Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 11: Adversarial machine learning and generative adversarial networks
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2022)

E4S EPFL

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- This class
- Adversarial Machine Learning (minmax)
- Adversarial training
- Generative adversarial networks
- Difficulty of minmax
- Next class
- Primal-dual optimization (Part 1)

Adversarial machine learning

$$
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})
$$

- A seemingly simple optimization formulation
- Critical in machine learning with many applications
- Adversarial examples and training
- Generative adversarial networks
- *Robust reinforcement learning (more on this next week)
- ...

From empirical risk minimization...

Definition (Empirical Risk Minimization (ERM))

Let $h_{\mathbf{x}}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a model with parameters \mathbf{x} and let $\left\{\left(\mathbf{a}_{i}, b_{i}\right)\right\}_{i=1}^{n}$ be samples with $b_{i} \in\{-1,1\}$ and $\mathbf{a}_{i} \in \mathbb{R}^{p}$. The ERM problem reads

$$
\min _{\mathbf{x}}\left\{R_{n}(x):=\frac{1}{n} \sum_{i=1}^{n} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), b_{i}\right)\right\}
$$

where $L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), b_{i}\right)$ is the loss on the sample $\left(\mathbf{a}_{i}, b_{i}\right)$.

Some frequently used loss functions

- $L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), b\right)=\log \left(1+\exp \left(-b h_{\mathbf{x}}\left(\mathbf{a}_{i}\right)\right)\right)$
- $L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), b\right)=\left(b-h_{\mathbf{x}}\left(\mathbf{a}_{i}\right)\right)^{2}$
- $L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), b\right)=\max \left(0,1-b h_{\mathbf{x}}\left(\mathbf{a}_{i}\right)\right)$

Logistic loss.
Squared error.
Hinge loss.

From empirical risk minimization...

Definition (Empirical Risk Minimization (ERM))

Let $h_{\mathbf{x}}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a model with parameters \mathbf{x} and let $\left\{\left(\mathbf{a}_{i}, b_{i}\right)\right\}_{i=1}^{n}$ be samples with $b_{i} \in\{-1,1\}$ and $\mathbf{a}_{i} \in \mathbb{R}^{p}$. The ERM problem reads

$$
\min _{\mathbf{x}}\left\{R_{n}(x):=\frac{1}{n} \sum_{i=1}^{n} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), b_{i}\right)\right\}
$$

where $L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), b_{i}\right)$ is the loss on the sample $\left(\mathbf{a}_{i}, b_{i}\right)$.

Objectives in other tasks

$-\min _{\mathbf{x}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left[\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}+\boldsymbol{\eta}\right), \mathbf{b}_{i}\right)\right]\right\}$
$-\min _{\mathbf{x}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left[\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{2} \leq \epsilon} L\left(h_{\mathbf{x}+\boldsymbol{\eta}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)\right]\right\}$
$\checkmark \min _{\mathbf{x}} \max _{\mathbf{b}^{c} \in[C]} \frac{1}{n_{c}} \sum_{i=1}^{n_{c}}\left[\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\| \leq \epsilon} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}+\boldsymbol{\eta}\right), \mathbf{b}_{i}^{c}\right)\right]$

Adversarial training [12].
ϵ-stability training [4], Sharpness-aware minimization [8].

Class fairness [1].

...Into adversarial examples

Definition (Adversarial examples [20])

Let $h_{\mathbf{x}^{\star}}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a model trained through empirical risk minimization, with optimal parameters \mathbf{x}^{\star}. Let (\mathbf{a}, b) be a sample with $b \in\{-1,1\}$ and $\mathbf{a} \in \mathbb{R}^{p}$. An adversarial example is a perturbation $\boldsymbol{\eta} \in \mathbb{R}^{p}$ designed to lead the trained model $h_{\mathbf{x}^{\star}}$ to misclassify a given input \mathbf{a}. Given an $\epsilon>0$, it is constructed by solving

$$
\boldsymbol{\eta} \in \underset{\boldsymbol{\eta}:\|\boldsymbol{\eta}\| \leq \epsilon}{\arg \max } L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}+\boldsymbol{\eta}), \mathbf{b}\right)
$$

Example norms frequently used in adversarial attacks

- The most commonly used norm is the ℓ_{∞}-norm [10, 18].
- The use of ℓ_{1}-norm leads to sparse attacks.

Figure: (Left) An ℓ_{∞}-attack: The alteration is hard to perceive. (Right) An ℓ_{1}-attack: The alteration in this case is obvious.

A robustness example: Linear prediction

Linear model

Consider a linear model $h_{\mathbf{x}^{\star}}(\mathbf{a})=\left\langle\mathbf{x}^{\star}, \mathbf{a}\right\rangle$ with weights $\mathbf{x}^{\star} \in \mathbb{R}^{p}$, for some input a.

An adversarial perturbation

We aim at finding the perturbation $\boldsymbol{\eta} \in \mathbb{R}^{p}$ subject to $\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon$ that produces the largest change on $h_{\mathbf{x}^{\star}}(\mathbf{a})$:

$$
\begin{aligned}
\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\| \infty \leq \epsilon} h_{\mathbf{x}^{\star}}(\mathbf{a}+\boldsymbol{\eta}) & =\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon}\left\langle\mathbf{x}^{\star}, \mathbf{a}+\boldsymbol{\eta}\right\rangle & & \\
& =\left\langle\mathbf{x}^{\star}, \mathbf{a}\right\rangle+\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon}\left\langle\mathbf{x}^{\star}, \boldsymbol{\eta}\right\rangle & & \triangleright \text { As a does not influence the optimization. } \\
& =\left\langle\mathbf{x}^{\star}, \mathbf{a}\right\rangle+\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq 1}\left\langle\mathbf{x}^{\star}, \epsilon \boldsymbol{\eta}\right\rangle & & \triangleright \text { By the change of variables } \boldsymbol{\eta}:=\boldsymbol{\eta} / \epsilon \\
& =\left\langle\mathbf{x}^{\star}, \mathbf{a}\right\rangle+\epsilon\left\|\mathbf{x}^{\star}\right\|_{1} & & \triangleright \text { Definition of the dual norm }\|\mathbf{x}\|_{1}:=\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\| \infty \leq 1}\langle\mathbf{x}, \boldsymbol{\eta}\rangle
\end{aligned}
$$

Taking $\eta^{\star}=\operatorname{sign}\left(\mathbf{x}^{\star}\right)$ achieves this maximum: $\left\langle\mathbf{x}, \epsilon \operatorname{sign}\left(\mathbf{x}^{\star}\right)\right\rangle=\epsilon \sum_{i=1}^{n} \operatorname{sign}\left(x_{i}^{\star}\right) x_{i}^{\star}=\epsilon \sum_{i=1}^{n}\left|x_{i}^{\star}\right|=\epsilon\left\|\mathbf{x}^{\star}\right\|_{1}$.
Remarks: $\quad \circ$ For the linear model, we have $\nabla_{\mathbf{a}} h_{\mathbf{x}^{\star}}(\mathbf{a})=\mathbf{x}^{\star}$.

- The gradient sign of $h_{\mathbf{x}^{\star}}$ with respect to the input a achieves the worst perturbation.
- Sparse models are robust in linear prediction.

Adversarial examples in neural networks

- Target problem:

$$
\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}+\boldsymbol{\eta}), \mathbf{b}\right)
$$

- Historically, researchers first tried to find approximate solutions that empirically perform well [10, 18].

Fast Gradient Sign Method (FGSM) [10]

Let $h_{\mathbf{x}^{*}}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a model trained through empirical risk minimization on the loss L, with optimal parameters \mathbf{x}^{\star}. Let (\mathbf{a}, b) be a sample with $b \in\{-1,1\}$ and $\mathbf{a} \in \mathbb{R}^{p}$. The Fast Gradient Sign Method computes the adversarial example

$$
\boldsymbol{\eta}=\epsilon \operatorname{sign}\left(\nabla_{\mathbf{a}} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}), b\right)\right)=\epsilon \operatorname{sign}\left(\nabla_{\mathbf{a}} h_{\mathbf{x}^{\star}}(\mathbf{a}) \nabla_{h} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}), b\right)\right)
$$

Remarks:

- The FGSM obtains adversarial examples by using sign of the gradient of the loss.
- Such an approach can be viewed as a linearization of the objective L around the data a.
- For single output $h_{\mathbf{x}}(\mathbf{a}), \nabla_{h} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}), b\right)$ is a scalar,
- $\operatorname{sign}\left(\nabla_{\mathbf{a}} h_{\mathbf{x}^{\star}}(\mathbf{a})\right)$ pattern is important

Results of FGSM on MNIST

Pred: 7 Pred: $2 \quad$ Pred: $1 \quad$ Pred: $0 \quad$ Pred: $4 \quad$ Pred: $1 \quad$ Pred: $3 \quad$ Pred: 3 Pred: $7 \quad$ Pred: $0 \quad$ Pred: 9

Figure: MNIST images with the predicted digit.
Figure: MNIST images perturbed by a FGSM attack. Taken from https://adversarial-ml-tutorial.org/adversarial_examples/

Adversarial examples and proximal gradient descent

- Target problem:

$$
\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}+\boldsymbol{\eta}), \mathbf{b}\right)
$$

- We can do better than FGSM via proximal gradient methods for composite minimization:

$$
\max _{\boldsymbol{\eta} \in \mathbb{R}^{p}} \underbrace{L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}+\boldsymbol{\eta}), \mathbf{b}\right)}_{f(\boldsymbol{\eta})}+\underbrace{\delta_{\mathcal{N}}(\boldsymbol{\eta})}_{g(\boldsymbol{\eta})},
$$

where $\delta_{\mathcal{N}}(\boldsymbol{\eta})$ is the indicator function of the ball $\mathcal{N}:=\left\{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon\right\}$.

Recall: Proximal operator of indicator functions

For the indicator functions of simple sets, e.g., $g(\boldsymbol{\eta}):=\delta_{\mathcal{N}}(\boldsymbol{\eta})$, the prox-operator is the projection operator

$$
\operatorname{prox}_{\lambda g}(\boldsymbol{\eta}):=\pi_{\mathcal{N}}(\boldsymbol{\eta})
$$

where $\pi_{\mathcal{N}}(\boldsymbol{\eta})$ denotes the projection of $\boldsymbol{\eta}$ onto \mathcal{N}. When $\mathcal{N}=\left\{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \lambda\right\}, \pi_{\mathcal{N}}(\boldsymbol{\eta})=\operatorname{clip}(\boldsymbol{\eta},[-\lambda, \lambda])$.

Adversarial examples and proximal gradient descent (cont'd)

- Target non-convex problem:

$$
\max _{\boldsymbol{\eta} \in \mathbb{R}^{p}} \underbrace{L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}+\boldsymbol{\eta}), \mathbf{b}\right)}_{f(\boldsymbol{\eta})}+\underbrace{\delta_{\mathcal{N}}(\boldsymbol{\eta})}_{g(\boldsymbol{\eta})},
$$

where $\delta_{\mathcal{N}}(\boldsymbol{\eta})$ is the indicator function of the ball $\mathcal{N}:=\left\{\mathbf{y}:\|\mathbf{y}\|_{\infty} \leq \epsilon\right\}$.

Remarks: \circ PGA results in more powerful adversarial "attacks" than FGSM [14].

- The PGA is incorrectly referred to as projected gradient descent in this literature.
- Practitioners prefer to use several steps of FGSM instead of PGA [15, 16, 18]:

$$
\boldsymbol{\eta}^{k+1}=\pi_{\mathcal{X}}\left(\boldsymbol{\eta}^{k}+\alpha_{k} \operatorname{sign}\left(\nabla f\left(\boldsymbol{\eta}^{k}\right)\right)\right)
$$

A proposed link between FGSM and PGA

- Recall
- A single step of PGA reads $\boldsymbol{\eta}_{\mathrm{PGA}}^{k+1}:=\pi_{\mathcal{N}}\left(\boldsymbol{\eta}^{k}+\alpha \nabla f(\boldsymbol{\eta})\right)$
- The FGSM attack is defined as $\eta_{\text {FGSM }}:=\epsilon \operatorname{sign}\left(\nabla_{\mathbf{a}} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}), \mathbf{b}\right)\right)$
- When $\mathcal{N}=\left\{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \lambda\right\}, \pi_{\mathcal{N}}(\boldsymbol{\eta})=\operatorname{clip}(\boldsymbol{\eta},[-\lambda, \lambda])$

FGSM as one step of PGA

Let $\boldsymbol{\eta}^{0}=\mathbf{0}$ and $\alpha>0$ such that $(\alpha|\nabla f(\mathbf{0})|)_{i}>\epsilon$ for $i=1, \ldots, n$. Then, one step of PGA yields

$$
\begin{aligned}
\boldsymbol{\eta}_{\mathrm{PGA}}^{1} & =\pi_{\mathcal{N}}\left(\boldsymbol{\eta}^{0}+\alpha \nabla_{\boldsymbol{\eta}} \nabla f\left(\boldsymbol{\eta}^{0}\right)\right) & & \\
& =\operatorname{clip}(\alpha \nabla f(\mathbf{0}),[-\epsilon, \epsilon]) & & \triangleright \boldsymbol{\eta}^{0}=\mathbf{0} \\
& =\epsilon \operatorname{sign}(\nabla f(\mathbf{0})) & & \triangleright \text { All values are outside of the interval }[-\epsilon, \epsilon] \\
& =\epsilon \operatorname{sign}\left(\nabla_{\mathbf{a}} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}), \mathbf{b}\right)\right)=\boldsymbol{\eta}_{\mathrm{FGSM}} & & \triangleright \nabla f(\mathbf{0})=\nabla_{\mathbf{a}} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}), \mathbf{b}\right)
\end{aligned}
$$

A proposed link between FGSM and PGA

- Recall
- A single step of PGA reads $\boldsymbol{\eta}_{\mathrm{PGA}}^{k+1}:=\pi_{\mathcal{N}}\left(\boldsymbol{\eta}^{k}+\alpha \nabla f(\boldsymbol{\eta})\right)$
- The FGSM attack is defined as $\eta_{\text {FGSM }}:=\epsilon \operatorname{sign}\left(\nabla_{\mathbf{a}} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}), \mathbf{b}\right)\right)$
- When $\mathcal{N}=\left\{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \lambda\right\}, \pi_{\mathcal{N}}(\boldsymbol{\eta})=\operatorname{clip}(\boldsymbol{\eta},[-\lambda, \lambda])$

FGSM as one step of PGA

Let $\boldsymbol{\eta}^{0}=\mathbf{0}$ and $\alpha>0$ such that $(\alpha|\nabla f(\mathbf{0})|)_{i}>\epsilon$ for $i=1, \ldots, n$. Then, one step of PGA yields

$$
\begin{aligned}
\boldsymbol{\eta}_{\mathrm{PGA}}^{1} & =\pi_{\mathcal{N}}\left(\boldsymbol{\eta}^{0}+\alpha \nabla_{\boldsymbol{\eta}} \nabla f\left(\boldsymbol{\eta}^{0}\right)\right) & & \\
& =\operatorname{clip}(\alpha \nabla f(\mathbf{0}),[-\epsilon, \epsilon]) & & \triangleright \boldsymbol{\eta}^{0}=\mathbf{0} \\
& =\epsilon \operatorname{sign}(\nabla f(\mathbf{0})) & & \triangleright \text { All values are outside of the interval }[-\epsilon, \epsilon] \\
& =\epsilon \operatorname{sign}\left(\nabla_{\mathbf{a}} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}), \mathbf{b}\right)\right)=\boldsymbol{\eta}_{\mathrm{FGSM}} & & \triangleright \nabla f(\mathbf{0})=\nabla_{\mathbf{a}} L\left(h_{\mathbf{x}^{\star}}(\mathbf{a}), \mathbf{b}\right)
\end{aligned}
$$

Multiple steps of FGSM: A connection to majorization-minimization in Lecture 4

Minimization-majorization for concave functions

Let f be a concave function which is smooth in the ℓ_{∞}-norm with constant L_{∞}. Our target non-convex problem is given by

$$
\max _{\boldsymbol{\eta}} f(\boldsymbol{\eta})+\delta_{\mathcal{N}}(\boldsymbol{\eta})
$$

where $\delta_{\mathcal{N}}(\boldsymbol{\eta})$ is the indicator function of the ball $\mathcal{N}:=\left\{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon\right\}$. Smoothness in ℓ_{∞}-norm implies

$$
f(\boldsymbol{\eta})+\delta_{\mathcal{N}}(\boldsymbol{\eta}) \geq \underbrace{f(\boldsymbol{\zeta})+\left\langle\nabla_{\boldsymbol{\eta}} f(\boldsymbol{\zeta}), \boldsymbol{\eta}-\boldsymbol{\zeta}\right\rangle-\frac{L_{\infty}}{2}\|\boldsymbol{\eta}-\boldsymbol{\zeta}\|_{\infty}^{2}+\delta_{\mathcal{X}}(\boldsymbol{\eta})}_{\boldsymbol{\eta}^{\star} \leftarrow \arg \max _{\boldsymbol{\eta}}}
$$

Maximizing the RHS with respect to η leads to the following (non trivial) solution [6]:

$$
\boldsymbol{\eta}^{\star}=\operatorname{clip}\left(\zeta-t^{\star} \operatorname{sign}(\nabla f(\zeta)),[-\epsilon, \epsilon]\right)
$$

where $t^{\star}=\arg \max _{t:\|\boldsymbol{\eta}-\boldsymbol{\zeta}\|_{\infty} \leq t} \max _{\boldsymbol{\zeta}:\|\boldsymbol{\zeta}\|_{\infty} \leq \epsilon}\langle\nabla f(\boldsymbol{\zeta}), \boldsymbol{\eta}-\boldsymbol{\zeta}\rangle$ can be found by linear search.

Remarks: $\quad \circ$ Setting $\zeta=\eta^{k}$ and $\boldsymbol{\eta}^{\star}=\eta^{k+1}$ with a fixed step size $\alpha=t^{\star}$, we obtain the update in $[15,16,18]$

$$
\boldsymbol{\eta}^{k+1}=\operatorname{clip}\left(\boldsymbol{\eta}^{k}-t^{\star} \operatorname{sign}\left(\nabla f\left(\boldsymbol{\eta}^{k}\right)\right),[-\epsilon, \epsilon]\right) .
$$

- This proof holds for concave and smooth functions, and need further quantification for our setting.

Towards adversarial training

Adversarial Training [12]

Let $h_{\mathbf{x}}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a model with parameters \mathbf{x} and let $\left\{\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)\right\}_{i=1}^{n}$, with the data $\mathbf{a}_{i} \in \mathbb{R}^{p}$ and the labels \mathbf{b}_{i}. The problem of adversarial training is the following adversarial optimization problem

$$
\min _{\mathbf{x}} \frac{1}{n} \sum_{i=1}^{n}\left[\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}+\boldsymbol{\eta}\right), \mathbf{b}_{i}\right)\right] \approx \min _{\mathbf{x}} \mathbb{E}_{(\mathbf{a}, \mathbf{b}) \sim \mathbb{P}}\left[\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{\infty} \leq \epsilon} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}+\boldsymbol{\eta}\right), \mathbf{b}_{i}\right)\right]
$$

Note the similarity with the template $\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$.

Solving the outer problem

Adversarial Training [12]

Let $h_{\mathbf{x}}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a model with parameters \mathbf{x} and let $\left\{\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)\right\}_{i=1}^{n}$, with $\mathbf{a}_{i} \in \mathbb{R}^{p}$ and \mathbf{b}_{i} be the corresponding labels. The adversarial training optimization problem is given by

$$
\min _{\mathbf{x}}\{\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x}):=\frac{1}{n} \sum_{i=1}^{n} \underbrace{\left[\max _{\eta:\|\boldsymbol{\eta}\| \infty \leq \epsilon} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}+\boldsymbol{\eta}\right), \mathbf{b}_{i}\right)\right]}_{=: f_{i}(\mathbf{x})}\} .
$$

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Solving the outer problem

Adversarial Training [12]

Let $h_{\mathbf{x}}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a model with parameters \mathbf{x} and let $\left\{\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)\right\}_{i=1}^{n}$, with $\mathbf{a}_{i} \in \mathbb{R}^{p}$ and \mathbf{b}_{i} be the corresponding labels. The adversarial training optimization problem is given by

$$
\min _{\mathbf{x}}\{\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x}):=\frac{1}{n} \sum_{i=1}^{n} \underbrace{\left[\max _{\eta:\|\boldsymbol{\eta}\| \infty \leq \epsilon} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}+\boldsymbol{\eta}\right), \mathbf{b}_{i}\right)\right]}_{=: f_{i}(\mathbf{x})}\} .
$$

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Question

How can we compute the gradient

$$
\nabla_{\mathbf{x}} f_{i}(\mathbf{x}):=\nabla_{\mathbf{x}}\left(\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\| \infty \leq \epsilon} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}+\boldsymbol{\eta}\right), \mathbf{b}_{i}\right)\right) ?
$$

- Challenge: It involves differentiating with respect to a maximization.
- A solution: We can use Danskin's theorem under some conditions.

Danskin's theorem

Danskin's theorem (Bertsekas variant)

Let $\Phi(\mathbf{x}, \mathbf{y}): \mathbb{R}^{p} \times \mathcal{Y} \rightarrow \mathbb{R}$, where $\mathcal{Y} \subset \mathbb{R}^{m}$ is a compact set and define $f(\mathbf{x}):=\max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$. Suppose that $\Phi(\mathbf{x}, \mathbf{y})$ is convex for each \mathbf{y} in the compact set \mathcal{Y}; the interior of the domain of f is nonempty; and $\Phi(\mathbf{x}, \mathbf{y})$ is continuous.

Define $\mathcal{Y}^{\star}(\mathbf{x}):=\arg \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$ as the set of maximizers and $\mathbf{y}^{\star} \in \mathcal{Y}^{\star}$ as an element of this set. We have

1. $f(\mathbf{x})$ is a convex function.
2. If $\mathcal{Y}^{\star}(\mathbf{x})$ is a singleton, then the function $f(\mathbf{x})=\max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$ is differentiable at \mathbf{x} :

$$
\nabla_{\mathbf{x}} f(\mathbf{x})=\nabla_{\mathbf{x}}\left(\max _{\mathbf{y} \in \mathcal{Y}} \phi(\mathbf{x}, \mathbf{y})\right)=\nabla_{\mathbf{x}} \Phi\left(\mathbf{x}, \mathbf{y}^{\star}\right)
$$

3. If $\mathcal{Y}^{\star}(\mathbf{x})$ contains more than one element, then the subdifferential $\partial_{\mathbf{x}} f(\mathbf{x})$ of f is given by

$$
\partial_{\mathbf{x}} f(\mathbf{x})=\operatorname{conv}\left\{\partial_{\mathbf{x}} \Phi\left(\mathbf{x}, \mathbf{y}^{\star}\right): \mathbf{y}^{\star} \in \mathcal{Y}^{\star}(\mathbf{x})\right\}
$$

Remarks: \quad The adversarial problem is not convex in \mathbf{x} in general.

- (Sub) Gradients of f are calculated as $\nabla_{\mathbf{x}} f(\mathbf{x})=\nabla_{\mathbf{x}} \Phi\left(\mathbf{x}, \mathbf{y}^{\star}\right)$.

The adversarial training formulation

Adversarial Training

Let $h_{\mathbf{x}}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ be a model with parameters \mathbf{x} and let $\left\{\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)\right\}_{i=1}^{n}$, with $\mathbf{a}_{i} \in \mathbb{R}^{p}$ and \mathbf{b}_{i} be the corresponding labels. The adversarial training optimization problem is given by

$$
\min _{\mathbf{x}}\{\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x}):=\frac{1}{n} \sum_{i=1}^{n} \underbrace{\left[\max _{\eta:\|\boldsymbol{\eta}\| \infty \leq \epsilon} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}+\boldsymbol{\eta}\right), \mathbf{b}_{i}\right)\right]}_{=: f_{i}(\mathbf{x})}\} .
$$

L is not differentiable due to non-smooth activation functions (ReLU), nor convex in \mathbf{x} because of the neural network structure.

Descent Directions in the non-convex case

General Danskin's Theorem

Assume \mathcal{Y} is compact and $\Phi(\mathbf{x}, \mathbf{y})$ differentiable in \mathbf{x} but not necessarily convex in \mathbf{x}. Define $\mathcal{Y}^{\star}(\mathbf{x}):=\arg \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$ as the set of maximizers. Then $f(\mathbf{x}):=\max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$ is directionally differentiable and its directional derivative is given by

$$
\begin{equation*}
D f(\mathbf{x}, \mathbf{d})=\max _{\mathbf{y}^{\star} \in \mathcal{Y}^{\star}(\mathbf{x})}\left\langle\mathbf{d}, \nabla_{\mathbf{x}} \Phi\left(\mathbf{x}, \mathbf{y}^{\star}\right)\right\rangle \tag{1}
\end{equation*}
$$

Corollary A. 2 in [18] (proven wrong!)

Let \mathbf{y}_{0}^{\star} be a maximizer of $\max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$. Then as long as $\nabla_{\mathbf{x}} \Phi\left(\mathbf{x}, \mathbf{y}_{0}^{\star}\right)$ is non-zero, $-\nabla_{\mathbf{x}} \Phi\left(\mathbf{x}, \mathbf{y}_{0}^{\star}\right)$ is a descent direction for $f(\mathbf{x})$.

Remarks: \circ The notion of directional derivative is one-sided:

$$
\begin{equation*}
D f(\mathbf{x}, \mathbf{d}):=\lim _{t \rightarrow 0^{+}} \frac{f(\mathbf{x}+t \mathbf{d})-f(\mathbf{x})}{t} \tag{2}
\end{equation*}
$$

- Only when $\mathcal{Y}^{\star}(\mathbf{x})=\left\{\mathbf{y}^{\star}\right\}$ is a singleton, $-\nabla_{\mathbf{x}} \Phi\left(\mathbf{x}, \mathbf{y}^{\star}\right)$ is necessarily a descent direction f.

Directional derivatives, not descent directions

Figure: (Left and Middle) Synthetic adversarial training example. (Right) Resnet18 on CIFAR10 - Robust accuracy comparison between PGD and DDD.

Solving the inner problem does not yield a descent direction

Danskin's Theorem involves all the maximizers when computing the directional derivative along a direction d. A single maximizer is not sufficient.

Remarks: \circ A recent approach (DDD) computes many maximizers to find a descent direction [2].

- In practice however, the lack of descent does not seem to matter.

A practical implementation of adversarial training: Stochastic subgradient descent

```
Stochastic Adversarial Training [18]
    Input: learning rate }\mp@subsup{\alpha}{k}{}\mathrm{ , iterations T, batch size K
    1. initialize neural network parameters (0
    2. For }k=0,1,\ldots,T\mathrm{ :
    i. initialize update vector g}\mp@subsup{\mathbf{g}}{}{k}:=
    ii. select a mini-batch of data }B\subset{1,\ldots,n}\mathrm{ with }|B|=
    iii. For i\inB:
            a. Find an attack }\mp@subsup{\boldsymbol{\eta}}{}{\star}\mathrm{ by (approximately) solving
            \mp@subsup{\boldsymbol{\eta}}{}{\star}\in\operatorname{arg max}
            b. Store update
                \mp@subsup{g}{}{k}}:=\mp@subsup{\mathbf{g}}{}{k}+\mp@subsup{\nabla}{\mathbf{x}}{}L(\mp@subsup{h}{\mp@subsup{\mathbf{x}}{}{k}}{}(\mp@subsup{\mathbf{a}}{i}{}+\mp@subsup{\boldsymbol{\eta}}{}{\star}),\mp@subsup{\mathbf{b}}{i}{}
        iv. Update parameters
            \mp@subsup{x}{}{k+1}}:=\mp@subsup{\mathbf{x}}{}{k}-\frac{\mp@subsup{\alpha}{k}{}}{K}\mp@subsup{\mathbf{g}}{}{k
```

Remarks: ○ Expensive but worth it!
- Inner problem iii.a cannot be solved to optimality (non-convex).
- Practitioners use FGSM or PGA or PGA- ℓ_{∞} to approximate the true $\boldsymbol{\eta}^{\star}$.
- Update in step iii.b is motivated by Corollary A. 2 in [18]

Application: Adversarial training for better interpretability

- Retinopathy classification problem: Given a retinal image (left), predict whether there is a disease.
- Zeiss: How can we interpret the prediction of a model $h_{\mathbf{x}}(\mathbf{a})$?
- Solution: Look at $\nabla_{\mathbf{x}} h_{\mathbf{x}}(\mathbf{a})$, called the saliency map [7]. Adversarial training helps!

Table: Left: Ground truth image, Middle: Saliency map, Right: Saliency map with adversarial training.

Is the training "fair"?

- Another grand challenge in ML: Fairness \& bias
- A concrete example: Adversarial training may sacrifice subset of classes in favor of consensus
- CIFAR10: 51% average robust accuracy while the worst class is 23.5%
- CIFAR100: the worst class has zero accuracy while the best has 76%

Figure: Clean accuracy and robust accuracy on CIFAR10 after clean training and adversarial training respectively.

Key challenges in ML demand much more than ERM

- Protect the weak: Class-focused online learning for adversarial training [1]

$$
\min _{\mathbf{x}} \max _{\mathbf{b}^{c} \in[C]} \frac{1}{n_{c}} \sum_{i=1}^{n_{c}}\left[\max _{\eta:\|\eta\| \leq \epsilon} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}+\boldsymbol{\eta}\right), \mathbf{b}_{i}^{c}\right)\right]
$$

- Great potential via the minimax formulation: the average does not suffer much or can even improve!

Adversarial machine learning: Introduction to Generative Adversarial Networks (GANs)

- Recall the parametric density estimation setting

(source: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)
$\mathbf{a}_{i}=[\ldots$ images...]
$b_{i}=[$...probability...]
- Goal: Games, denoising, image recovery...

- Generator $\mathbb{P}_{\mathbf{a}}$
- Nature
- Supervisor $\mathbb{P}_{B \mid \mathbf{a}}$
- Frequency data
- Learning Machine $h_{\mathbf{x}}\left(\mathbf{a}_{i}\right)$
- Data scientist: Mathematics of Data

A notion of distance between distributions

Figure: The Earth Mover's distance

Minimum cost transportation problem (Monge's problem)

Find a transport map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $T(X) \sim Y$, minimizing the cost

$$
\begin{equation*}
\operatorname{cost}(T):=\boldsymbol{E}_{X}\|Y-T(X)\| . \tag{3}
\end{equation*}
$$

The Wasserstein distance

Definition

Let μ and ν be two probability measures on \mathbb{R}^{d}. Their set of couplings is defined as

$$
\begin{equation*}
\Gamma(\mu, \nu):=\left\{\pi \text { prob. measure on } \mathbb{R}^{d} \times \mathbb{R}^{d} \text { with marginals } \mu, \nu\right\} \tag{4}
\end{equation*}
$$

Definition (q-Wasserstein distance (Primal))

$$
\begin{equation*}
W_{q}(\mu, \nu):=\left(\inf _{\pi \in \Gamma(\mu, \nu)} \boldsymbol{E}_{\left(\mathbf{a}, \mathbf{a}^{\prime}\right) \sim \pi} d\left(\mathbf{a}, \mathbf{a}^{\prime}\right)^{q}\right)^{1 / q} \tag{5}
\end{equation*}
$$

where $q=1,2$ and d is a distance.

Figure: Two one-dimensional distributions plotted on the x and y axes, and one possible joint distribution that defines a transport plan between them (https://en.wikipedia.org/wiki/ Wasserstein_metric).

Properties of the Wasserstein distance

- For any $q \geq 1$, the q-Wasserstein distance is a distance:
- $W_{q}(\mu, \nu)=0$ if and only if μ, ν have the same density almost everywhere (identity).
- $W_{q}(\mu, \nu)=W_{q}(\nu, \mu)$ (symmetry).
- $W_{q}(\mu, \rho) \leq W_{q}(\mu, \nu)+W_{q}(\nu, \rho)$ (triangle inequality).

Problem (Wasserstein Projection)

Given a target probability measure μ on \mathbb{R}^{d} we are interested in solving the following optimization problem:

$$
\begin{equation*}
\min _{\nu \in \Delta} W_{q}(\mu, \nu), \tag{6}
\end{equation*}
$$

where Δ is a set of probability measures on \mathbb{R}^{d}, and q is often selected as 1 or 2.

A way to model complex distributions: The push-forward measure

- Traditionally, we use analytical distributions: Restricts what we could model in real applications.
- Now, we use more expressive probability measures via push-forward measures with neural networks

Definition

- Let $\omega \sim \mathrm{p}_{\Omega}$ be a random variable.
- $h_{\mathbf{x}}(\cdot): \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ a function parameterized by parameters \mathbf{x}.

The pushforward measure of p_{Ω} under $h_{\mathbf{x}}$, denoted by $h_{\mathbf{x}} \# \mathrm{p}_{\Omega}$ is the distribution of $h_{\mathbf{x}}(\omega)$.

Example: Chi-square distribution

Let $\omega \sim \mathrm{p}_{\Omega}:=\mathcal{N}(0,1)$ be the normal distribution. Let $h_{x}: \mathbb{R} \rightarrow \mathbb{R}, h_{x}(\omega)=w^{x}$. Let us fix $x=2$. Then, $h_{x} \# \mathrm{p}_{\Omega}$ is the chi-square distribution with one degree of freedom.

Explanation: Change of variables.

Assume that $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is monotonic. Given the random variable $\omega \sim \mathrm{p}_{\Omega}$ with probability density function $\mathrm{p}_{\Omega}(\omega)$, the density $\mathrm{p}_{Y}(\mathbf{y})$ of $\mathbf{y}=h_{\mathbf{x}}(\omega)$ reads

$$
\mathrm{p}_{Y}(\mathbf{y})=\mathrm{p}_{\Omega}\left(h_{\mathbf{x}}^{-1}(\mathbf{y})\right) \operatorname{det}\left(\mathbf{J}_{\mathbf{y}} h_{\mathbf{x}}^{-1}(\mathbf{y})\right)
$$

where det denotes the determinant operation.

Towards an optimization problem

Problem (Ideal parametric density estimator)

Given a true distribution μ^{\natural}, we can solve the following optimization problem,

$$
\begin{equation*}
\min _{\mathbf{x}} W_{1}\left(\mu^{\natural}, h_{\mathbf{x}} \# p_{\Omega}\right), \tag{7}
\end{equation*}
$$

where the measurable function $h_{\mathbf{x}}$ is parameterized by \mathbf{x} and $\omega \sim p_{\Omega}$ is "simple" e.g., Gaussian.

- Issues:
- We only have access to empirical samples $\hat{\mu}_{n}$ of μ^{\natural}.

output
Figure: Schematic of a generative model, $h_{\mathbf{x}} \# \omega[9,13]$.

Learning without concentration

- We can minimize $W_{1}\left(\hat{\mu}_{n}, h_{\mathbf{x}} \# \mathrm{p}_{\Omega}\right)$ with respect to \mathbf{x}.
- Figure: Empirical distribution (blue), $\hat{\mu}_{n}=\sum_{i=1}^{n} \delta_{i}$

A plug-in empirical estimator

Using the triangle inequality for Wasserstein distances we can upper bound in the follow way,

$$
\begin{equation*}
W_{1}\left(\mu^{\natural}, h_{\mathbf{x}} \# \mathbf{p}_{\Omega}\right) \leq W_{1}\left(\mu^{\natural}, \hat{\mu}_{n}\right)+W_{1}\left(\hat{\mu}_{n}, h_{\mathbf{x}} \# \mathbf{p}_{\Omega}\right), \tag{8}
\end{equation*}
$$

where $\hat{\mu}_{n}$ is the empirical estimator of μ^{\natural} obtained from n independent samples from μ^{\natural}.

Theorem (Slow convergence of empirical measures in 1-Wasserstein [22,5])

Let μ^{\natural} be a measure defined on \mathbb{R}^{p} and let $\hat{\mu}_{n}$ be its empirical measure. Then the $\hat{\mu}_{n}$ converges, in the worst case, at the following rate,

$$
\begin{equation*}
W_{1}\left(\mu^{\natural}, \hat{\mu}_{n}\right) \gtrsim n^{-1 / p} . \tag{9}
\end{equation*}
$$

Remarks: $\quad \circ$ Using an empirical estimator in high-dimensions is terrible in the worst case.

- However, it does not directly say that $W_{1}\left(\mu^{\natural}, h_{\mathbf{x}} \# \mathrm{p}_{\Omega}\right)$ will be large.
- So we can still proceed and hope our parameterization interpolates harmlessly.

Duality of 1-Wasserstein

- Instead of computing W_{1}, we can obtain lower bounds using duality.

Theorem (Kantorovich-Rubinstein duality)

$$
\begin{equation*}
W_{1}(\mu, \nu)=\sup _{\mathrm{d}}\{\langle\mathrm{~d}, \mu\rangle-\langle\mathrm{d}, \nu\rangle: \mathrm{d} \text { is 1-Lipschitz }\} \tag{10}
\end{equation*}
$$

Remark: $\circ \mathrm{d}$ is the "dual" variable. In the literature, it is commonly referred to as the "discriminator."
Inner product is an expectation

$$
\begin{equation*}
\langle\mathrm{d}, \mu\rangle=\int \mathrm{dd} \mu=\int \mathrm{d}(\mathbf{a}) \mathrm{d} \mu(\mathbf{a})=\boldsymbol{E}_{\mathbf{a} \sim \mu}[\mathrm{d}(\mathbf{a})] . \tag{11}
\end{equation*}
$$

Kantorovich-Rubinstein duality applied to our objective

$$
\begin{equation*}
W_{1}\left(\hat{\mu}_{n}, h_{\mathbf{x}} \# \omega\right)=\sup \left\{\boldsymbol{E}_{\mathbf{a} \sim \hat{\mu}_{n}}[\mathrm{~d}(\mathbf{a})]-\boldsymbol{E}_{\mathbf{a} \sim h_{\mathbf{x}} \# \omega}[\mathrm{~d}(\mathbf{a})]: \mathrm{d} \text { is 1-Lipschitz }\right\} \tag{12}
\end{equation*}
$$

Integral Probability Metrics

We can define a more general class of (semi)metrics in the space of probability distributions

Definition (Integral Probability Metric)

Let \mathcal{F} be a class of functions from \mathbb{R}^{p} to \mathbb{R}. For two probability measures μ and ν, the IPM associated to \mathcal{F} is defined as:

$$
\begin{equation*}
\mathcal{F}(\mu, \nu):=\sup _{f \in \mathcal{F}}\langle f, \mu\rangle-\langle f, \nu\rangle=\sup _{f \in \mathcal{F}} \boldsymbol{E}_{\mathbf{a} \sim \mu}[f(\mathbf{a})]-\boldsymbol{E}_{\mathbf{a} \sim \nu}[f(\mathbf{a})] \tag{13}
\end{equation*}
$$

Remarks: $\quad \circ$ The 1 -Wasserstein distance corresponds to $\mathcal{F}:=\left\{f: \mathbb{R}^{p} \rightarrow \mathbb{R}, f\right.$ is 1 - Lipschitz $\}$

- The class cannot be described with finite parameters.

Neural network distances inspired by the 1-Wasserstein distance

- We use neural networks to parametrize a class of functions.
- Constraining the Lipschitz constant of Neural Networks is NP-Hard [21].
- We can constrain upper bounds on the Lipschitz constant [17].

Lemma

Let $h_{\mathbf{X}_{1}, \mathbf{X}_{2}}(\mathbf{a}):=\mathbf{X}_{2}^{T} \sigma\left(\mathbf{X}_{1} \mathbf{a}\right)$ be a one-hidden-layer neural network. Then its Lipschitz constant $L_{\mathbf{X}_{1}, \mathbf{X}_{2}}$ with respect to the ℓ_{2}-norm is bounded as:

$$
\begin{equation*}
L_{\mathbf{X}_{1}, \mathbf{x}_{2}} \leq\left\|\mathbf{X}_{1}\right\|_{2}\left\|\mathbf{X}_{2}\right\|_{2} \tag{14}
\end{equation*}
$$

Neural Network Distance

Let

$$
\begin{equation*}
\mathcal{F}:=\left\{h_{\mathbf{X}_{1}, \mathbf{X}_{2}}(\mathbf{a})=\mathbf{X}_{2}^{T} \sigma\left(\mathbf{X}_{1} \mathbf{a}\right):\left\|\mathbf{X}_{2}\right\|_{2} \leq 1,\left\|\mathbf{X}_{1}\right\|_{2} \leq 1\right\} . \tag{15}
\end{equation*}
$$

The IPM corresponding to \mathcal{F} is referred to as a Neural Network Distance.
Remark: \quad Different network architectures/constraints lead to different Neural Network distance notions.

Wasserstein GANs formulation

- Ingredients:
- fixed noise distribution p_{Ω} (e.g., normal)
- target distribution $\hat{\mu}_{n}$ (natural images)
- \mathcal{X} parameter class inducing a class of functions (generators)
- \mathcal{Y} parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [3]

Define a parameterized function $\mathrm{d}_{\mathbf{y}}(\mathbf{a})$, where $\mathbf{y} \in \mathcal{Y}$ such that $\mathrm{d}_{\mathbf{y}}(\mathbf{a})$ is 1 -Lipschitz. In this case, the Wasserstein GAN optimization problem is given by

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}}\left(\max _{\mathbf{y} \in \mathcal{Y}} \boldsymbol{E}_{\mathbf{a} \sim \hat{\mu}_{n}}\left[\mathrm{~d}_{\mathbf{y}}(\mathbf{a})\right]-\boldsymbol{E}_{\boldsymbol{\omega} \sim \mathrm{p}_{\Omega}}\left[\mathrm{d}_{\mathbf{y}}\left(h_{\mathbf{x}}(\boldsymbol{\omega})\right)\right]\right) \tag{16}
\end{equation*}
$$

General diagram of GANs

Figure: Generator/dual variable/dataset relation in GANs

The theory-practice gap: Enforcing 1-Lipschitz of the discriminator

Weight clipping [3]

The "dual" or the "discriminator" $\mathrm{d}_{\mathbf{y}}$ weights \mathbf{y} are constrained by an ℓ_{∞}-ball with radius $c>0$, denoted as \mathcal{B}, at every iteration with

$$
\begin{equation*}
\pi_{\mathcal{B}}(\mathbf{y})=\operatorname{clip}(\mathbf{y},[-c, c]) \tag{17}
\end{equation*}
$$

This trick is used to pseudo-enforce the constraint.

Remark:

- "Weight clipping is a clearly terrible way to enforce a Lipschitz constraint" - original authors.

Gradient penalty [11]

Recall that 1 -Lipschitz is equivalent to $\left\|\nabla_{\mathbf{a}} \mathrm{d}_{\mathbf{y}}(\mathbf{a})\right\|_{*} \leq 1$. This can be enforced directly through

$$
\begin{equation*}
\boldsymbol{E}_{\mathbf{a} \sim \hat{\mu}_{n}}\left[\mathbf{d}_{\mathbf{y}}(\mathbf{a})\right]-\boldsymbol{E}_{\boldsymbol{\omega} \sim \Omega}\left[\mathbf{d}_{\mathbf{y}}\left(h_{\mathbf{x}}(\boldsymbol{\omega})\right)\right]+\lambda \boldsymbol{E}_{\mathbf{a} \sim \nu}\left[\left(\left\|\nabla_{\mathbf{a}} \mathrm{d}_{\mathbf{y}}(\mathbf{a})\right\|_{*}-1\right)^{2}\right] . \tag{18}
\end{equation*}
$$

Remarks: $\quad \circ$ In practice the distribution ν mimicks uniform (linearly interpolated) sampling as follows:

$$
\mathbf{a} \sim \operatorname{Uniform}\left(\mathbf{a}_{i}, h_{\mathbf{x}}\left(\boldsymbol{\omega}_{i}\right)\right) .
$$

- Spectral normalization: Divide each weight matrix by their spectral norm [19].

Practical implementation of GANs

Stochastic training of Wasserstein GANs

Input: primal and "dual" learning rates γ_{t} and α_{m}, primal iterations T, "dual" network $\mathrm{d}_{\mathbf{y}}$, generator network $h_{\mathbf{x}}$, noise distribution p_{Ω}, real distribution $\hat{\mu}_{n}$, primal and dual batch sizes B, K, "dual" iterations M.

1. initialize \mathbf{x}^{0}
2. For $t=0,1, \ldots, T-1$:

For $m=0,1, \ldots, M-1$:
initialize \mathbf{y}^{0},
draw noise sample $\boldsymbol{\omega}_{1}, \ldots, \boldsymbol{\omega}_{K} \sim \mathrm{p}_{\Omega}$
draw real samples $\boldsymbol{r}_{1}, \ldots, \boldsymbol{r}_{K} \sim \hat{\mu}_{n}$
"dual" pseudo-loss $L(\mathbf{y}):=K^{-1} \sum_{i=1}^{K} \mathrm{~d}_{\mathbf{y}}\left(\boldsymbol{r}_{i}\right)-\mathrm{d}_{\mathbf{y}}\left(h_{\mathbf{x}^{t}}\left(\boldsymbol{\omega}_{i}\right)\right)$
\#update "dual" parameters $\mathbf{y}^{m+1}=\mathbf{y}^{m}+\gamma_{m} \nabla_{\mathbf{y}} L\left(\mathbf{y}^{m}\right)$
\#enforce 1-Lipschitz constraint on $\mathrm{d}_{\mathbf{y}^{m+1}}$
end-For
draw noise sample $\boldsymbol{\omega}_{1}, \ldots, \boldsymbol{\omega}_{B} \sim \mathrm{p}_{\Omega}$
generator pseudo-loss $L(\mathbf{x}):=-B^{-1} \sum_{i=1}^{B} \mathrm{~d}_{\mathbf{y}^{M}}\left(h_{\mathbf{x}}\left(\boldsymbol{\omega}_{i}\right)\right)$
update generator parameters $\mathbf{x}^{t+1}=\mathbf{x}^{t}-\alpha_{t} \nabla_{\mathbf{x}} L\left(\mathbf{x}^{t}\right)$
end-For
\#: Ideally, should be performed jointly.

Some historical background for a Turing award

Vanilla GAN [9]

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \boldsymbol{E}_{\mathbf{a} \sim \hat{\mu}_{n}}\left[\log \mathrm{~d}_{\mathbf{y}}(\mathbf{a})\right]+\boldsymbol{E}_{\boldsymbol{\omega} \sim p_{\Omega}}\left[\log \left(1-\mathrm{d}_{\mathbf{y}}\left(h_{\mathbf{x}}(\boldsymbol{\omega})\right)\right)\right] \tag{19}
\end{equation*}
$$

- Binary cross-entropy modeling.
- $\mathrm{d}_{\mathbf{y}}(\mathbf{a}): \mathcal{Y} \rightarrow[0,1]$ represents the probability that a came from the real data distribution μ^{\natural}.

Observation: ○ Minimizes Jensen-Shannon divergence:

$$
\operatorname{JSD}\left(\hat{\mu}_{n} \| h_{\mathbf{x}} \# \mathrm{p}_{\Omega}\right)=\frac{1}{2} D\left(\hat{\mu}_{n} \| h_{\mathbf{x}} \# \mathrm{p}_{\Omega}\right)+\frac{1}{2} D\left(h_{\mathbf{x}} \# \mathrm{p}_{\Omega} \| \hat{\mu}_{n}\right) .
$$

Wrap up!

- Continuing on Homework 2!

*Sharpness-aware minimization (SAM) [8]

- Intuition: Flat minima usually generalizes better than sharp minima.

Figure: ResNet trained via SAM converges to a flatter minima (Right) compared with the one trained via SGD (Middle), and thus leads to considerable error rate reduction (Left) [8].

*Sharpness-aware minimization (SAM) [8]

- Efficient approximation to the objective $\min _{\mathbf{x}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left[\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{2} \leq \epsilon} L\left(h_{\mathbf{x}+\boldsymbol{\eta}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)\right]\right\}$:
- Let's first consider the the inner maximization problem. By first-order Taylor expansion, we have:

$$
\begin{aligned}
& \boldsymbol{\eta}^{\star}=\underset{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{2} \leq \epsilon}{\arg \max } L\left(h_{\mathbf{x}+\boldsymbol{\eta}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right) \approx \underset{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{2} \leq \epsilon}{\arg \max }\left[L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)+\boldsymbol{\eta}^{\top} \nabla_{\mathbf{x}} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)\right] \\
& =\underset{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{2} \leq \epsilon}{\arg \max } \boldsymbol{\eta}^{\top} \nabla_{\mathbf{x}} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)=\epsilon \frac{\nabla_{\mathbf{x}} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)}{\left\|\nabla_{\mathbf{x}} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)\right\|_{2}} .
\end{aligned}
$$

- Plugging η^{\star} back the original objective and take the derivative:

$$
\begin{aligned}
& \nabla_{\mathbf{x}}\left\{\frac{1}{n} \sum_{i=1}^{n}\left[\max _{\boldsymbol{\eta}:\|\boldsymbol{\eta}\|_{2} \leq \epsilon} L\left(h_{\mathbf{x}+\boldsymbol{\eta}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)\right]\right\}=\frac{1}{n} \sum_{i=1}^{n}\left[\nabla_{\mathbf{x}} L\left(h_{\mathbf{x}+\boldsymbol{\eta}^{\star}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[\left.\left(1+\frac{d \boldsymbol{\eta}^{\star}}{d \boldsymbol{w}}\right) \nabla_{\mathbf{x}} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)\right|_{\mathbf{x}+\boldsymbol{\eta}^{\star}}\right] \approx \frac{1}{n} \sum_{i=1}^{n}\left[\left.\nabla_{\mathbf{x}} L\left(h_{\mathbf{x}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)\right|_{\mathbf{x}+\boldsymbol{\eta}^{\star}}\right],
\end{aligned}
$$

where in the last equation the second-order term is dropped for accelerating the computation.

- Thus, the parameters are updated by: $\mathbf{x}^{k+1}=\mathbf{x}^{k}-\gamma_{k} \frac{1}{n} \sum_{i=1}^{n}\left[\left.\nabla_{\mathbf{x}^{k}} L\left(h_{\mathbf{x}^{k}}\left(\mathbf{a}_{i}\right), \mathbf{b}_{i}\right)\right|_{\mathbf{x}^{k}+\boldsymbol{\eta}^{\star k}}\right]$, where γ_{k} is a step-size.

References I

[1] Anonymous.
Revisiting adversarial training for the worst-performing class.
Submitted to Transactions of Machine Learning Research, 2022.
Under review.
(Cited on pages 6 and 26.)
[2] Anonymous.
Adversarial training descends without descent: Finding actual descent directions based on danskin's theorem.
In Submitted to The Eleventh International Conference on Learning Representations, 2023. under review.
(Cited on page 22.)
[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks.
In International conference on machine learning, pages 214-223. PMLR, 2017.
(Cited on pages 37 and 39.)

References II

[4] Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, and Volkan Cevher.
Adversarially robust optimization with gaussian processes.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, pages 5765-5775, 2018.
(Cited on page 6.)
[5] Richard Mansfield Dudley.
The speed of mean glivenko-cantelli convergence.
The Annals of Mathematical Statistics, 40(1):40-50, 1969.
(Cited on page 33.)
[6] Marwa EL HALABI.
Learning with Structured Sparsity: From Discrete to Convex and Back. PhD thesis, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE, 2018.
(Cited on page 15.)
[7] Christian Etmann, Sebastian Lunz, Peter Maass, and Carola-Bibiane Schönlieb. On the connection between adversarial robustness and saliency map interpretability.
In International conference on machine learning. PMLR, 2019.
(Cited on page 24.)

References III

[8] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur.
Sharpness-aware minimization for efficiently improving generalization.
In International Conference on Learning Representations, 2021.
(Cited on pages 6, 43, and 44.)
[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.

Generative Adversarial Networks.
ArXiv e-prints, June 2014.
(Cited on pages 32 and 41.)
[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.
(Cited on pages 7 and 9.)
[11] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved training of wasserstein gans.
In Advances in Neural Information Processing Systems, pages 5767-5777, 2017.
(Cited on page 39.)

References IV

[12] Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári.
Learning with a strong adversary.
arXiv preprint arXiv:1511.03034, 2015.
(Cited on pages $6,16,17$, and 18.)
[13] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability, and variation.
In International Conference on Learning Representations, 2018.
(Cited on page 32.)
[14] Ziko Kolter and Aleksander Madry.
Adversarial robustness - theory and practice.
NeurIPS 2018 tutorial: https://adversarial-ml-tutorial.org/.
(Cited on page 12.)
[15] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.
(Cited on pages 12 and 15.)

References V

[16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236, 2016.
(Cited on pages 12 and 15.)
[17] Fabian Latorre, Paul Rolland, and Volkan Cevher.
Lipschitz constant estimation of neural networks via sparse polynomial optimization.
arXiv preprint arXiv:2004.08688, 2020.
(Cited on page 36.)
[18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks.
In ICLR '18: Proceedings of the 2018 International Conference on Learning Representations, 2018.
(Cited on pages 7, 9, 12, 15, 21, and 23.)
[19] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks.
arXiv preprint arXiv:1802.05957, 2018.
(Cited on page 39.)

References VI

[20] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks.
In International Conference on Learning Representations, 2014.
(Cited on page 7.)
[21] Aladin Virmaux and Kevin Scaman.
Lipschitz regularity of deep neural networks: analysis and efficient estimation.
Advances in Neural Information Processing Systems, 31, 2018.
(Cited on page 36.)
[22] Jonathan Weed, Francis Bach, et al.
Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance.
Bernoulli, 25(4A):2620-2648, 2019.
(Cited on page 33.)

