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General nonsmooth problems

◦ We will show that the restricted template captures the familiar composite minimization:

min
x∈Rp

f(x) + g(Ax).

I f , g are convex, nonsmooth functions; and A is a linear operator.

Examples
I g(Ax) = ‖Ax− b‖1 or g(Ax) = ‖Ax− b‖22.

I g(Ax) = δ{b}(Ax), where δ{b}(Ax) =
{

0, if Ax = b,
+∞, if Ax , b.

Observations: ◦ The indicator example covers constrained problems, such as minx∈X {f(x) : Ax = b}.

◦ We need a tool, called Fenchel conjugation, to reveal the underlying minimax problem.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 47



Conjugation of functions

◦ Idea: Represent a convex function in max-form:

Definition
Let Q be a Euclidean space and Q∗ be its dual space. Given a
proper, closed and convex function f : Q → R ∪ {+∞}, the
function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx− f(x)

}
is called the Fenchel conjugate (or conjugate) of f .
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Friday, July 11, 14

Figure: The conjugate function f∗(y) is the
maximum gap between the linear function
xTy (red line) and f(x).

Observations: ◦ y : slope of the hyperplane
◦ −f∗(y) : intercept of the hyperplane
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Conjugation of functions

Definition
Given a proper, closed and convex function f : Q → R ∪ {+∞}, the function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx− f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

Properties
◦ f∗ is a convex and lower semicontinuous function by construction as the supremum of affine functions of y.

◦ The conjugate of the conjugate of a convex function f is the same function f ; i.e., f∗∗ = f for f ∈ F(Q).

◦ The conjugate of the conjugate of a non-convex function f is its lower convex envelope when Q is compact:

I f∗∗(x) = sup{g(x) : g is convex and g ≤ f , ∀x ∈ Q }.

◦ For closed convex f , µ-strong convexity w.r.t. ‖ · ‖ is equivalent to 1
µ

smoothness of f∗ w.r.t. ‖ · ‖∗.

I Recall dual norm: ‖y‖∗ = supx{〈x,y〉 : ‖x‖ ≤ 1}.

I See for example Theorem 3 in [12].
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Examples

`2-norm-squared
f(x) = λ

2 ‖x‖
2 ⇒ f∗(y) = maxx〈y,x〉 − λ

2 ‖x‖
2.

◦ Take the derivative and equate to 0: 0 = y− λx ⇐⇒ x = 1
λ

y ⇐⇒ f∗(y) = 1
λ
‖y‖2 − 1

2λ‖y‖
2 = 1

2λ‖y‖
2.

`1-norm
f(x) = λ‖x‖1 ⇒ f∗(y) = maxx〈y,x〉 − λ‖x‖1.

◦ By definition of the `1-norm: f∗(y) = maxx
∑n

i=1 yixi − λ|xi| = maxx
∑n

i=1 yisign(xi)|xi| − λ|xi|.

◦ By inspection:

I If all |yi| ≤ λ, then ∀i, (yisign(xi)− λ)|xi| ≤ 0. Taking x = 0 gives the maximum value: f∗(y) = 0.

I If for at least one i, |yi| > λ, (yisign(xi)− λ)|xi| → +∞ as |xi| → +∞.

◦ f∗(y) = δy:‖·‖∞≤λ(y) =
{

0, if ‖y‖∞ ≤ λ
+∞, if ‖y‖∞ > λ

Remark: ◦ See advanced material at the end for non-convex examples, such as f(x) = ‖x‖0.
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General nonsmooth problems

min
x∈Rp

f(x) + g(Ax)

◦ By Fenchel-conjugation, we have g(Ax) = maxy〈Ax,y〉 − g∗(y), where g∗ is the conjugate of g.

◦ Min-max formulation:

min
x∈Rp

f(x) + g(Ax) = min
x∈Rp

max
y
{Φ(x,y) := f(x) + 〈Ax,y〉 − g∗(y)}

An example with linear constraints

◦ If g(Ax) = δ{b}(Ax) =
{

0, if Ax = b,
+∞, if Ax , b,

⇒ g∗(y) = max
x
〈y,x〉 − δ{b}(x) = max

x:x=b
〈y,x〉 = 〈y,b〉.

◦ We reach the minimax formulation (or the so-called “Lagrangian”) via conjugation:

min
x
{f(x) : Ax = b} = min

x
f(x) + g(Ax) = min

x
max

y
f(x) + 〈Ax− b,y〉.
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A special case in minimax optimization

Bilinear min-max template

min
x∈X

max
y∈Y

f(x) + 〈Ax,y〉 − h(y),

where X ⊆ Rp and Y ⊆ Rn.
I f : X → R is convex.
I h : Y → R is convex.
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Example: Sparse recovery

An example from sparseland b = Ax\ + w: constrained formulation
The basis pursuit denoising (BPDN) formulation is given by

x? ∈ arg min
x∈Rp

{‖x ‖1 : ‖Ax− b ‖2 ≤ ‖w ‖2, ‖x‖∞ ≤ 1} . (BPDN)

A primal problem prototype

f? := min
x∈Rp

{
f(x) : Ax− b ∈ K x ∈ X

}
,

The above template captures BPDN formulation with
I f(x) = ‖x‖1.
I K = {‖u‖ ∈ Rn : ‖u‖ ≤ ‖w‖2}.
I X = {x ∈ Rp : ‖x‖∞ ≤ 1}.
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An alternative formulation

A primal problem prototype

f? := min
x∈Rp

{
f(x) : Ax− b ∈ K, x ∈ X

}
, (1)

I f is a proper, closed and convex function
I X and K are nonempty, closed convex sets
I A ∈ Rn×p and b ∈ Rn are known
I An optimal solution x? to (1) satisfies f(x?) = f?, Ax? − b ∈ K and x? ∈ X

A simplified template without loss of generality

f? := min
x∈Rp

{
f(x) : Ax = b

}
, (2)

I f is a proper, closed and convex function
I A ∈ Rn×p and b ∈ Rn are known
I An optimal solution x? to (2) satisfies f(x?) = f?, Ax? = b
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Reformulation between templates

A primal problem template

min
x∈Rp

{
f(x) : Ax− b ∈ K,x ∈ X

}
.

First step: Let r1 = Ax− b ∈ Rn and r2 = x ∈ Rp.

min
x,r1,r2

{
f(x) : r1 ∈ K, r2 ∈ X ,Ax− b = r1,x = r2

}
.

◦ Define z =

[
x
r1
r2

]
∈ R2p+n, Ā =

[
A −In×n 0n×p

Ip×p 0p×n −Ip×p

]
, b̄ =

[
b
0

]
, f̄(z) = f(x) + δK(r1) + δX (r2),

where δX (x) = 0, if x ∈ X , and δX (x) = +∞, o/w.

The simplified template

min
z∈R2p+n

{
f̄(z) : Āz = b̄

}
.
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From constrained formulation back to minimax

A general template

min
x∈Rp

{f(x) : Ax = b}.

Other examples:
I Standard convex optimization formulations: linear programming, convex quadratic programming, second

order cone programming, semidefinite programming and geometric programming.
I Reformulations of existing unconstrained problems via convex splitting: composite convex minimization,

consensus optimization, . . .

Formulating as min-max

max
y∈Rn

〈y,Ax− b〉 =
{

0, if Ax = b,
+∞, if Ax , b.

min
x∈Rp

{
f(x) : Ax = b

}
= min

x∈Rp
max
y∈Rn

{
Φ(x,y) := f(x) + 〈y,Ax− b〉

}
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Dual problem

min
x∈Rp

{
f(x) : Ax = b

}
= min

x∈Rp
max
y∈Rn

{
Φ(x,y) := f(x) + 〈y,Ax− b〉

}
◦ We define the dual problem

max
y∈Rn

d(y) := max
y∈Rn

{min
x∈Rp

f(x) + 〈y,Ax− b〉︸                                ︷︷                                ︸
d(y)

}.

Concavity of dual problem
Even if f(x) is not convex, d(y) is concave:

I For each x, d(y) is linear; i.e., it is both convex and concave.

I Pointwise minimum of concave functions is still concave.

Remark: ◦ If we can exchange min and max, we obtain a concave maximization problem.
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Example: Nonsmoothness of the dual function
◦ Consider a constrained convex problem:

min
x∈R3

{
f(x) := x2

1 + 2x2
}
,

s.t. 2x3 − x1 − x2 = 1,
x ∈ X := [−2, 2]× [−2, 2]× [0, 2].

◦ The dual function is concave and nonsmooth as written and then illustrated below.

d(λ) := min
x∈X

{
x2

1 + 2x2 + λ(2x3 − x1 − x2 − 1)
}
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Exchanging min and max: A dangerous proposal
◦ Weak duality:

max
y∈Rn

d(y)︸        ︷︷        ︸
Dual problem

=: max
y∈Rn

min
x∈Rp

Φ(x,y) ≤ min
x∈Rp

max
y∈Rn

Φ(x,y) = min
x∈Rp

{
f(x) : Ax = b

}
︸                             ︷︷                             ︸

Primal problem

=
{
f?, if Ax = b
+∞, if Ax , b

f3(x)

f2(x)
f1(x)

x

min
x�0

max
i

fi(x)

max
x�0

min
i

fi(x)
max

i
min
x�0

fi(x)
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A proof of weak duality

f? := min
x∈Rp

{
f(x) : Ax = b

}
= min

x∈Rp
max
y∈Rn

{
Φ(x,y) := f(x) + 〈y,Ax− b〉

}
◦ Since Ax? = b, it holds for any y

Φ(x?,y) = f? = f(x?) + 〈y,Ax? − b〉

≥ min
x∈Rp

{
f(x) + 〈y,Ax− b〉

}
= min

x∈Rp
Φ(x,y).

◦ Take maximum of both sides in y and note that f? is independent of y:

f? = min
x∈Rp

max
y∈Rn

Φ(x,y) ≥ max
y∈Rn

min
x∈Rp

Φ(x,y) =: max
y∈Rn

d(y) = d?.
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Strong duality and saddle points

Strong duality

f? = f(x?) = min
x∈Rp

max
y∈Rn

Φ(x,y) = max
y∈Rn

min
x∈Rp

Φ(x,y) =: max
y∈Rn

d(y) = d?.

Under strong duality and assuming existence of x?, Φ(x,y) has a saddle point. We have primal and dual
optimal values coincide, i.e., f? = d?.

Recall saddle point / LNE
A point (x?,y?) ∈ Rp × Rn is called a saddle point of Φ if

Φ(x?,y) ≤ Φ(x?,y?) ≤ Φ(x,y?), ∀x ∈ Rp, y ∈ Rn.

saddle point x̄
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Toy example: Strong duality

Primal problem
◦ Consider the following primal minimization problem: minx P (x) := f(x) + g(x) := 1

2‖x‖
2 + ‖x‖1

◦ Using conjugation and strong duality

P (x?) = min
x
P (x) = min

x
max

y
f(x) + 〈x,y〉 − g∗(y), by conjugation

= max
y
−g∗(y) + min

x
f(x) + 〈x,y〉, by changing min-max

= max
y
−g∗(y)−max

x
〈x,−y〉 − f(x), by min f = −max−f

= max
y
−g∗(y)− f∗(−y), by conjugation.

Dual problem
◦ Dual problem: d? = maxy d(y) = −g∗(y)− f∗(−y)

◦ Recall f∗(−y) = 1
2‖y‖

2 and g∗(y) = δy:‖y‖∞≤1(y).
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Toy example: Strong duality

Primal problem: min
x
P (x) =

1
2
‖x‖2 + ‖x‖1

Dual problem: max
y
−

1
2
‖y‖2 − δy:‖y‖∞≤1(y)
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D(y)d

d(y) =

(
� 1

2kyk2, if kyk1  1

�1, if kyk1 > 1

<latexit sha1_base64="fH/zgow5ddDoUhJ5FnhzR51zwPM="></latexit>
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Back to convex-concave: Necessary and sufficient condition for strong duality

◦ Existence of a saddle point is not automatic even in convex-concave setting!

◦ Recall the minimax template:

min
x∈Rp

max
y∈Rn

{Φ(x,y) := f(x) + 〈y,Ax− b〉}

Theorem (Necessary and sufficient optimality condition)
Under the Slater’s condition: relint(dom f) ∩ {x : Ax = b} , ∅, strong duality holds, where the primal and
dual problems are given by

f? :=
{

min
x∈Rp

f(x)

s.t. Ax = b,
and d? := max

y∈Rn
d(y).

Remarks: ◦ By definition of f? and d?, we always have d? ≤ f? (weak duality).

◦ If a primal solution exists and the Slater’s condition holds, we have d? = f? (strong duality).
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Slater’s qualification condition

◦ Denote relint(dom f) the relative interior of the domain.

◦ The Slater condition requires
relint(dom f) ∩ {x : Ax = b} , ∅. (3)

Special cases
I If dom f = Rp , then (3) ⇔ ∃x̄ : Ax̄ = b .
I If dom f = Rp and instead of Ax = b, we have the feasible set {x : h(x) ≤ 0}, where h is Rp → Rq is

convex, then
(3)⇔ ∃x̄ : h(x̄) < 0.
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Example: Slater’s condition

Example
Let us consider solving minx∈Dα f(x) and so the feasible set is Dα := X ∩Aα, where

X := {x ∈ R2 : x2
1 + x2

2 ≤ 1}, Aα := {x ∈ R2 : x1 + x2 = α},

where α ∈ R.

Two cases where Slater’s condition holds and does not hold

x1

x2

0 1

1

1

2

1

2

x
1 +

x
2 = 1

2

x2
1 + x2

2  1

relative interior of D

x1

x2

0 1

1

x2
1 + x2

2  1

relative interior of D = ;

x
1 +

x
2 = p

2

Tuesday, July 1, 14

D1/2 satisfies Slater’s condition – D√2-does not satisfy Slater’s condition
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Performance of optimization algorithms

f? := min
x∈Rp

{
f(x) : Ax = b,

}
, (Affine-Constrained)

Exact vs. approximate solutions
I Computing an exact solution x? to (Affine-Constrained) is impracticable
I Algorithms seek x?ε that approximates x? up to ε in some sense

A performance metric: Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

A key issue: Number of iterations to reach ε

The notion of ε-accuracy is elusive in constrained optimization!
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Numerical ε-accuracy

◦ Unconstrained case: All iterates are feasible (no advantage from infeasibility)!
f(x?ε )− f? ≤ ε

f? = min
x∈Rp

f(x)

◦ Constrained case: We need to also measure the infeasibility of the iterates!
f? − f(x?ε ) ≤ ε !!!

f? = min
x∈Rp

{
f(x) : Ax = b

}
(4)

Our definition of ε-accurate solutions [16]
Given a numerical tolerance ε ≥ 0, a point x?ε ∈ Rp is called an ε-solution of (4) if{

f(x?ε )− f? ≤ ε (objective residual),
‖Ax?ε − b‖ ≤ ε (feasibility gap),

I When x? is unique, we can also obtain ‖x?ε − x?‖ ≤ ε (iterate residual).
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Numerical ε-accuracy

Constrained problems
Given a numerical tolerance ε ≥ 0, a point x?ε ∈ Rp is called an ε-solution of (4) if{

f(x?ε )− f? ≤ ε (objective residual),
‖Ax?ε − b‖ ≤ ε (feasibility gap),

I When x? is unique, we can also obtain ‖x?ε − x?‖ ≤ ε (iterate residual).

General minimax problems
Since duality gap is 0 at the solution, we measure the primal-dual gap

Gap(x̄, ȳ) = max
y∈Y

Φ(x̄,y)− min
x∈X

Φ(x, ȳ) ≤ ε. (5)

Remarks: ◦ ε can be different for the objective, feasibility gap, or the iterate residual.

◦ It is easy to show Gap(x,y) ≥ 0 and Gap(x̄, ȳ) = 0 iff (x̄, ȳ) is a saddle point.
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Primal-dual gap function for nonsmooth minimization

min
x∈X

f(x) + g(Ax) = min
x∈X

max
y∈Y

f(x) + 〈Ax,y〉 − g∗(y)︸                               ︷︷                               ︸
Φ(x,y)

= max
y∈Y

min
x∈X

f(x) + 〈Ax,y〉 − g∗(y)

◦ Primal problem: minx∈X P (x) where

P (x) = max
y∈Y

Φ(x,y).

◦ Dual problem: maxy∈Y d(y) where

d(y) = min
x∈X

Φ(x,y).

◦ The primal-dual gap, i.e., Gap(x̄, ȳ), is literally (primal value at x̄)− (dual value at ȳ):

Gap(x̄, ȳ) = P (x̄)− d(ȳ) = max
y∈Y

Φ(x̄,y)− min
x∈X

Φ(x, ȳ).
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Toy example for nonnegativity of gap

◦ P (x) = 1
2‖x‖

2 + ‖x‖1

◦ d(y) = − 1
2‖y‖

2 − δy:‖y‖∞≤1(y)

Recall the indicator function

δy:‖y‖∞≤1(y) =
{

0, if ‖y‖∞ ≤ 1
+∞, if ‖y‖∞ > 1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
P(x)
D(y)d

d(y) =

(
� 1

2kyk2, if kyk1  1

�1, if kyk1 > 1

<latexit sha1_base64="fH/zgow5ddDoUhJ5FnhzR51zwPM="></latexit>
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Primal-dual gap function in the general case

min
x∈X

max
y∈Y

Φ(x,y) = max
y∈Y

min
x∈X

Φ(x,y)

◦ Saddle point (x?,y?) is such that ∀x ∈ Rp, ∀y ∈ Rn:

Φ(x?,y)
(∗)
≤ Φ(x?,y?)

(∗∗)
≤ Φ(x,y?).

◦ Nonnegativity of Gap:

Gap(x̄, ȳ) = max
y∈X

Φ(x̄,y)− min
x∈X

Φ(x, ȳ)

≥ Φ(x̄,y?)− min
x∈X

Φ(x, ȳ), by the definition of maximization

≥ Φ(x?,y?)− min
x∈X

Φ(x, ȳ), by the inequality (∗∗)

≥ Φ(x?, ȳ)− min
x∈X

Φ(x, ȳ), by the inequality (∗)

≥ 0, by the definition of minimization.

◦ If (x̄, ȳ) = (x?,y?), then all the inequalities will be equalities and Gap(x̄, ȳ) = 0.
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Optimality conditions for minimax

Saddle point
We say (x?,y?) is a primal-dual solution corresponding to primal and dual problems

f? :=
{

min
x∈Rp

f(x)

s.t. Ax = b,
and d? := max

y∈Rn
d(y) = max

y∈Rn
min

x
Φ(x,y).

if it is a saddle point of Φ(x,y) = f(x) + 〈y,Ax− b〉:

Φ(x?,y) ≤ Φ(x?,y?) ≤ Φ(x,y?), ∀x ∈ Rp, y ∈ Rn.

Karush-Khun-Tucker (KKT) conditions
Under our assumptions, an equivalent characterization of (x?,y?) is via the KKT conditions of the problem

min
x∈Rp

f(x) : Ax = b,

which reads {
0 ∈ ∂xΦ(x?,y?) = ATy? + ∂f(x?),
0 = ∇yΦ(x?, λ?) = Ax? − b.
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A naive proposal: Gradient descent-ascent (GDA)

Towards algorithms for minimax optimization

min
x∈X

max
y∈Y

Φ(x,y).

We assume that

I Φ(·,y) is convex,

I Φ(x, ·) is concave,

I Φ is smooth in the following sense:∥∥∥[ ∇xΦ(x1,y1)
−∇yΦ(x1,y1)

]
−
[
∇xΦ(x2,y2)
−∇yΦ(x2,y2)

]∥∥∥ ≤ L∥∥∥[x1 − x2
y1 − y2

]∥∥∥ . (6)

◦ Let us try to use gradient descent for x, gradient ascent for y to obtain a solution
GDA
1. Choose x0,y0 and τ .
2. For k = 0, 1, · · · , perform:

xk+1 := xk − τ∇xΦ(xk,yk).
yk+1 := yk + τ∇yΦ(xk,yk).
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GDA on a simple problem

Min-max problem

min
x∈X

max
y∈Y

Φ(x,y).

SimGDA
1. Choose x0,y0 and τ .
2. For k = 0, 1, · · · , perform:

xk+1 := xk − τ∇xΦ(xk,yk).
yk+1 := yk + τ∇yΦ(xk,yk).

AltGDA
1. Choose x0,y0 and τ .
2. For k = 0, 1, · · · , perform:

xk+1 := xk − τ∇xΦ(xk,yk).
yk+1 := yk + τ∇yΦ(xk+1,yk).

Example [7]
Let Φ(x, y) = xy, X = Y = R, then,
I for the iterates of SimGDA: x2

k+1 + y2
k+1 = (1 + η2)(x2

k + y2
k),

I for the iterates of AltGDA: x2
k+1 + y2

k+1 = C(x2
0 + y2

0).

◦ SimGDA diverges and AltGDA does not converge!
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Practical performance

min
x∈R

max
y∈R

xy

◦ Simultaneous GDA ◦ Alternating GDA
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Between convex-concave and nonconvex-nonconcave

Nonconvex-concave problems

min
x∈X

max
y∈Y

Φ(x,y)

◦ Φ(x,y) is nonconvex in x, concave in y, smooth in x and y.

Recall
Define f(x) = maxy∈Y Φ(x,y).

◦ Gradient descent applied to nonconvex f requires O(ε−2) iterations to give an ε-stationary point.

◦ (Sub)gradient of f can be computed using Danskin’s theorem:

∇xΦ(·, y?(·)) ∈ ∂f(·), where y?(·) ∈ arg max
y∈Y

Φ(·,y),

which is tractable since Φ is concave in y [13].

Remark: ◦ “Conceptually” much easier than nonconvex-nonconcave case.
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Epilogue

Gradient complexity Optimality measure Reference
convex-concave O

(
ε−1
)
1 ε optimality w.r.t. duality gap Nemirovski, 2004; Chambolle & Pock, 2011;

Tran-Dinh & Cevher, 2014.2

nonconvex-concave Õ
(
ε−2.5

)
3 ε-stationarity w.r.t. gradient mapping norm Lin, Jin, & Jordan, 2020.4

nonconvex-nonconcave HARD HARD Daskalakis, Stratis, & Zampetakis, 2020;
Hsieh, Mertikopoulos, & Cevher, 2020.5

1Rates are not directly comparable as duality gap and gradient mapping norm are not necessarily of the same order!
2Arkadi Nemirovski,“Prox-method with rate of convergence O1/t) for variational inequalities with Lipschitz continuous monotone operators and

smooth convex-concave saddle point problems.” SIAM Journal on Optimization 15.1 (2004): 229-251.
Antonin Chambolle, and Thomas Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging.” Journal of

mathematical imaging and vision 40.1 (2011): 120-145.
Quoc Tran-Dinh, and Volkan Cevher, “Constrained convex minimization via model-based excessive gap." Advances in Neural Information

Processing Systems. 2014.
3The rate is Õ

(
ε−2
)

for strongly concave problems.
4Tianyi Lin, Chi Jin, and Michael Jordan, “Near-optimal algorithms for minimax optimization." arXiv preprint arXiv:2002.02417 (2020).
5Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis, “The complexity of constrained min-max optimization." arXiv preprint

arXiv:2009.09623 (2020).
Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher, “The limits of min-max optimization algorithms: convergence to spurious

non-critical sets." arXiv preprint arXiv:2006.09065 (2020).
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A new hope

min
x∈R

max
y∈R

xy

◦ Next lecture: Some algorithms that actually converge!

◦ Convergence of the sequence:

There exists z? = (x?,y?), such that zk → z?.

◦ Convergence rate:

Gap

(
1
K

K∑
k=1

xk,
1
K

K∑
k=1

yk
)
≤ O

( 1
K

)
.
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Wrap up!

◦ Try to finish Homework #2...
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A convex proto-problem for structured sparsity

A combinatorial approach for estimating x\ from b = Ax\ + w
We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

x̂ ∈ arg min
x∈Rp

{‖x ‖s : ‖b−Ax ‖2 ≤ κ, ‖x‖∞ ≤ 1} (Ps)

with some κ ≥ 0. If κ = ‖w ‖2, then the structured sparse x\ is a feasible solution.

Sparsity and structure together [5]
Given some weights d ∈ Rd, e ∈ Rp and an integer input c ∈ Zl, we define

‖x‖s := min
ω
{dTω + eT s : M

[
ω
s

]
≤ c,1supp(x) = s,ω ∈ {0, 1}d}

for all feasible x, ∞ otherwise. The parameter ω is useful for latent modeling.

A convex candidate solution for b = Ax\ + w
We use the convex estimator based on the tightest convex relaxation of ‖x ‖s:
x̂ ∈ arg minx∈dom(‖ · ‖s) {‖x ‖∗∗s : ‖b−Ax ‖2 ≤ κ} with some κ ≥ 0, dom(‖ · ‖s) := {x : ‖x ‖s <∞}.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 37/ 47



A convex proto-problem for structured sparsity

A combinatorial approach for estimating x\ from b = Ax\ + w
We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

x̂ ∈ arg min
x∈Rp

{‖x ‖s : ‖b−Ax ‖2 ≤ κ, ‖x‖∞ ≤ 1} (Ps)

with some κ ≥ 0. If κ = ‖w ‖2, then the structured sparse x\ is a feasible solution.

Sparsity and structure together [5]
Given some weights d ∈ Rd, e ∈ Rp and an integer input c ∈ Zl, we define

‖x‖s := min
ω
{dTω + eT s : M

[
ω
s

]
≤ c,1supp(x) = s,ω ∈ {0, 1}d}

for all feasible x, ∞ otherwise. The parameter ω is useful for latent modeling.

A convex candidate solution for b = Ax\ + w
We use the convex estimator based on the tightest convex relaxation of ‖x ‖s:
x̂ ∈ arg minx∈dom(‖ · ‖s) {‖x ‖∗∗s : ‖b−Ax ‖2 ≤ κ} with some κ ≥ 0, dom(‖ · ‖s) := {x : ‖x ‖s <∞}.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 37/ 47



Tractability & tightness of biconjugation

Proposition (Hardness of conjugation)
Let F (s) : 2P → R ∪ {+∞} be a set function defined on the support s = supp(x). Conjugate of F over the
unit infinity ball ‖x‖∞ ≤ 1 is given by

g∗(y) = sup
s∈{0,1}p

|y|T s− F (s).

Observations:
I F (s) is general set function

Computation: NP-Hard

I F (s) = ‖x‖s

Computation: Integer Linear Program (ILP) in general. However, if
I M is Totally Unimodular TU
I (M , c) is Total Dual Integral TDI

then tight convex relaxations with a linear program (LP, which is “usually” tractable)

Otherwise, relax to LP anyway!

I F (s) is submodular
Computation: Polynomial-time
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Tree sparsity [11, 4, 3, 17]

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy sparent ≥ schild over tree T

T1supp(x) := T s ≥ 0

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: ‖x‖∗∗s = mins∈[0,1]p{1T s : T s ≥ 0, |x| ≤ s}

?=
∑
G∈GH

‖xG‖∞

for x ∈ [−1, 1]p, ∞ otherwise.

The set G ∈ GH are defined as each node and all its descendants.
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Tree sparsity [11, 4, 3, 17]

GH = {{1, 2, 3}, {2}, {3}} valid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy sparent ≥ schild over tree T

T1supp(x) := T s ≥ 0

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: ‖x‖∗∗s = mins∈[0,1]p{1T s : T s ≥ 0, |x| ≤ s} ?=
∑
G∈GH

‖xG‖∞
for x ∈ [−1, 1]p, ∞ otherwise.

The set G ∈ GH are defined as each node and all its descendants.
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Group knapsack sparsity [19, 8, 6]

G2 = {1, 2, 3, 4, 5}

x1

x2

x3

x4

x5

x6

x7

x8

0

1

0

0

1

0

1

0

1supp(x)

support
indicator vector

sparse

1

2

2

3

1

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

knapsack
constraints vector

cu

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound c` ≤ BT s ≤ cu.
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Group knapsack sparsity [19, 8, 6]

�

B
T =


1 1 · · · 1 1 0 0 · · · 0

0 1 1 · · · 1 1 0 · · · 0

.
.
.

0 · · · 0 0 1 1 · · · 1 1


(p−∆+1)×p

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound c` ≤ BT s ≤ cu.

Biconjugate: ‖x‖∗∗s =
{
‖x‖1 if x ∈ [−1, 1]p,BT |x| ≤ cu,
∞ otherwise

For the neuronal spike example, we have cu = 1.
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Group knapsack sparsity [19, 8, 6]

(left) ‖x‖∗∗s ≤ 1 (middle) ‖x‖∗∗s ≤ 1.5 (right) ‖x‖∗∗s ≤ 2 for G = {{1, 2}, {2, 3}}

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound c` ≤ BT s ≤ cu.

Biconjugate: ‖x‖∗∗s =
{
‖x‖1 if x ∈ [−1, 1]p,BT |x| ≤ cu,
∞ otherwise

For the neuronal spike example, we have cu = 1.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 40/ 47



Group knapsack sparsity example: A stylized spike train

I Basis pursuit (BP): ‖x‖1
I TU-relax (TU):

‖x‖∗∗s =
{
‖x‖1 if x ∈ [−1, 1]p,BT |x| ≤ cu,
∞ otherwise
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Figure: Recovery for n = 0.18p.
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Group knapsack sparsity: A simple variation

G2 = {1, 2, 3, 4, 5}

x1

x2

x3

x4
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G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

knapsack
constraints vector

cu

Structure: We seek the signal with the minimal overall group allocation.

Objective: 1T s→ ‖x‖ω =
{

minω∈Z++ ω if x ∈ [−1, 1]p,BT s ≤ ω1,
∞ otherwise

Linear description: A valid support obeys budget constraints over G

BT s ≤ ω1

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.

Biconjugate: ‖x‖∗∗s =
{

maxG∈G ‖xG‖1 if x ∈ [−1, 1]p,
∞ otherwise

Remark: The regularizer is known as exclusive Lasso [19, 15].
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Group cover sparsity: Minimal group cover [2, 14, 9]

G2 = {1, 2, 3, 4, 5}

x1

x2

x3

x4

x5

x6
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x8

0

1

0

0
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0

1

0

1supp(x)

support
indicator vector

sparse

0

0

0
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0

group “support”
indicator vector

Ê

group sparse

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

Structure: We seek the signal covered by a minimal number of groups.

Objective: 1T s→ dTω

Linear description: At least one group containing a sparse coefficient is selected

Bω ≥ s

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix, or G has a loopless group intersection graph it is TU.

Remark: Weights d can depend on the sparsity within each groups (not TU) [5].
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Group cover sparsity: Minimal group cover [2, 14, 9]

Figure: G = {{1, 2}, {2, 3}}, unit group weights d = 1.

Structure: We seek the signal covered by a minimal number of groups.
Objective: 1T s→ dTω

Linear description: At least one group containing a sparse coefficient is selected

Bω ≥ s

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix, or G has a loopless group intersection graph it is TU.

Biconjugate: ‖x‖∗∗ω = minω∈[0,1]M {d
Tω : Bω ≥ |x|} for x ∈ [−1, 1]p,∞ otherwise

?= minvi∈Rp{
∑M

i=1 di‖vi‖∞ : x =
∑M

i=1 vi, ∀supp(vi) ⊆ Gi},
Remark: Weights d can depend on the sparsity within each groups (not TU) [5].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 47



Group cover sparsity: Minimal group cover [2, 14, 9]

Figure: G = {{1, 2}, {2, 3}}, unit group weights d = 1.

Structure: We seek the signal covered by a minimal number of groups.
Objective: 1T s→ dTω

Linear description: At least one group containing a sparse coefficient is selected

Bω ≥ s

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix, or G has a loopless group intersection graph it is TU.

Biconjugate: ‖x‖∗∗ω = minω∈[0,1]M {d
Tω : Bω ≥ |x|} for x ∈ [−1, 1]p,∞ otherwise

?= minvi∈Rp{
∑M

i=1 di‖vi‖∞ : x =
∑M

i=1 vi, ∀supp(vi) ⊆ Gi},

Remark: Weights d can depend on the sparsity within each groups (not TU) [5].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 47



Group cover sparsity: Minimal group cover [2, 14, 9]

Figure: G = {{1, 2}, {2, 3}}, unit group weights d = 1.

Structure: We seek the signal covered by a minimal number of groups.
Objective: 1T s→ dTω

Linear description: At least one group containing a sparse coefficient is selected

Bω ≥ s

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix, or G has a loopless group intersection graph it is TU.

Biconjugate: ‖x‖∗∗ω = minω∈[0,1]M {d
Tω : Bω ≥ |x|} for x ∈ [−1, 1]p,∞ otherwise

?= minvi∈Rp{
∑M

i=1 di‖vi‖∞ : x =
∑M

i=1 vi, ∀supp(vi) ⊆ Gi},
Remark: Weights d can depend on the sparsity within each groups (not TU) [5].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 47



Budgeted group cover sparsity

G2 = {1, 2, 3, 4, 5}
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group sparse

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

Structure: We seek the sparsest signal covered by G groups.

Objective: dTω → 1T s

Linear description: At least one of the G selected groups cover each sparse coefficient.

Bω ≥ s,1Tω ≤ G

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .

When
[
B

1

]
is an interval matrix, it is TU.
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Budgeted group cover sparsity

G2 = {1, 2, 3, 4, 5}
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group sparse

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

Structure: We seek the sparsest signal covered by G groups.
Objective: dTω → 1T s

Linear description: At least one of the G selected groups cover each sparse coefficient.

Bω ≥ s,1Tω ≤ G

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .

When
[
B

1

]
is an interval matrix, it is TU.

Biconjugate: ‖x‖∗∗ω = minω∈[0,1]M {‖x‖1 : Bω ≥ |x|,1Tω ≤ G}
for x ∈ [−1, 1]p,∞ otherwise.
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Budgeted group cover example: Interval overlapping groups

I Basis pursuit (BP): ‖x‖1
I Sparse group Lasso (SGLq):

(1− α)
∑
G∈G

√
|G|‖xG‖q + α‖xG‖1

I TU-relax (TU):

‖x‖∗∗ω = min
ω∈[0,1]M

{‖x‖1 : Bω ≥ |x|, 1Tω ≤ G}

for x ∈ [−1, 1]p,∞ otherwise.
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Figure: Recovery for n = 0.25p, s = 15, p = 200, G = 5 out of M = 29 groups.
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relative errors: ‖x\−xBP‖2
‖x\‖2
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= .058
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Group intersection sparsity [10, 18, 1]

G2 = {1, 2, 3, 4, 5}
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Structure: We seek the signal intersecting with minimal number of groups.

Objective: 1T s→ dTω

Linear description: All groups containing a sparse coefficient are selected

Hks ≤ ω,∀k ∈ P

where Hk(i, j) =
{

1 if j = k, j ∈ Gi
0 otherwise

, which is TU.

Remark: For hierarchical GH , group intersection and tree sparsity models coincide.
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Group intersection sparsity [10, 18, 1]

G = {{1, 2}, {2, 3}}, unit group weights d = 1

(left) intersection (right) cover.
Structure: We seek the signal intersecting with minimal number of groups.

Objective: 1T s→ dTω

Linear description: All groups containing a sparse coefficient are selected

Hks ≤ ω,∀k ∈ P

where Hk(i, j) =
{

1 if j = k, j ∈ Gi
0 otherwise

, which is TU.

Biconjugate: ‖x‖∗∗ω = minω∈[0,1]M {d
Tω : Hk|x| ≤ ω, ∀k ∈ P}

?=
∑
G∈G ‖xG‖∞

for x ∈ [−1, 1]p,∞ otherwise.

Remark: For hierarchical GH , group intersection and tree sparsity models coincide.
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G = {{1, 2}, {2, 3}}, unit group weights d = 1

(left) intersection (right) cover.
Structure: We seek the signal intersecting with minimal number of groups.

Objective: 1T s→ dTω (submodular)
Linear description: All groups containing a sparse coefficient are selected

Hks ≤ ω,∀k ∈ P
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0 otherwise

, which is TU.

Biconjugate: ‖x‖∗∗ω = minω∈[0,1]M {d
Tω : Hk|x| ≤ ω, ∀k ∈ P} ?=

∑
G∈G ‖xG‖∞

for x ∈ [−1, 1]p,∞ otherwise.

Remark: For hierarchical GH , group intersection and tree sparsity models coincide.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 46/ 47



Group intersection sparsity [10, 18, 1]

G = {{1, 2, 3}, {2}, {3}}, unit group weights d = 1.

Structure: We seek the signal intersecting with minimal number of groups.

Objective: 1T s→ dTω (submodular)

Linear description: All groups containing a sparse coefficient are selected

Hks ≤ ω,∀k ∈ P

where Hk(i, j) =
{
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0 otherwise
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Beyond linear costs: Graph dispersiveness

Figure: (left) ‖x‖∗∗s = 0 (right) ‖x‖∗∗s ≤ 1 for E = {{1, 2}, {2, 3}} (chain graph)

Structure: We seek a signal dispersive over a given graph G(P, E)

Objective: 1T s→
∑

(i,j)∈E sisj (non-linear, supermodular function)

Linearization:

‖x‖s = minz∈{0,1}|E|{
∑

(i,j)∈E zij : zij ≥ si + sj − 1}

When edge-node incidence matrix of G(P, E) is TU (e.g., bipartite graphs), it is TU.
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Beyond linear costs: Graph dispersiveness

Figure: (left) ‖x‖∗∗s = 0 (right) ‖x‖∗∗s ≤ 1 for E = {{1, 2}, {2, 3}} (chain graph)

Structure: We seek a signal dispersive over a given graph G(P, E)

Objective: 1T s→
∑

(i,j)∈E sisj (non-linear, supermodular function)

Linearization:

‖x‖s = minz∈{0,1}|E|{
∑

(i,j)∈E zij : zij ≥ si + sj − 1}

When edge-node incidence matrix of G(P, E) is TU (e.g., bipartite graphs), it is TU.
Biconjugate: ‖x‖∗∗s =

∑
(i,j)∈E(|xi|+ |xj | − 1)+ for x ∈ [−1, 1]p,∞ otherwise.
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