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General nonsmooth problems

o We will show that the restricted template captures the familiar composite minimization:

min () + g(A%).

> f, g are convex, nonsmooth functions; and A is a linear operator.

Examples

> g(Ax) = ||Ax — bl|1 or g(Ax) = |Ax — b]|3.

> g(Ax) = 1) (Ax), where d(p,) (Ax) =

0, ifAx=h,
+o00,if Ax # b.

Observations: o The indicator example covers constrained problems, such as minyxcx{f(x) : Ax = b}.

o We need a tool, called Fenchel conjugation, to reveal the underlying minimax problem.
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Conjugation of functions

o Idea: Represent a convex function in max-form:

Definition
Let Q be a Euclidean space and Q* be its dual space. Given a
proper, closed and convex function f: Q@ —+ RU {400}, the

function f* : Q* — RU {400} such that 4 \ /
f*(y)= sup ){yTx _ f(x)} &

xedom( f

fx)

is called the Fenchel conjugate (or conjugate) of f. f(ii:l'/'(y))

Figure: The conjugate function f*(y) is the
maximum gap between the linear function
xTy (red line) and f(x).

Observations: o y : slope of the hyperplane
o —f*(y) : intercept of the hyperplane
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Conjugation of functions

Definition
Given a proper, closed and convex function f : © — R U {+o0}, the function f* : Q* — RU {+o0} such that

)= sup {yTx-fx}

x&dom(f)

is called the Fenchel conjugate (or conjugate) of f.
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Conjugation of functions

Definition
Given a proper, closed and convex function f : © — R U {+o0}, the function f* : Q* — RU {+o0} such that

)= sup {yTx-fx}

x&dom(f)

is called the Fenchel conjugate (or conjugate) of f.

Properties

o f* is a convex and lower semicontinuous function by construction as the supremum of affine functions of y.
o The conjugate of the conjugate of a convex function f is the same function f; i.e., f** = f for f € F(Q).
o The conjugate of the conjugate of a non-convex function f is its lower convex envelope when Q is compact:
> f**(x) =sup{g(x): gis convex and g < f, Vx € Q }.
o For closed convex f, u-strong convexity w.r.t. || - || is equivalent to i smoothness of f* w.r.t. || - ||«.
> Recall dual norm: ||y|l« = sup,{(x,y): |Ix|| < 1}.

> See for example Theorem 3 in [12].
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Examples

lo-norm-squared
fx) = 31x[1? = f*(y) = maxx(y,x) — 3|2

o Take the derivative and equate to 0: 0 =y — Ax <= x = %y — f*(y)= %HyH2 — % lyl|? = %Hy”2

l1-norm
FG) = Alxllr = f*(y) = maxx(y, x) — Allx]l1.
o By definition of the ¢1-norm: f*(y) = maxx Z?:l YiZi — A|z;| = maxx Z:.;l yisign(x;)|xi| — Az
o By inspection:
> If all |y;| < A, then Vi, (y;sign(z;) — A)|x;| < 0. Taking x = 0 gives the maximum value: f*(y) = 0.
> If for at least one i, |y;| > A, (yisign(z;) — A)|z;| — +oo as |z;| — +oo.

0, if lylloo <A

o f*(¥) = Oy foe<a(Y) = {+oo, if [¥lloo > A

Remark: o See advanced material at the end for non-convex examples, such as f(x) = ||x]|o.
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General nonsmooth problems

min f(x) + g(Ax)
x€ERP

o By Fenchel-conjugation, we have g(Ax) = maxy (Ax,y) — g*(y), where g* is the conjugate of g.

o Min-max formulation:

min f(x) + g(Ax) = min max{®(x,y) := f(x) + (Ax,y) — g"(y)}
xXERP xERP y

An example with linear constraints

0, ifAx=b,
o If g(Ax) = 1y (Ax) = {+oo, if Ax # b,
=g9"(y) = me<y, x) — 0gpy (x) = xl?)lcasz<y, x) = (y,b).

o We reach the minimax formulation (or the so-called “Lagrangian”) via conjugation:

mxin{f(x) :Ax =b} = mxin f(x)+ g(Ax) = min m;ix f(x)+ (Ax —b,y).
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A special case in minimax optimization

Bilinear min-max template

i a + (Ax,y) — h(y),
321;151&]‘(@ (Ax,y) — h(y)

where X C RP and Y C R™.
> f: X — R is convex.
> h:) — R is convex.
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Example: Sparse recovery

An example from sparseland b = Ax? + w: constrained formulation

The basis pursuit denoising (BPDN) formulation is given by

x* € arg min {|| x|y : | Ax = bz < w2, [Ixfloo < 1}. (BPDN)
x
A primal problem prototype
f* := min {f(x):AxfbeleEX},
xERP
The above template captures BPDN formulation with
> f(x) =[xl
> K= {lluf] €R™ : [Jul| < [[w]l2}.
> X ={x €RP: [|x]oo <1}.
EPFL
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An alternative formulation

A primal problem prototype
¥ = min{f(x):AxfbelC,XEX}, (1)

> f is a proper, closed and convex function

> X and K are nonempty, closed convex sets

> A € R"%P and b € R" are known

> An optimal solution x* to (1) satisfies f(x*) = f*, Ax* —b e K and x* € X

A simplified template without loss of generality
* = mi : = 2
7= mly {f(X) Ax b}, (2

> fis a proper, closed and convex function
> A € R"XP and b € R" are known
> An optimal solution x* to (2) satisfies f(x*) = f*, Ax* =b
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Reformulation between templates

A primal problem template

min {f(x):AxbeIC,xeX}.
x€ERP

First step: Let ry = Ax — b € R" and ry = x € RP.

min {f(x):rl ek, r2 GX,Ax—b:rl,xzrg}.

X,r1,r2

* . A I 0 - [b] &
o Definez = |r1| € R?PT", A = [I nxn "XP}, b= [ } f(2z) = f(x) + 0 (r1) + dx (r2),
ro pxp  Opxn  —Ipxp 0
where 0y (x) =0, if x € X, and dx(x) = +00, o/w.

The simplified template

min {f(z):Az:B}.

Z€R2p+n
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From constrained formulation back to minimax

A general template

min {f(x) : Ax = b}.
xERP

Other examples:

> Standard convex optimization formulations: linear programming, convex quadratic programming, second
order cone programming, semidefinite programming and geometric programming.

> Reformulations of existing unconstrained problems via convex splitting: composite convex minimization,
consensus optimization, . ..

Formulating as min-max

max (y, Ax — b) =

yER™

0, if Ax = b,
400, if Ax # b.

min {f(x): Ax=b} = min max {2(x,) i= £() + (v, Ax = b) }
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Dual problem

min {f(x): Ax=b} = min max {@(x,y) = f() + v, Ax - b) }

o We define the dual problem

d(y) == i ,Ax —b)}.
max ) ;}é%{fell@f(X)Hy x—b)}

d(y)

Concavity of dual problem
Even if f(x) is not convex, d(y) is concave:
> For each x, d(y) is linear; i.e., it is both convex and concave.

> Pointwise minimum of concave functions is still concave.

Remark: o If we can exchange min and max, we obtain a concave maximization problem.
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Example: Nonsmoothness of the dual function
o Consider a constrained convex problem:
; 2
min x):=x%+2x2 ¢,
x€ER3 {f( ) 1 }
s.t. 2x3 —x1 —x2 =1,
x € X :=[-2,2] x [-2,2] x [0,2].

o The dual function is concave and nonsmooth as written and then illustrated below.

d(\) := min {x% + 2z2 + AN(223 — 1 — 22 — 1)}
xeX

nonsmooth peak

-25F

d(\) = l'l’él/l‘} {3 + 222 + M223 — 21 — 22+ 1)}

. . . . . .
4 ) 0 2 4 6 8 10
A-axis
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Exchanging min and max: A dangerous proposal
o Weak duality:

- ; . f*ifAx=Db
d =: d(x, < P(x, = cAx=Db} =
s dly) | suax min ®(x,y) < tuiy e ®(x,y) | = iy {/(0: Ax = b} {m, i Asc b

Dual problem Primal problem

fa()

fi(z)

I m;gmaXfi(x)

max min f;(x 20

i 220 LS SV mgécmjnfi(m)
> i

T

f3(x)
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A proof of weak duality

£ = min { £60) s Ax = b} = min max {$(x,) i= () + (y. Ax —b)}

o Since Ax* = b, it holds for any y

o(x*,y) = f* = f(x*) + (y, Ax* —b)
> min {f(x) + (v, Ax — b) }

= min ®(x,y).
xERP

o Take maximum of both sides in y and note that f* is independent of y:

f* = min max ®(x,y) > max min ®(x,y) =: max d(y) = d*.
XERP yeR™ YER™ xERP yER™
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Strong duality and saddle points

Strong duality

f* = f(x*) = min max ®(x,y) = max min ®(x,y) =: max d(y) = d*.
x€ERP yeR™ yER™ x€RP yER™

Under strong duality and assuming existence of x*, ®(x,y) has a saddle point. We have primal and dual
optimal values coincide, i.e., f* = d*.
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Strong duality and saddle points

Strong duality

f* = f(x*) = min max ®(x,y) = max min ®(x,y) =: max d(y) = d*.
xXERP yeR™ YER™ x€RP YER™

Under strong duality and assuming existence of x*, ®(x,y) has a saddle point. We have primal and dual
optimal values coincide, i.e., f* = d*.

Recall saddle point / LNE
A point (x*,y*) € RP x R™ is called a saddle point of ® if

O(x*,y) < O(x*,y*) < ®(x,y*), Vx €RP, y €R™.

— saddle point X /

IHEETNl  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 47 EPFL



Toy example: Strong duality

Primal problem
o Consider the following primal minimization problem: minyx P(x) := f(x) + g(x) := %||x||2 + |Ix|l1

o Using conjugation and strong duality

P(x*) = min P(x) = minmax f(x) + (x,y) — ¢*(y), by conjugation
x x y

= max —g*(y) + min f(x) + (X,y), by changing min-max
v x

= max —g*(y) — max(x, —y) — f(x), by min f = — max—f
v x

=max —¢*(y) — f*(~y), by conjugation.
y

Dual problem
o Dual problem: d* = maxy d(y) = —g*(y) — f*(-y)

o Recall f*(—y) = 1|lyl|?> and g*(y) = dy.||y[ e <1(¥)-
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Toy example: Strong duality

1
Primal problem: min P(x) = §||x||2 + [1x]|1
X

1
Dual problem: m;a,x7§||yH2 = Oyi)lylloo<1(¥)

N

o

-3 -2 - 0 1 2
dly) = =5llyl? iyl <1
—00,  if[lyfle > 1
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Back to convex-concave: Necessary and sufficient condition for strong duality

o Existence of a saddle point is not automatic even in convex-concave setting!

o Recall the minimax template:

min max {(x,y) i= f(x) + (y, Ax — b)}
xERP yeR™

Theorem (Necessary and sufficient optimality condition)

Under the Slater’s condition: relint(dom f) N {x : Ax = b} # (), strong duality holds, where the primal and
dual problems are given by

7= { :Zglikr; 7o) and d* := max d(y).

s.t. Ax = b, yERT

Remarks: o By definition of f* and d*, we always have (weak duality).

o If a primal solution exists and the Slater’s condition holds, we have (strong duality).
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Slater’s qualification condition

o Denote relint(dom f) the relative interior of the domain.

o The Slater condition requires

[ relint(dom f) N {x : Ax=b}#0.] 3)

Special cases

> If dom f =RP , then (3) & [3% : AXx=Db]

> If dom f = R? and instead of Ax = b, we have the feasible set {x : h(x) < 0}, where h is R — RY is

convex, then
(3)e|Ix : h(x)<O.
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Example: Slater’s condition

Example

Let us consider solving minycp,, f(x) and so the feasible set is Dy, := X N Aq, where
X:={xecR? : 22422 <1}, Ao :={x€R? : 21 + 22 =0},

where o € R.
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Example: Slater’s condition

Example

Let us consider solving minycp,, f(x) and so the feasible set is Dy, := X N Aq, where
X:={xecR? : 22422 <1}, Ao :={x€R? : 21 + 22 =0},

where o € R.

Two cases where Slater’s condition holds and does not hold

R
™ “x
2
\]
W
T
2

zi+a3 <1

017

ior of D = ()

0

42 <1t relative intes

relative interior of D,

D, /5 satisfies Slater’s condition — D 5-does not satisfy Slater’s condition
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Performance of optimization algorithms

f* = min {f(x) : Ax = b, }, (Affine-Constrained)

Exact vs. approximate solutions

> Computing an exact solution x* to (Affine-Constrained) is impracticable

> Algorithms seek x} that approximates x* up to € in some sense

A performance metric: Time-to-reach ¢

time-to-reach ¢ = number of iterations to reach ¢ X per iteration time

A key issue: Number of iterations to reach ¢

The notion of e-accuracy is elusive in constrained optimization!
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Numerical e-accuracy

o Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

fxO) - <e

= Jmin J(x)

o Constrained case: We need to also measure the infeasibility of the iterates!

fF=rxp)<e M

= iy {100 An ) g

xERP

Our definition of e-accurate solutions [16]
Given a numerical tolerance € > 0, a point x} € RP is called an e-solution of (4) if

F(x*) — f* < e (objective residual),
[|[Ax* — b|| < e (feasibility gap),

> When x* is unique, we can also obtain ||x} — x*|| < e (iterate residual).
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Numerical e-accuracy

Constrained problems

Given a numerical tolerance € > 0, a point x} € RP is called an e-solution of (4) if

f(x}) — f* < e (objective residual),
|[Ax* —b|| < e (feasibility gap),

> When x* is unique, we can also obtain ||x} — x*|| < e (iterate residual).

General minimax problems

Since duality gap is O at the solution, we measure the primal-dual gap

Gap(X,y) = max ®(X,y) — min ¢(x,y) < e. (5)
yey x€EX
Remarks: o € can be different for the objective, feasibility gap, or the iterate residual.

o It is easy to show Gap(x,y) > 0 and Gap(x,y) = 0 iff (X,y) is a saddle point.
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Primal-dual gap function for nonsmooth minimization

min f
XEX

(%) +9(Ax) = ’r(réi;} max f(xX) +(Ax,y) —g"(y) = max gg}g F(x) +(Ax,y) — g*(y)
@ (x,y)

o Primal problem: minyex P(x) where

P(x) = max ®(x,y).
yey
o Dual problem: maxycy d(y) where

d(y) = min B(x,y).
xeX
o The primal-dual gap, i.e., Gap(X,y), is literally (primal value at x) — (dual value at y)
Gap()_(7 g’) = P()_() - d()_’) = ma‘x(b()_(7Y) — min @(X, S’)
yey xeX
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Toy example for nonnegativity of gap

Recall the indicator function

o P(x) = 4l1xII° + Il e
) o0 =

2

Oy <1(y) = ;
o d(y) = — Lyl = 8y pyymcr¥) et ®) = L Nyl > 1
3
v
—d(y)
2
1
0
-1
-2
-3
-3 -2 -1 0 1 2 3
1 2
—zllyll? if lylle <1
_ 2
d(“’)’{ﬂc. if [yl > 1
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Primal-dual gap function in the general case

min max ®(x,y) = max min ®(x,y)
xeEX yeY yeEY x€X

o Saddle point (x*,y*) is such that Vx € RP, Vy € R™:

k)

()
d(x*,y) < ®(x*,y*) < B(x,y%).
o Nonnegativity of Gap:
Gap(i7 S’) = max @(5@ Y) — min ¢)(X7 y)
yEX xeX
> d(x,y*) — min ®(x,y), by the definition of maximization
xeX
> ®(x*,y*) — min (x,y), by the inequality ()
xEX
> d(x*,y) — min D(x,y), by the inequality (%)
xeX

>0, by the definition of minimization.

o If (%,¥) = (x*,y*), then all the inequalities will be equalities and Gap(x,y) = 0.
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Optimality conditions for minimax

Saddle point

We say (x*,y*) is a primal-dual solution corresponding to primal and dual problems
min  f(x)
fri=q =xere and d* := max d(y) = max min ®(x,y).
s.t. Ax =Db, yER™ yERT x
if it is a saddle point of ®(x,y) = f(x) + (y, Ax — b):

P(x*,y) < O(x*,y*) < ®(x,y*), Vx €RP, y €R™.

Karush-Khun-Tucker (KKT) conditions

Under our assumptions, an equivalent characterization of (x*,y*) is via the KKT conditions of the problem

min f(x): Ax = b,
xERP

which reads

0 €0x®(x*,y*) = ATy* + 9f(x*),
0 = Vyd(x*, \*) = Ax* — b.
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A naive proposal: Gradient descent-ascent (GDA)

Towards algorithms for minimax optimization

min max ®(x,y).
xEX yeEY

We assume that

> &(-,y) is convex,
> ®(x,-) is concave,

> & is smooth in the following sense:
H[qu) X1,¥1) } { Vx®(x2,y2) ]H <LH[X1*X2}
Vy®(x1,y1) —Vy®(x2,y2)] || = yi—y2

o Let us try to use gradient descent for x, gradient ascent for y to obtain a solution

GDA
1. Choose x?,yY and 7.
2. Fork=0,1,---, perform:

xFtl = xF — 7V d(xF, y*).
y = yk 4+ 1Yy O(xF, yE).
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GDA on a simple problem

Min-max problem

min max ®(x,y).
Y

xeX y€e
SimGDA AltGDA
1. Choose xY,y? and 7. 1. Choose x%,y? and 7.
2. Fork=0,1,---, perform: 2. Fork=0,1,---, perform:
xktl .= xk — TVx‘I)(xk,yk). xktl .= xk — 7'Vx<1>(xk7 yk).
Yy =Yk + TV ok, yF). Yyl =y + TV (T yE).
Example [7]

Let ®(z,y) = zy, X =Y =R, then,
> for the iterates of SIimGDA: wi+1 + y2+1 = (14+7°)(=2 + 7).
> for the iterates of AltGDA: xi_,rl + yi_,rl = C(z2 + y2).

o SimGDA diverges and AltGDA does not converge!
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Practical performance

min max xy
zeR yeR

o Simultaneous GDA o Alternating GDA
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Between convex-concave and nonconvex-nonconcave

Nonconvex-concave problems

min max ®(x,y)
xXEX yeEY

o ®(x,y) is nonconvex in x, concave in y, smooth in x and y.

Recall
Define f(x) = maxycy ®(x,y).
o Gradient descent applied to nonconvex f requires O(e~2) iterations to give an e-stationary point.

o (Sub)gradient of f can be computed using Danskin's theorem:

Vx®(-,y*(-)) € 9f(-), where y*(-) € argmax ®(-,y),
yey

which is tractable since ® is concave in y [13].

Remark: o “Conceptually” much easier than nonconvex-nonconcave case.
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Epilogue

Gradient complexity

Optimality measure

Reference

convex-concave (@] 671)1 € optimality w.r.t. duality gap Nemirovski, 2004; Chambolle & Pock, 2011;
Tran-Dinh & Cevher, 2014.2
nonconvex-concave O (e25)3 e-stationarity w.r.t. gradient mapping norm Lin, Jin, & Jordan, 2020.*
nonconvex-nonconcave HARD HARD

Daskalakis, Stratis, & Zampetakis, 2020;
Hsieh, Mertikopoulos, & Cevher, 2020.5

Rates are not directly comparable as duality gap and gradient mapping norm are not necessarily of the same order!

2 Arkadi Nemirovski,“Prox-method with rate of convergence O1/t) for variational inequalities with Lipschitz continuous monotone operators and
smooth convex-concave saddle point problems.” SIAM Journal on Optimization 15.1 (2004): 229-251.

Antonin Chambolle, and Thomas Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging.” Journal of
mathematical imaging and vision 40.1 (2011): 120-145.

Quoc Tran-Dinh, and Volkan Cevher, “Constrained convex minimization via model-based excessive gap." Advances in Neural Information
Processing Systems. 2014.

3The rate is O (5_2) for strongly concave problems.

4Tianyi Lin, Chi Jin, and Michael Jordan, “Near-optimal algorithms for minimax optimization." arXiv preprint arXiv:2002.02417 (2020).

5Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis, “The complexity of constrained min-max optimization."
arXiv:2009.09623 (2020).

Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher, “The limits of min-max optimization algorithms: convergence to spurious
non-critical sets." arXiv preprint arXiv:2006.09065 (2020).

arXiv preprint
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A new hope

min max zy
zeR yeR

o Next lecture: Some algorithms that actually converge!

o Convergence of the sequence:
There exists z* = (x*,y*), such that z — z*.

o Convergence rate:

K
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Wrap up!

o Try to finish Homework #2...
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A convex proto-problem for structured sparsity

A combinatorial approach for estimating x’ from b = Ax% + w

We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

% € arg min {|[x|s : [|b - Axl2 < &, x| <1}
xERP
with some % > 0. If k = || w |2, then the structured sparse x is a feasible solution.

Sparsity and structure together [5]
Given some weights d € R%, e € RP and an integer input ¢ € Z!, we define

Il i= min{dTe + eTs s M %] < ¢, Louppe) = o1 € {0,1}%)

for all feasible x, co otherwise. The parameter w is useful for latent modeling.
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A convex proto-problem for structured sparsity

A combinatorial approach for estimating x’ from b = Ax% + w

We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

% € arg min {|[x|s : [|b - Axl2 < &, x| <1}
xERP
with some % > 0. If k = || w |2, then the structured sparse x is a feasible solution.

Sparsity and structure together [5]
Given some weights d € R%, e € RP and an integer input ¢ € Z!, we define

Il i= min{dTe + eTs s M %] < ¢, Louppe) = o1 € {0,1}%)

for all feasible x, co otherwise. The parameter w is useful for latent modeling.

A convex candidate solution for b = Ax? + w

We use the convex estimator based on the tightest convex relaxation of || x ||s:
X € arg mingcdom(| - ||s) U X [[5" : b — Ax|l2 < s} with some x > 0, dom(]| - ||s) := {x : [|x[|s < co}.
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Tractability & tightness of biconjugation

Proposition (Hardness of conjugation)

Let F(s) : 2¥ — RU {400} be a set function defined on the support s = supp(x). Conjugate of F over the
unit infinity ball ||x||cc < 1 is given by

g*(y)= sup |y|"s— F(s).
s€{0,1}P

Observations:
> F(s) is general set function
Computation: NP-Hard
> F(s) = lIx|ls
Computation: Integer Linear Program (ILP) in general. However, if

> M is Totally Unimodular TU
> (M, c) is Total Dual Integral TDI

then tight convex relaxations with a linear program (LP, which is “usually” tractable)
Otherwise, relax to LP anyway!

> F(s) is submodular

Computation: Polynomial-time

IHEIETNl  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 47 EPFL



Tree sparsity [11, 4, 3, 17]

_ |

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy sparent > Schilg over tree T

T]lsupp(x) =Ts Z 0

where T is the directed edge-node incidence matrix, which is TU.
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Tree sparsity [11, 4, 3, 17]

_ |

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy sparent > Schilg over tree T

T1 =Ts>0

supp(x)

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: ||x||i* = minse[oyl]p{ﬂTs :Ts >0,|x| < s}
for x € [—1,1]P, oo otherwise.
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Tree sparsity [11, 4, 3, 17]

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy sparent > Schilg over tree T

T1

supp(x) = T's 2 0 ‘

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: [|x||3* = minge(o {178 :Ts > 0,|x|<s} = . [zgleo
[0,1] Geby
for x € [—1,1]P, oo otherwise.

The set G € Gy are defined as each node and all its descendants.
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Group knapsack sparsity [19, 8, 6]

sparse
1

supp(x)

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over &

where B is the biadjacency matrix of 6, i.e., B;; = 1 iff i-th coefficient is in G;.
When B is an interval matrix or ® has a loopless group intersection graph, it is TU.

Remark: We can also budget a lowerbound ¢; < 87's < ¢,.
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Group knapsack sparsity [19, 8, 6]

1 1 1 1 0 0 0
0 1 1 1 1 0 0
BT =
5 ] o--- 0 0] 1 1--- 1 1 (pfA#»l)Xp
| i

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over &

where B is the biadjacency matrix of ®, i.e., B;; = 1 iff i-th coefficient is in G;.
When B is an interval matrix or ® has a loopless group intersection graph, it is TU.

Remark: We can also budget a lowerbound ¢, < 87's < ¢,.

if x € [717 1]1)7 %Tlx‘ S Cuy,

Biconjugate: ||x||%* = {”xl :
00 otherwise

For the neuronal spike example, we have ¢, = 1.
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Group knapsack sparsity [19, 8, 6]

c o9

(Ieft) [|x|2* < 1 (middle) [lx[|Z* < 1.5 (right) [Ix]|2* < 2 for & = {{1,2},{2,3}}

Structure: We seek the sparsest signal with group allocation constraints.
Linear description: A valid support obeys budget constraints over &

where B is the biadjacency matrix of ©, i.e., B;; = 1 iff i-th coefficient is in G;.
When B is an interval matrix or ® has a loopless group intersection graph, it is TU.

Remark: We can also budget a lowerbound ¢; < 87's < ¢,.

lxllr i x € [-1,1]7, 87 |x| < cu,

Biconjugate: ||x||%* = -
00 otherwise

For the neuronal spike example, we have ¢, = 1.
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Group knapsack sparsity example: A stylized spike train

> Basis pursuit (BP): ||x]|1
> TU-relax (TU):

Ixll: ifxe[-1,1]7,87 x| < cu,

—BP
—>-DBP

®k
lIxlls* = .
otherwise 02
0.1 0.2
n/p
Figure: Recovery for n = 0.18p.
og og og
od od og
04 04 0d
07 07 07
L
= ™ T o e ) % oo 50
xh xBP solution xTU solution
b_,BP b_,TU
relative errors: Ix"=x"ll2 _ 599 ”x*w = .067
. B P B P
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Group knapsack sparsity: A simple variation

sparse
1

supp()

Structure: We seek the signal with the minimal overall group allocation.
min w ifxe[-1,1P,8Ts <wl,
Objective: 175 — ||x[lw = WL [ 17 =
00 otherwise

Linear description: A valid support obeys budget constraints over &

BTs <wl

where B is the biadjacency matrix of ©, i.e., B;; = 1 iff i-th coefficient is in G;.
When B is an interval matrix or ® has a loopless group intersection graph, it is TU.
: %90 if x € [—1,1)P
Biconjugate: ||x||** = maxgeo %7l if x [ 117
otherwise
Remark: The regularizer is known as exclusive Lasso [19, 15].
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Group cover sparsity: Minimal group cover [2, 14, 9]

sparse group sparse

Tsupp(x) w

=) n
= {1,2,3,4,5} n

Gs = {5,6.7.8}
— {2.5,7}
Gs = {6,8}

Structure: We seek the signal covered by a minimal number of groups.
Objective: 1Ts — dTw

Linear description: At least one group containing a sparse coefficient is selected

where B is the biadjacency matrix of ©, i.e., B;; = 1 iff i-th coefficient is in G;.

When B is an interval matrix, or ® has a loopless group intersection graph it is TU.
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Group cover sparsity: Minimal group cover [2, 14, 9]

Figure: & = {{1, 2}, {2, 3}}, unit group weights d = 1.
Structure: We seek the signal covered by a minimal number of groups.
Objective: 1Ts — dTw
Linear description: At least one group containing a sparse coefficient is selected

where B is the biadjacency matrix of 6, i.e., B;; = 1 iff i-th coefficient is in G;.

When B is an interval matrix, or ® has a loopless group intersection graph it is TU.

Biconjugate: ||x||** = minwe[o,l]M{dTw : Bw > |x|} for x € [—1,1]P, co otherwise
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Group cover sparsity: Minimal group cover [2, 14, 9]

Figure: & = {{1, 2}, {2, 3}}, unit group weights d = 1.
Structure: We seek the signal covered by a minimal number of groups.
Objective: 1Ts — dTw
Linear description: At least one group containing a sparse coefficient is selected

where B is the biadjacency matrix of 6, i.e., B;; = 1 iff i-th coefficient is in G;.

When B is an interval matrix, or ® has a loopless group intersection graph it is TU.
Biconjugate: ||x||;* = min,¢o 1]M{dTw : Bw > |x|} for x € [—1,1]P, co otherwise
. M M
= IIllIlvieg\p{Zi:l di|lvilloo : x = Zi:l vi, Vsupp(v;) C G},
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Group cover sparsity: Minimal group cover [2, 14, 9]

Figure: & = {{1, 2}, {2, 3}}, unit group weights d = 1.

Structure: We seek the signal covered by a minimal number of groups.
Objective: 1Ts — dTw

Linear description: At least one group containing a sparse coefficient is selected

where B is the biadjacency matrix of 6, i.e., B;; = 1 iff i-th coefficient is in G;.

When B is an interval matrix, or ® has a loopless group intersection graph it is TU.
Biconjugate: ||x||;* = min,¢o 1]M{dTw : Bw > |x|} for x € [—1,1]P, co otherwise

* . M M
= IIllIlvieg\p{Zi:l di||Villoo : x = Zi:l v;, Vsupp(v;) C G;},
Remark: Weights d can depend on the sparsity within each groups (not TU) [5].
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Budgeted group cover sparsity

sparse group sparse

w

=) I
> = {1,2,3,4,5} I
Gy = {5,6,7.8} I

1,

supp(x)

fsi
I

=

&z

Structure: We seek the sparsest signal covered by G groups.
Objective: dTw — 1Ts

Linear description: At least one of the G selected groups cover each sparse coefficient.

Bw>s1Tw<a

where B is the biadjacency matrix of 6, i.e., B;; = 1 iff i-th coefficient is in G;.

When {?} is an interval matrix, it is TU.
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Budgeted group cover sparsity

sparse group sparse

Lsupp(x) w

Structure: We seek the sparsest signal covered by G groups.
Objective: dTw — 1Ts

Linear description: At least one of the G selected groups cover each sparse coefficient.

Buw>s,1Tw <@

where B is the biadjacency matrix of ®, i.e., B;; = 1 iff i-th coefficient is in G;.

When ﬁﬂ is an interval matrix, it is TU.

Biconjugate: ||x||5* = min, (o 1jm {[Ix[l1 : Bw > Ix, 17w < G}
for x € [—1,1]P, co otherwise.
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Budgeted group cover example: Interval

> Basis pursuit (BP): ||x]1
> Sparse group Lasso (SGLg):

(1=a) Y \/gllx g + allx

geo
> TU-relax (TU):

=& =

for x € [—1,1]P, co otherwise.

min  {||x[]1 : Bw > |x|,17w < G}
welo,1]M

overlapping groups

0.1 0.2 0.3 0.4 05
n/p

Figure: Recovery for n = 0.25p, s = 15, p = 200, G = 5 out of M = 29 groups.

i 11 i Ll i Ll
T T N gk et R
1 xBP solution *x56L solution x5GLloo solution *x TV solution
b BP B, SGL b SGloo §_,TU
relative errors: [ES ;‘ 2 _ qps Ix ’h‘ Iz _ 5g; I xh 2 _ og5 Ix E‘ Iz _ os58
<512 1812 <512 B
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Group intersection sparsity [10, 18, 1]

sparse group sparse

Structure: We seek the signal intersecting with minimal number of groups.
Objective: 1Ts — dTw

Linear description: All groups containing a sparse coefficient are selected

Hps<w,VkeDP

1 ifj=k,jeg

. , which is TU.
0 otherwise

where H(i,5) = {
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Group intersection sparsity [10, 18, 1]

& = {{1,2},{2,3}}, unit group weights d =1
(left) intersection (right) cover.

Structure: We seek the signal intersecting with minimal number of groups.
Objective: 17s — d”w
Linear description: All groups containing a sparse coefficient are selected

‘ Hps <w,VkeP ‘

1 ifj=kjeqg

. , which is TU.
0 otherwise

where H(i,5) = {

Biconjugate: ||x||5* = minwe[o’l]M{dTw c Hyplx| < w,Vk € B}
for x € [—1, 1]P, co otherwise.
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Group intersection sparsity [10, 18, 1]

o @

& = {{1,2},{2,3}}, unit group weights d =1
(left) intersection (right) cover.

Structure: We seek the signal intersecting with minimal number of groups.
Objective: 17s — d¥w  (submodular)

Linear description: All groups containing a sparse coefficient are selected

‘ Hps <w,VkeP ‘

1 fj=kjeGq;

. , which is TU.
0 otherwise

where H(i,5) = {

. . ok . *
Biconjugate: ||x||5* = mlnwg[o,uM{dTW : Hilx| < w,Vk € P}= de(ﬁ [lzg|loo
for x € [—1, 1]P, co otherwise.
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Group intersection sparsity [10, 18, 1]

>

6 = {{1,2,3},{2}, {3}}, unit group weights d = 1.
Structure: We seek the signal intersecting with minimal number of groups.
Objective: 17s — dTw  (submodular)

Linear description: All groups containing a sparse coefficient are selected

‘ Hps<w,VkeDP ‘

1 ifj=kjeg

X , which is TU.
0 otherwise

where H(i,5) = {

Biconjugate: |[x||5* = min,, (g {d"w : Hy|x| <w,Vk € PI= Y lzglico
for x € [—1, 1]P, co otherwise.

Remark: For hierarchical &, group intersection and tree sparsity models coincide.
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Beyond linear costs: Graph dispersiveness

Figure: (left) ||x||2* = 0 (right) ||x||2* < 1 for £ = {{1, 2}, {2,3}} (chain graph)

Structure: We seek a signal dispersive over a given graph G(%,E)
Objective: 17s — Z(i,j)es s;sj (non-linear, supermodular function)

Linearization:

lxlls = min, o 181 {0 jyee #id ¢ 205 > si+ 55— 1}

When edge-node incidence matrix of G(B, ) is TU (e.g., bipartite graphs), it is TU.
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Beyond linear costs: Graph dispersiveness

Figure: (left) ||x||2* = 0 (right) ||x]|5* < 1 for &€ = {{1, 2}, {2, 3}} (chain graph)

Structure: We seek a signal dispersive over a given graph G(8,E)
Objective: 17s — Z(i,j)es sis; (non-linear, supermodular function)

Linearization:

||X||S = minze{O,l}‘g‘ {Z(i,j)eg Zij ' Zij > s + S5 — 1}

When edge-node incidence matrix of G(B,E) is TU (e.g., bipartite graphs), it is TU.
Biconjugate: ||x||:* = Z(i j)es(‘xi‘ + |zj| — 1)+ for x € [-1,1]P, 0o otherwise.
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