ The assumption λ⋆(s,a)
λπ̃(s,a) < ∞ has the interpretation that the occupancy measure λπ̃ has

support larger than the support of the optimal occupancy measure λ⋆.

◦ The sample complexity gurantees worsen as B increases.

◦ That means that the more “different” λπ̃ and λ⋆ are, the more samples are required.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 50/ 50



References I

[1] Y. Abbasi-Yadkori, P. L. Bartlett, and A. Malek.
Linear programming for large-scale Markov decision problems.
In International Conference on Machine Learning (ICML), 2014.
19

[2] Amir Beck and Marc Teboulle.
Mirror descent and nonlinear projected subgradient methods for convex optimization.
Operations Research Letters, 31(3):167–175, 2003.
67, 70, 71

[3] D. P. Bertsekas and J. Tsitsiklis.
Neuro-Dynamic Programming.
Athena Scientific, 1996.
4

[4] V. S. Borkar.
A convex analytic approach to Markov decision processes.
Probability Theory and Related Fields, 78(4):583–602, 1988.
19

[5] Volkan Cevher and Bang Cong Vu.
A reflected forward-backward splitting method for monotone inclusions involving lipschitzian operators.
Set-Valued and Variational Analysis, pages 1–12, 2020.
64

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 1/ 37



References II

[6] Y. Chen, L. Li, and M. Wang.
Scalable bilinear π learning using state and action features.
In International Conference on Machine Learning (ICML), 2018.
31, 33

[7] D. P. De Farias and B. Van Roy.
The linear programming approach to approximate dynamic programming.
Operations Research, 51(6):850–865, 2003.
19, 21, 22

[8] D. P. De Farias and B. Van Roy.
On constraint sampling in the linear programming approach to approximate dynamic programming.
Mathematics of Operations Research, 29(3):462–478, 2004.
19, 23, 24

[9] Vijay V. Desai, Vivek F. Farias, and Ciamac C. Moallemi.
Approximate dynamic programming via a smoothed linear program.
Operations Research, 60(3):655–674, 2012.
19

[10] Alireza Fallah, Aryan Mokhtari, and Asuman E. Ozdaglar.
On the convergence theory of gradient-based model-agnostic meta-learning algorithms.
CoRR, abs/1908.10400, 2019.
63, 65

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 2/ 37



References III

[11] O. Hernández-Lerma and J. B. Lasserre.
Discrete-Time Markov Control Processes: Basic Optimality Criteria.
Springer-Verlag New York, 1996.
19

[12] O. Hernández-Lerma and J. B. Lasserre.
Further Topics on Discrete-Time Markov Control Processes.
Springer-Verlag New York, 1999.
19

[13] Y. Jin and A. Sidford.
Efficiently solving MDPs with stochastic mirror descent.
In International Conference on Machine Learning (ICML), 2020.
31

[14] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari.
Regularization techniques for learning with matrices.
Journal of Machine Learning Research, 13(59):1865–1890, 2012.
77, 78

[15] G. M. Korpelevic.
An extragradient method for finding saddle-points and for other problems.
Èkonom. i Mat. Metody., 12(4):747–756, 1976.
62

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 3/ 37



References IV

[16] C. Lakshminarayanan, S. Bhatnagar, and C. Szepesvári.
A linearly relaxed approximate linear program for Markov decision processes.
IEEE Transactions on Automatic Control, 63(4):1185–1191, 2018.
19

[17] Yura Malitsky and Matthew K Tam.
A forward-backward splitting method for monotone inclusions without cocoercivity.
SIAM Journal on Optimization, 30(2):1451–1472, 2020.
64

[18] A. Manne.
Linear programming and sequential decisions.
Management Science, 6(3):259–267, 1960.
19

[19] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.
4

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 4/ 37



References V
[20] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil.

A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach.
In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third International Conference on Artificial Intelligence and
Statistics, volume 108 of Proceedings of Machine Learning Research, pages 1497–1507. PMLR, 26–28 Aug 2020.
63, 65

[21] O. Nachum and B. Dai.
Reinforcement learning via Fenchel-Rockafellar duality.
arXiv:2001.01866, 2020.
47, 74

[22] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li.
Dualdice: Behavior-agnostic estimation of discounted stationary distribution corrections.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.
74

[23] Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans.
Algaedice: Policy gradient from arbitrary experience.
arXiv:1912.02074, 2019.
48, 74

[24] Aldo Pacchiano, Jonathan Lee, Peter Bartlett, and Ofir Nachum.
Near optimal policy optimization via REPS.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021.
43

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 5/ 37



References VI

[25] Jan Peters, Katharina Mulling, and Yasemin Altun.
Relative entropy policy search.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 24, 2010.
37, 42

[26] Marek Petrik, Gavin Taylor, Ron Parr, and Shlomo Zilberstein.
Feature selection using regularization in approximate linear programs for markov decision processes.
In International Conference on International Conference on Machine Learning (ICML), 2010.
19

[27] Marek Petrik and Shlomo Zilberstein.
Constraint relaxation in approximate linear programs.
In International Conference on Machine Learning (ICML), 2009.
19

[28] Leonid Denisovich Popov.
A modification of the arrow-hurwicz method for search of saddle points.
Mathematical notes of the Academy of Sciences of the USSR, 28(5):845–848, 1980.
64

[29] M. L. Puterman.
Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., USA, 1st edition, 1994.
15

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 6/ 37



References VII

[30] Alexander Rakhlin and Karthik Sridharan.
Optimization, learning, and games with predictable sequences.
arXiv preprint arXiv:1311.1869, 2013.
64

[31] R Tyrrell Rockafellar.
Conjugate convex functions in optimal control and the calculus of variations.
Journal of Mathematical Analysis and Applications, 32(1):174–222, 1970.
67

[32] R. Tyrrell Rockafellar.
Monotone operators and the proximal point algorithm.
SIAM Journal on Control and Optimization, 14(5):877–898, 1976.
34, 61

[33] Paul J Schweitzer and Abraham Seidmann.
Generalized polynomial approximations in markovian decision processes.
Journal of Mathematical Analysis and Applications, 110(2):568–582, 1985.
19, 20

[34] W. Zhan, B. Huang, A. Huang, N. Jiang, and J. D. Lee.
Offline reinforcement learning with realizability and single-policy concentrability, 2022.
49

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 7/ 37



Supplementary

LP and optimization
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Supplementary Material: Bellman Equation for State-action Visitation Distribution

Recall the definition
λπ(s, a) :=

∑∞

t=0
γtP (st = s, at = a |π, s0 ∼ µ).

Bellman Equation for λπ

λπ(s, a) = µ(s)π(a|s) + γ
∑
s′,a′

π(a|s)P (s|s′, a′)λπ(s′, a′).
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Supplementary Material: Bellman Equation for State-action Visitation Distribution

Proof.

λ
π(s, a)

=P (s0 = s, a0 = a) +
∑∞

t=1
γ
t
P (st = s, at = a|π, s0 ∼ µ)

=µ(s)π(a|s) +
∞∑
t=1

γ
t
∑
s′,a′

P (st = s, at = a|st−1 = s
′
, at−1 = a

′
, π, s0 ∼ µ)P (st−1 = s

′
, at−1 = a

′|π, s0 ∼ µ)

=µ(s)π(a|s) + γ

∞∑
t=1

P (st = s, at = a|st−1 = s
′
, at−1 = a

′)P (st−1 = s
′
, at−1 = a

′|π, s0 ∼ µ)

=µ(s)π(a|s) + γ

∞∑
t=1

π(a|s)P (s|s′
, a

′)
∞∑
t=1

γ
t−1

P (st−1 = s
′
, at−1 = a

′|π, s0 ∼ µ)

=µ(s)π(a|s) + γ
∑
s′,a′

π(a|s)P (s|s′
, a

′)λπ(s′
, a

′)

where the third equality is due to Markov property. □
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PPM guarantees for minimax optimization

Theorem (Convergence of PPM [32])
Suppose (xk,yk) be the iterates generated by PPM (i.e., (5)), then for the averaged iterates, it holds that∣∣∣∣∣Φ

(
1
K

K∑
k=1

xk,
1
K

K∑
k=1

yk
)

− Φ(x⋆,y⋆)

∣∣∣∣∣ ≤
∥x0 − x⋆∥2 + ∥y0 − y⋆∥2

τK
.

Theorem (Linear convergence [32])
Suppose (xk,yk) be the iterates generated by (5), Φ(·, ·) is µx−strongly convex in x and µy−strongly concave
in y. Let µ = max{µx, µy}. Then, for any τ > 0, (xk,yk) satisfies the following

rk+1 ≤
1

1 + µτ
rk,

where rk = ∥xk − x⋆∥2 + ∥yk − y⋆∥2.

Remark: ◦ Still need an implementable and convergent algorithm beyond the stylized bilinear case.

◦ Note what happens when τ → ∞.

Theory and Methods for Reinforcement Learning | Prof. Niao He & Prof. Volkan Cevher, niao.he@ethz.ch & volkan.cevher@epfl.ch Slide 11/ 37



Extra-gradient algorithm (EG) [15]

EG method for saddle point problems
1. Choose x0,y0 and τ .
2. For k = 0, 1, · · · , perform:

x̃k := xk − τ∇xΦ(xk,yk),
ỹk := yk + τ∇yΦ(xk,yk).
xk+1 := xk − τ∇xΦ(x̃k, ỹk).
yk+1 := yk + τ∇yΦ(x̃k, ỹk).

◦ Idea: Predict the gradient at the next point

zk+1 = zk − τV( zk − τV(zk)︸             ︷︷             ︸
prediction of zk+1

)
(EG)

Remark: ◦ 1-extra-gradient computation per iteration
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Extra-gradient algorithm: Convergence

Theorem (General case [10])
Let 0 < τ ≤ 1

L
. It holds that

▶ Iterates (xk,yk) remains bounded in a convex compact set.
▶ Primal-dual gap reduces: Gap

(
1
K

∑K

k=1 xk, 1
K

∑K

k=1 yk
)

≤ O
(

1
K

)
.

Theorem (Linear convergence [20])
Suppose (xk,yk) be the iterates generated by Extra-gradient algorithm, Φ(·, ·) is µx−strongly convex in x and
µy−strongly concave in y. Let µ = max{µx, µy}. Then, for τ = 1

4L , (xk,yk) satisfies,

rk+1 ≤
(

1 −
1
cκ

)k
r0,

where rk = ∥xk − x⋆∥2 + ∥yk − y⋆∥2, κ = L
µ

is the condition number of the problem, and c is a constant
which is independent of the problem parameters.
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Optimistic gradient descent ascent algorithm (OGDA) [30]

OGDA for saddle point problems
1. Choose x0,y0,x1,y1 and τ .
2. For k = 1, · · · , perform:

xk+1 := xk−2τ∇xΦ(xk,yk)+τ∇xΦ(xk−1,yk−1).
yk+1 := yk+2τ∇yΦ(xk,yk)−τ∇yΦ(xk−1,yk−1).

previous gradient

zk+1

zk

current gradient

◦ Main difference from the GDA: Add a “momentum” or “reflection” term to the updates

zk+1 = zk − τ

[
V(zk) + (V(zk) − V(zk−1))︸                        ︷︷                        ︸

momentum

]
. (OGDA)

◦ Known as Popov’s method [28], it is also a special case of the Forward-Reflected-Backward method [17].

◦ It has ties to the Reflected-Forward-Backward Splitting (RFBS) method [5]:

zk+1 = zk − τV(2zk − zk−1). (RFBS)

Remark: ◦ Advanced material at the end: OGDA is an approximation of PPM for bilinear problems.
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OGDA: Convergence

Theorem (General case [10])
Let 0 < τ ≤ 1

2L , x1 = x0,y1 = y0. It holds that
▶ Iterates (xk,yk) remains bounded in a convex compact set.
▶ Primal-dual gap reduces: Gap

(
1
K

∑K

k=1 xk, 1
K

∑K

k=1 yk
)

≤ O
(

1
K

)
.

Theorem (Linear convergence [20])
Suppose (xk,yk) be the iterates generated by OGDA, Φ(·, ·) is µx−strongly convex in x and µy−strongly
concave in y. Let µ = max{µx, µy}. Then, for τ = 1

4L , (xk,yk) satisfies,

rk+1 ≤
(

1 −
1
cκ

)k
r0,

where rk = ∥xk − x⋆∥2 + ∥yk − y⋆∥2, κ = L
µ

is the condition number of the problem, and c is a constant
which is independent of the problem parameters.
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⋆Bregman divergences

Table: Bregman functions ψ(x) & corresponding Bregman divergences/distances dψ(x,y)a.

Name (or Loss) Domainb ψ(x) dψ(x, y)

Squared loss R x
2 (x − y)2

Itakura-Saito divergence R++ − log x
x

y
− log

(
x

y

)
− 1

Squared Euclidean distance Rp ∥x∥2
2 ∥x − y∥2

2
Squared Mahalanobis distance Rp ⟨x,Ax⟩ ⟨(x − y),A(x − y)⟩c

Entropy distance p-simplexd
∑
i

xi log xi

∑
i

xi log

(
xi

yi

)
Generalized I-divergence R

p
+

∑
i

xi log xi

∑
i

(
log

(
xi

yi

)
−
(
xi − yi

))
von Neumann divergence S

p×p
+ X log X − X tr (X (log X − log Y) − X + Y)e

logdet divergence S
p×p
+ − log det X tr

(
XY−1

)
− log det

(
XY−1

)
− p

a x, y ∈ R, x,y ∈ Rp and X,Y ∈ Rp×p.
b R+ and R++ denote non-negative and positive real numbers respectively.
c A ∈ Sp×p

+ , the set of symmetric positive semidefinite matrix.
d p-simplexB {x ∈ Rp :

∑p

i=1 xi = 1, xi ≥ 0, i = 1, . . . , p}
e tr(A) is the trace of A.
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⋆Mirror descent [2]

What happens if we use a Bregman distance dψ in gradient descent?
Let ψ : Rp → R be a µ-strongly convex and continuously differentiable function and let the associated Bregman
distance be dψ(x,y) = ψ(x) − ψ(y) − ⟨x − y,∇ψ(y)⟩.
Assume that the inverse mapping ψ⋆ of ψ is easily computable (i.e., its convex conjugate).
▶ Majorize: Find αk such that

f(x) ≤ f(xk) + ⟨∇f(xk),x − xk⟩ +
1
αk

dψ(x,xk) := Qkψ(x,xk)

▶ Minimize

xk+1 = arg min
x

Qkψ(x,xk) ⇒ ∇f(xk) +
1
αk

(
∇ψ(xk+1) − ∇ψ(xk)

)
= 0

∇ψ(xk+1) = ∇ψ(xk) − αk∇f(xk)

xk+1 = ∇ψ∗(∇ψ(xk) − αk∇f(xk)) (∇ψ(·))−1 = ∇ψ∗(·)[31].

▶ Mirror descent is a generalization of gradient descent for functions that are Lipschitz-gradient in norms
other than the Euclidean.

▶ MD allows to deal with some constraints via a proper choice of ψ.
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⋆What to keep in mind about mirror descent?

• Approximates the optimum by lower bounding the function via hyperplanes at xt

x

f(x)

x?

• The smaller the gradients, the better the approximation!
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⋆Mirror descent example

How can we minimize a convex function over the unit simplex?

min
x∈∆

f(x),

where
▶ ∆ := {x ∈ Rp :

∑p

j=1 xj = 1,x ≥ 0} is the unit simplex;
▶ f is convex Lf -Lipschitz continuous with respect to some norm ∥ · ∥. (not necessarily L-Lipschitz gradient)

Entropy function
▶ Define the entropy function

ψe(x) =
p∑
j=1

xj lnxj if x ∈ ∆, +∞ otherwise.

▶ ψe is 1-strongly convex over int∆ with respect to ∥ · ∥1.
▶ ψ⋆e (z) = ln

∑p

j=1 e
zj and ∥∇ψe(x)∥ → ∞ as x → x̃ ∈ ∆.

▶ Let x0 = p−11, then dψ(x,x0) ≤ lnp for all x ∈ ∆.
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⋆Entropic descent algorithm [2]

Entropic descent algorithm (EDA)
Let x0 = p−11 and generate the following sequence

xk+1
j =

xkj e
−tkf ′

j(xk)∑p

j=1 x
k
j e

−tkf ′
j

(xk)
, tk =

√
2lnp
Lf

1
√
k
,

where f ′(x) = (f1(x)′, . . . , fp(x)′)T ∈ ∂f(x), which is the subdifferential of f at x.
▶ This is an example of non-smooth and constrained optimization;
▶ The updates are multiplicative.
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⋆Convergence of mirror descent

Problem

min
x∈X

f(x) (6)

where
▶ X is a closed convex subset of Rp;
▶ f is convex Lf -Lipschitz continuous with respect to some norm ∥ · ∥.

Theorem ([2])
Let {xk} be the sequence generated by mirror descent with x0 ∈ intX .
If the step-sizes are chosen as

αk =

√
2µdψ(x⋆,x0)

Lf

1
√
k

the following convergence rate holds

min
0≤s≤k

f(xs) − f⋆ ≤ Lf

√
2dψ(x⋆,x0)

µ

1
√
k

▶ This convergence rate is optimal for solving (6) with a first-order method.
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Supplementary material

Offline policy evaluation
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A primal LP for policy evaluation.

◦ Recall that Qπ(s, a) is a fixed point for the expectation Bellman operator T π .

Qπ(s, a) = (T πQπ)(s, a) = r(s, a) + γ
∑
s′,a′

P (s′|s, a)π(a′|s′)Qπ(s′, a′)

Derivation: ◦ It follows that Qπ belongs to the set given by{
Q ∈ R|S||A| : Qπ(s, a) ≥ r(s, a) + γ

∑
s′,a′

P (s′|s, a)π(a′|s′)Qπ(s′, a′)

}
◦ Therefore, we can write the following program for Qπ :

Qπ = argminQ⟨c,Q⟩

s.t.Q(s, a) ≥ r(s, a) + γ
∑
s′,a′

P (s′|s, a)π(a′|s′)Q(s′, a′) ∀s, a ∈ S × A

◦ The variable c is a vector of dimension |S||A| defined as c(s, a) = (1 − γ)π(a|s)µ(s).
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The corresponding dual LP.

◦ With standard techniques we can derive the following dual formulation over the occupancy measure.

λπ = argmaxλ≥0⟨r, λ⟩

s.t.λ(s, a) = γ
∑
s′,a′

P (s|s′, a′)π(a|s)λ(s′, a′) + c(s, a) ∀s, a ∈ S × A

Remark: ◦ The only feasible point is λπ [21].

◦ We can change the objective without affecting the maximizer.

◦ However, we change the objective value.

◦ Several recent works proposed to add an f -divergence to the objective. [21, 23, 22]
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A modified Dual LP

Dual LP with f -divergences

λπ = argmaxλ≥0⟨r, λ⟩ −
1
η
Df (λ, λπ̃)

s.t.λ(s, a) = γ
∑
s′,a′

P (s|s′, a′)π(a|s)λ(s′, a′) + c(s, a) ∀s, a ∈ S × A

Remarks: ◦ Notice that the constraints are different from the one used in the LP formulation for REPS.

◦ We use more general f -divergences Df instead than KL divergence.

◦ The center point is λπ̃ as opposed to λk−1.
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Conjugation of functions

◦ Idea: Represent a convex function in max-form:

Definition
Let Q be a Euclidean space and Q∗ be its dual space. Given a
proper, closed and convex function f : Q → R ∪ {+∞}, the
function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx − f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

f(x)

y

T
x

x

0

(0,�f⇤(y))

x̂

y

T
x̂

f(x̂)

Friday, July 11, 14

Figure: The conjugate function f∗(y) is the
maximum gap between the linear function
xTy (red line) and f(x).

Observations: ◦ y : slope of the hyperplane
◦ −f∗(y) : intercept of the hyperplane
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Conjugation of functions

Definition
Given a proper, closed and convex function f : Q → R ∪ {+∞}, the function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx − f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

Properties
◦ f∗ is a convex and lower semicontinuous function by construction as the supremum of affine functions of y.

◦ The conjugate of the conjugate of a convex function f is the same function f ; i.e., f∗∗ = f for f ∈ F(Q).

◦ The conjugate of the conjugate of a non-convex function f is its lower convex envelope when Q is compact:

▶ f∗∗(x) = sup{g(x) : g is convex and g ≤ f , ∀x ∈ Q }.

◦ For closed convex f , µ-strong convexity w.r.t. ∥ · ∥ is equivalent to 1
µ

smoothness of f∗ w.r.t. ∥ · ∥∗.

▶ Recall dual norm: ∥y∥∗ = supx{⟨x,y⟩ : ∥x∥ ≤ 1}.

▶ See for example Theorem 3 in [14].
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Conjugation of functions

Definition
Given a proper, closed and convex function f : Q → R ∪ {+∞}, the function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx − f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

Properties
◦ f∗ is a convex and lower semicontinuous function by construction as the supremum of affine functions of y.

◦ The conjugate of the conjugate of a convex function f is the same function f ; i.e., f∗∗ = f for f ∈ F(Q).

◦ The conjugate of the conjugate of a non-convex function f is its lower convex envelope when Q is compact:

▶ f∗∗(x) = sup{g(x) : g is convex and g ≤ f , ∀x ∈ Q }.

◦ For closed convex f , µ-strong convexity w.r.t. ∥ · ∥ is equivalent to 1
µ

smoothness of f∗ w.r.t. ∥ · ∥∗.

▶ Recall dual norm: ∥y∥∗ = supx{⟨x,y⟩ : ∥x∥ ≤ 1}.

▶ See for example Theorem 3 in [14].
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Fenchel duality of f-divergence

◦ Using Fenchel conjugation, we can rewrite an f -divergence as follows:

Df (λ, λπ̃) =
∑
s,a

λπ̃(s, a)f
(
λ(s, a)

λπ̃(s, a)

)
= max

u

∑
s,a

λ(s, a)u(s, a) − λπ̃(s, a)f∗ (u(s, a))

where we used the dual function u : S × A → R.
Remark: ◦ When seeing Df (λ, λπ̃) as a function of λ, we have that its Fenchel conjugate is given by the

following expression (Df (·, λπ̃))∗ = ⟨λπ̃ , f∗(·)⟩
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Some additional operators towards the Lagrangian

◦ For compacteness we will consider the Bellman evaluation operator Lπ : RS×A → RS×A

◦ The action on Q(s, a) is

(LπQ)(s, a) = Q(s, a) − γ
∑
s′,a′

P (s′|s, a)π(a′|s′)Q(s′, a′)

◦ The adjoint operator L∗
π : RS×A → RS×A

◦ The action on λ(s, a) is

(L∗
πλ)(s, a) = λ(s, a) − γ

∑
s′,a′

P (s|s′, a′)π(a|s)λ(s′, a′)
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The Lagrangian

Derivation: ◦ Thanks to the Bellman evaluation operator we have that

λπ = argmaxλ≥0 min
Q

⟨r, λ⟩ −
1
η
Df (λ, λπ̃) − ⟨Q,L∗

πλ⟩ + ⟨Q, c⟩

◦ Rearranging the terms:

λπ = argmaxλ≥0 min
Q

⟨r − LπQ,λ⟩ −
1
η
Df (λ, λπ̃) + ⟨Q, c⟩

◦ Exchanging max and min by strong duality:

Qπ = argminQ max
λ≥0

⟨r − LπQ,λ⟩ −
1
η
Df (λ, λπ̃) + ⟨Q, c⟩

◦ Recognizing the Fenchel dual:

Qπ = argminQ⟨λπ̃ , f∗(η(r − LπQ))⟩ + ⟨Q, c⟩

◦ We derived the formulation used in AlgaeDICE for policy evaluation.
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