Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 6: From stochastic gradient descent to non-smooth optimization
Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2022)

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- Stochastic optimization
- Deficiency of smooth models
- Sparsity and compressive sensing
- Non-smooth minimization via Subgradient descent
- *Atomic norms

Recall: Gradient descent

Problem (Unconstrained optimization problem)

Consider the following minimization problem:

$$
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})
$$

$f(\mathbf{x})$ is proper and closed.

Gradient descent

Choose a starting point \mathbf{x}^{0} and iterate

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

where α_{k} is a step-size to be chosen so that \mathbf{x}^{k} converges to \mathbf{x}^{\star}.

	f is L-smooth \& convex	f is L-gradient Lipschitz \& non-convex
GD	$O(1 / k)$ (fast)	$O(1 / k)$ (optimal)
AGD	$O\left(1 / k^{2}\right)$ (optimal)	$O(1 / k)$ (optimal) [15]

Recall: Gradient descent

Problem (Unconstrained optimization problem)

Consider the following minimization problem:

$$
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})
$$

$f(\mathbf{x})$ is proper and closed.

Gradient descent

Choose a starting point \mathbf{x}^{0} and iterate

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \nabla f\left(\mathbf{x}^{k}\right)
$$

where α_{k} is a step-size to be chosen so that \mathbf{x}^{k} converges to \mathbf{x}^{\star}.

	f is L-smooth \& convex	f is L-gradient Lipschitz \& non-convex
GD	$O(1 / k)$ (fast)	$O(1 / k)$ (optimal)
AGD	$O\left(1 / k^{2}\right)$ (optimal)	$O(1 / k)$ (optimal) [15]

Why should we study anything else?

Statistical learning with streaming data

- Recall that statistical learning seeks to find a $h^{\star} \in \mathcal{H}$ that minimizes the expected risk,

$$
h^{\star} \in \underset{h \in \mathcal{H}}{\arg \min }\left\{R(h):=\mathbb{E}_{(\mathbf{a}, b)}[L(h(\mathbf{a}), b)]\right\} .
$$

Abstract gradient method

$$
h^{k+1}=h^{k}-\alpha_{k} \nabla R\left(h^{k}\right)=h^{k}-\alpha_{k} \mathbb{E}_{(\mathbf{a}, b)}\left[\nabla L\left(h^{k}(\mathbf{a}), b\right)\right] .
$$

Remark: $\quad \circ$ This algorithm can not be implemented as the distribution of (\mathbf{a}, b) is unknown.

Statistical learning with streaming data

- Recall that statistical learning seeks to find a $h^{\star} \in \mathcal{H}$ that minimizes the expected risk,

$$
h^{\star} \in \underset{h \in \mathcal{H}}{\arg \min }\left\{R(h):=\mathbb{E}_{(\mathbf{a}, b)}[L(h(\mathbf{a}), b)]\right\} .
$$

Abstract gradient method

$$
h^{k+1}=h^{k}-\alpha_{k} \nabla R\left(h^{k}\right)=h^{k}-\alpha_{k} \mathbb{E}_{(\mathbf{a}, b)}\left[\nabla L\left(h^{k}(\mathbf{a}), b\right)\right] .
$$

Remark: $\quad \circ$ This algorithm can not be implemented as the distribution of (\mathbf{a}, b) is unknown.

- In practice, data can arrive in a streaming way.

A parametric example: Markowitz portfolio optimization

$$
\mathbf{x}^{\star}:=\min _{\mathbf{x} \in \mathcal{X}}\left\{\mathbb{E}\left[|b-\langle\mathbf{x}, \mathbf{a}\rangle|^{2}\right]\right\}
$$

- $h_{\mathbf{x}}(\cdot)=\langle\mathbf{x}, \cdot\rangle$
- $b \in \mathbb{R}$ is the desired return \& $\mathbf{a} \in \mathbb{R}^{p}$ are the stock returns
- \mathcal{X} is intersection of the standard simplex and the constraint: $\langle\mathbf{x}, \mathbb{E}[\mathbf{a}]\rangle \geq \rho$.

Stochastic programming

Problem (Mathematical formulation)

Consider the following convex minimization problem:

$$
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}):=\mathbb{E}[f(\mathbf{x}, \theta)]\}
$$

- θ is a random vector whose probability distribution is supported on set Θ.
- $f(\mathbf{x}):=\mathbb{E}[f(\mathbf{x}, \theta)]$ is proper, closed, and convex.
- The solution set $\mathcal{S}^{\star}:=\left\{\mathbf{x}^{\star} \in \operatorname{dom}(f): f\left(\mathbf{x}^{\star}\right)=f^{\star}\right\}$ is nonempty.

Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\alpha_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty \mathbb{N}^{\mathbb{N}}$.
2. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right)
$$

- $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ is an unbiased estimate of the full gradient:

$$
\mathbb{E}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right)\right]=\nabla f\left(\mathbf{x}^{k}\right) .
$$

Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\alpha_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty\left[^{\mathbb{N}}\right.$.
2. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right)
$$

- $G\left(\mathrm{x}^{k}, \theta_{k}\right)$ is an unbiased estimate of the full gradient:

$$
\mathbb{E}\left[G\left(\mathbf{x}^{k}, \theta_{k}\right)\right]=\nabla f\left(\mathbf{x}^{k}\right) .
$$

Remarks:

- The cost of computing $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ is n times cheaper than that of $\nabla f\left(\mathbf{x}^{k}\right)$.
- As $G\left(\mathbf{x}^{k}, \theta_{k}\right)$ is an unbiased estimate of the full gradient, SGD would perform well.
- We assume $\left\{\theta_{k}\right\}$ are jointly independent.
- SGD is not a monotonic descent method.

Example: Convex optimization with finite sums

Convex optimization with finite sums

The problem

$$
\underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

can be rewritten as

$$
\underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\left\{f(\mathbf{x}):=\mathbb{E}_{i}\left[f_{i}(\mathbf{x})\right]\right\}, \quad i \text { is uniformly distributed over }\{1,2, \cdots, n\} .
$$

A stochastic gradient descent (SGD) variant for finite sums

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \nabla f_{i}\left(\mathbf{x}^{k}\right) \quad i \text { is uniformly distributed over }\{1, \ldots, n\}
$$

Remarks:

- Note: $\mathbb{E}_{i}\left[\nabla f_{i}\left(\mathbf{x}^{k}\right)\right]=\sum_{j=1}^{n} \nabla f_{j}\left(\mathbf{x}^{k}\right) / n=\nabla f\left(\mathbf{x}^{k}\right)$.
- The computational cost of SGD per iteration is p.

Synthetic least-squares problem

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2 n}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Setup

- A $:=\operatorname{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, \mathbb{I})$, with $n=10^{4}, p=10^{2}$.
- \mathbf{x}^{\natural} is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to $\left\|\mathbf{x}^{\natural}\right\|_{2}=1$.
- $\mathbf{b}:=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} is Gaussian white noise with variance 1 .

- 1 epoch $=1$ pass over the full gradient

Convergence of SGD when the objective is not strongly convex

Theorem (decaying step-size [27])

Assume

- $\mathbb{E}\left[\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}\right] \leq D^{2}$ for all k,
- $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2}\right] \leq M^{2}$ (bounded gradient),
- $\alpha_{k}=\alpha_{0} / \sqrt{k}$.

Then

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq\left(\frac{D^{2}}{\alpha_{0}}+\alpha_{0} M^{2}\right) \frac{2+\log k}{\sqrt{k}} .
$$

Observation:

- $\mathcal{O}(1 / \sqrt{k})$ rate is optimal for SGD if we do not consider the strong convexity.

Convergence of SGD for strongly convex problems I

Theorem (strongly convex objective, fixed step-size [4])

Assume

- f is μ-strongly convex and L-smooth,
- $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2}\right]_{2} \leq \sigma^{2}+M\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|_{2}^{2}$ (bounded variance),
- $\alpha_{k}=\alpha \leq \frac{1}{L M}$.

Then

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \frac{\alpha L \sigma^{2}}{2 \mu}+(1-\mu \alpha)^{k-1}\left(f\left(\mathbf{x}^{1}\right)-f^{\star}\right)
$$

Observations: ○ Converge fast (linearly) to a neighborhood around \mathbf{x}^{\star}.

- Smaller step-sizes $\alpha \Longrightarrow$ converge to a better point, but with a slower rate.
- Zero variance $(\sigma=0) \Longrightarrow$ linear convergence.
- This is also known as the relative noise model [24] or the strong growth condition [7].
- The growth condition is in fact a necessary and sufficient condition for linear convergence [7].
- The theory applies to the Kaczmarz algorithm (see advanced material).

Convergence of SGD for strongly convex problems II

Theorem (strongly convex objective, decaying step-size [4])

Assume

- f is μ-strongly convex and L-smooth,
- $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2}\right]_{2} \leq \sigma^{2}+M\left\|\nabla f\left(\mathbf{x}^{k}\right)\right\|_{2}^{2}$ (bounded variance),
- $\alpha_{k}=\frac{c}{k_{0}+k}$ with some appropriate constants c and k_{0}.

Then

$$
\mathbb{E}\left[\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}\right] \leq \frac{C}{k+1},
$$

where C is a constant independent of k.

Observations: ○ Using the L-smooth property,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq L \mathbb{E}\left[\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|^{2}\right] \leq \frac{C}{k+1}
$$

- The rate is optimal if $\sigma^{2}>0$ with the assumption of strongly-convexity.

Example: SGD with different step sizes

Setup

- Synthetic least-squares problem as before.
- We use $\alpha_{k}=\alpha_{0} /\left(k+k_{0}\right)$.

Example: SGD with different step sizes

Setup

- Synthetic least-squares problem as before.
- We use $\alpha_{k}=\alpha_{0} /\left(k+k_{0}\right)$.

Observation: $\quad \circ \alpha_{0}=1 / \mu$ is the best choice.

Comparison with GD

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{f(\mathbf{x}):=\frac{1}{n} \sum_{j=1}^{n} f_{j}(\mathbf{x})\right\}
$$

- f : μ-strongly convex with L-Lipschitz smooth.

	rate	iteration complexity	cost per iteration	total cost
GD	ρ^{k}	$\log (1 / \epsilon)$	n	$n \log (1 / \epsilon)$
SGD	$1 / k$	$1 / \epsilon$	1	$1 / \epsilon$

Remark: $\quad \circ$ SGD is more favorable when n is large - large-scale optimization problems

Motivation for SGD with Averaging

- SGD iterates tend to oscillate around global minimizers
- Averaging iterates can reduce the oscillation effect
- Two types of averaging:

$$
\begin{gathered}
\overline{\mathbf{x}}^{k}=\frac{1}{k} \sum_{j=1}^{k} \alpha_{j} \mathbf{x}^{j} \quad \text { (vanilla averaging) } \\
\overline{\mathbf{x}}^{k}=\frac{\sum_{j=1}^{k} \alpha_{j} \mathbf{x}^{j}}{\sum_{j=1}^{k} \alpha_{j}} \quad \text { (weighted averaging) }
\end{gathered}
$$

Remark: \quad Do not confuse the averaging above with the ones used in Federated Learning.

Convergence for SGD-A I: non-strongly convex case

Stochastic gradient method with averaging (SGD-A)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\alpha_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty\left[^{\mathbb{N}}\right.$.

2a. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right)
$$

2b. $\overline{\mathbf{x}}^{k}=\left(\sum_{j=0}^{k} \alpha_{j}\right)^{-1} \sum_{j=0}^{k} \alpha_{j} \mathbf{x}^{j}$.

Theorem (Convergence of SGD-A [23])

Let $D=\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|$ and $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2}\right] \leq M^{2}$.
Then,

$$
\mathbb{E}\left[f\left(\overline{\mathbf{x}}^{k+1}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \frac{D^{2}+M^{2} \sum_{j=0}^{k} \alpha_{j}^{2}}{2 \sum_{j=0}^{k} \alpha_{j}}
$$

In addition, choosing $\alpha_{k}=D /(M \sqrt{k+1})$, we get,

$$
\mathbb{E}\left[f\left(\overline{\mathbf{x}}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \frac{M D(2+\log k)}{\sqrt{k}}
$$

Observation: ○ Same convergence rate with vanilla SGD.

Convergence for SGD-A II: strongly convex case

Stochastic gradient method with averaging (SGD-A)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\left.\left(\alpha_{k}\right)_{k \in \mathbb{N}} \in\right] 0,+\infty \mathbb{N}^{\mathbb{N}}$.

2a. For $k=0,1, \ldots$ perform:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} G\left(\mathbf{x}^{k}, \theta_{k}\right)
$$

2b. $\overline{\mathbf{x}}^{k}=\frac{1}{k} \sum_{j=1}^{k} \mathbf{x}^{j}$.

Theorem (Convergence of SGD-A [26])

Assume

- f is μ-strongly convex,
- $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}, \theta_{k}\right)\right\|^{2}\right] \leq M^{2}$,
- $\alpha_{k}=\alpha_{0} / k$ for some $\alpha_{0} \geq 1 / \mu$.

Then

$$
\mathbb{E}\left[f\left(\overline{\mathbf{x}}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq \frac{\alpha_{0} M^{2}(1+\log k)}{2 k}
$$

Observation: ○ Same convergence rate with vanilla SGD.

Example: SGD-A method with different step sizes

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2 n}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Setup

- Synthetic least-squares problem as before
- $\alpha_{k}=\alpha_{0} /\left(k+k_{0}\right)$.

Example: SGD-A method with different step sizes

$$
\min _{\mathbf{x}}\left\{f(\mathbf{x}):=\frac{1}{2 n}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}: \mathbf{x} \in \mathbb{R}^{p}\right\}
$$

Setup

- Synthetic least-squares problem as before
- $\alpha_{k}=\alpha_{0} /\left(k+k_{0}\right)$.

Observations:

- SGD-A is more stable than SGD.
- $\alpha_{0}=2 / \mu$ is the best choice.

Least mean squares algorithm

Least-square regression problem

Solve

$$
\mathbf{x}^{\star} \in \underset{\mathbf{x} \in \mathbb{R}^{p}}{\arg \min }\left\{f(\mathbf{x}):=\frac{1}{2} \mathbb{E}_{(\mathbf{a}, b)}(\langle\mathbf{a}, \mathbf{x}\rangle-b)^{2}\right\},
$$

given i.i.d. samples $\left\{\left(\mathbf{a}_{j}, b_{j}\right)\right\}_{j=1}^{n}$ (particularly in a streaming way).

Stochastic gradient method with averaging

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ and $\alpha>0$.

2a. For $k=1, \ldots, n$ perform:

$$
\mathbf{x}^{k}=\mathbf{x}^{k-1}-\alpha\left(\left\langle\mathbf{a}_{k}, \mathbf{x}^{k-1}\right\rangle-b_{k}\right) \mathbf{a}_{k} .
$$

2b. $\overline{\mathbf{x}}^{k}=\frac{1}{k+1} \sum_{j=0}^{k} \mathbf{x}^{j}$.
$O(1 / k)$ convergence rate, without strongly convexity [2]
Let $\left\|\mathbf{a}_{j}\right\|_{2} \leq R$ and $\left|\left\langle\mathbf{a}_{j}, \mathbf{x}^{\star}\right\rangle-b_{j}\right| \leq \sigma$ a.s.. Pick $\alpha=1 /\left(4 R^{2}\right)$. Then, the average sequence $\overline{\mathbf{x}}^{k-1}$ satisfies the following

$$
\mathbb{E} f\left(\overline{\mathbf{x}}^{k-1}\right)-f^{*} \leq \frac{2}{k}\left(\sigma \sqrt{p}+R\left\|\mathbf{x}^{0}-\mathbf{x}^{\star}\right\|_{2}\right)^{2} .
$$

Popular SGD Variants

- Mini-batch SGD: For each iteration,

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \frac{1}{b} \sum_{\theta \in \Gamma} G\left(\mathbf{x}^{k}, \theta\right) .
$$

- α_{k} : step-size
- b : mini-batch size
- Γ : a set of random variables θ of size b
- Accelerated SGD (Nesterov accelerated technique)
- SGD with Momentum
- Adaptive stochastic methods: AdaGrad...

SGD - Non-convex stochastic optimization

- SGD and several variants are also well-studied for non-convex problems [20].
- Sometimes, there are gaps between SGD's practical performance and theoretical understanding (more later!).
- Recall SGD update rule:

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} G\left(\mathbf{x}^{k}, \theta\right)
$$

Theorem (A well-known result for SGD \& Non-convex problems [14])

Let f be a non-convex and L-smooth function. Set $\alpha_{k}=\min \left\{\frac{1}{L}, \frac{C}{\sigma \sqrt{T}}\right\}, \forall k=1, \ldots, T$, where σ^{2} is the variance of the gradients and $C>0$ is constant. Then, it holds that

$$
\mathbb{E}\left[\left\|\nabla f\left(\mathbf{x}^{R}\right)\right\|^{2}\right]=O\left(\frac{\sigma}{\sqrt{T}}\right),
$$

where $\mathbb{P}(R=k)=\frac{2 \alpha_{k}-L \alpha_{k}^{2}}{\sum_{k=1}^{T}\left(2 \alpha_{k}-L \alpha_{k}^{2}\right)}$.

Lower bounds in non-convex optimization

Assumptions on f	Additional assumptions	Sample complexity		
L-smooth	$\begin{aligned} & \text { Deterministic Oracle } \\ & f\left(\mathbf{x}^{0}\right)-\inf _{\mathbf{x}} f(\mathbf{x}) \leq \Delta \\ & \hline \end{aligned}$	$\Omega\left(\Delta L \epsilon^{-2}\right)[6]$		
$\begin{gathered} L_{1} \text {-smooth } \\ L_{2} \text {-Lipschitz Hessian } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Deterministic Oracle } \\ & f\left(\mathbf{x}^{0}\right)-\inf _{\mathbf{x}} f(\mathbf{x}) \leq \Delta \end{aligned}$	$\Omega\left(\Delta L_{1}^{3 / 7} L_{2}^{2 / 7} \epsilon^{-12 / 7}\right)[6]$		
L-smooth	$\begin{gathered} \mathbb{E}[G(\mathbf{x}, \theta)]=\nabla f(x) \\ \mathbb{E}\left[\\|G(\mathbf{x}, \theta)-\nabla f(\mathbf{x})\\|^{2}\right] \leq \sigma^{2} \\ f\left(\mathbf{x}^{0}\right)-\inf _{\mathbf{x}} f(\mathbf{x}) \leq \Delta \end{gathered}$	$\Omega\left(\Delta L \sigma^{2} \epsilon^{-4}\right)[1]$		
$G(\mathbf{x}, \theta)$ has averaged L-Lipschitz gradient $\Longrightarrow L$-smooth	$\begin{gathered} \mathbb{E}[G(\mathbf{x}, \theta)]=\nabla f(x) \\ \mathbb{E}\left[\\|G(\mathbf{x}, \theta)-\nabla f(\mathbf{x})\\|^{2}\right] \leq \sigma^{2} \\ f\left(\mathbf{x}^{0}\right)-\inf _{\mathbf{x}} f(\mathbf{x}) \leq \Delta \end{gathered}$	$\Omega\left(\Delta L \sigma \epsilon^{-3}+\sigma^{2} \epsilon^{-2}\right)[1]$		
$f(\mathbf{x}):=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x})$ $f_{i}(\mathbf{x})$ has averaged L-Lipschitz gradient $\Longrightarrow L$-smooth	$\begin{gathered} \text { Access to } \nabla f_{i}(\mathbf{x}) \\ f\left(\mathbf{x}^{0}\right)-\inf _{\mathbf{x}} f(\mathbf{x}) \leq \Delta \\ n \leq O\left(\epsilon^{-4}\right)^{1} \end{gathered}$	$\Omega\left(\Delta L \sqrt{n} \epsilon^{-2}\right)[11]$		

- Measure of stationarity: $\|\nabla f(\mathbf{x})\| \leq \epsilon$ or $\mathbb{E}[\|\nabla f(\mathbf{x})\| \leq \epsilon$
- Sample complexity: \# of total oracle calls (deterministic or stochastic gradients)
- Averaged L-Lipschitz gradient: $\mathbb{E}\left[\left\|\nabla f_{i}(\mathbf{x})-\nabla f_{i}(\mathbf{y})\right\|^{2}\right] \leq L^{2}\|\mathbf{x}-\mathbf{y}\|^{2}$
- $G(\mathbf{x}, \theta)$ denotes a stochastic gradient estimate for f at \mathbf{x} with randomness governed by θ.

[^0]
Non-smooth minimization: A simple example

What if we simultaneously want $f_{1}(x), f_{2}(x), \ldots, f_{k}(x)$ to be small?
A natural approach in some cases: Minimize $f(x)=\max \left\{f_{1}(x), \ldots, f_{k}(x)\right\}$

- The good news: If each $f_{i}(x)$ is convex, then $f(x)$ is convex
- The bad (!) news: Even if each $f_{i}(x)$ is smooth, $f(x)$ may be non-smooth
- e.g., $f(x)=\max \left\{x, x^{2}\right\}$

Figure: Maximum of two smooth convex functions.

A statistical learning motivation for non-smooth optimization

Linear Regression

Consider the classical linear regression problem:

$$
\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}
$$

with $\mathbf{b} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{n \times p}$ are known, \mathbf{x}^{\natural} is unknown, and \mathbf{w} is noise. Assume for now that $n \geq p$ (more later).

A statistical learning motivation for non-smooth optimization

Linear Regression

Consider the classical linear regression problem:

$$
\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}
$$

with $\mathbf{b} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{n \times p}$ are known, \mathbf{x}^{\natural} is unknown, and \mathbf{w} is noise. Assume for now that $n \geq p$ (more later).

- Standard approach: Least squares: $\mathbf{x}_{\mathrm{LS}}^{\star} \in \arg \min _{\mathbf{x}}\|\mathbf{b}-\mathbf{A x}\|_{2}^{2}$
- Convex, smooth, and an explicit solution: $\mathbf{x}_{\mathrm{LS}}^{\star}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}=\mathbf{A}^{\dagger} \mathbf{b}$
- Alternative approach: Least absolute value deviation: $\mathbf{x}^{\star} \in \arg \min _{\mathbf{x}}\|\mathbf{b}-\mathbf{A x}\|_{1}$
- The advantage: Improved robustness against outliers (i.e., less sensitive to high noise values)
- The bad (!) news: A non-differentiable objective function

Our main motivating example this lecture: The case $n \ll p$

Deficiency of smooth models

Recall the practical performance of an estimator \mathbf{x}^{\star}.

Practical performance

Denote the numerical approximation at time t by \mathbf{x}^{t}. The practical performance is determined by

$$
\left\|\mathbf{x}^{t}-\mathbf{x}^{\natural}\right\|_{2} \leq \underbrace{\left\|\mathbf{x}^{t}-\mathbf{x}^{\star}\right\|_{2}}_{\text {numerical error }}+\underbrace{\left\|\mathrm{x}^{\star}-\mathrm{x}^{\natural}\right\|_{2}}_{\text {statistical error }} .
$$

Remarks:

- Non-smooth estimators of \mathbf{x}^{\natural} can help reduce the statistical error.
- This improvement may require higher computational costs.

Example: Least-squares estimation in the linear model

- Recall the linear model and the LS estimator.

LS estimation in the linear model

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and $\mathbf{A} \in \mathbb{R}^{n \times p}$. The samples are given by $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$, where \mathbf{w} denotes the unknown noise.
The LS estimator for \mathbf{x}^{\natural} given \mathbf{A} and \mathbf{b} is defined as

$$
\mathbf{x}_{\mathrm{LS}}^{\star} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}\right\} .
$$

Remarks:

- If \mathbf{A} has full column rank, $\mathbf{x}_{\mathrm{LS}}^{\star}=\mathbf{A}^{\dagger} \mathbf{b}$ is uniquely defined.
- When $n<p$, \mathbf{A} cannot have full column rank, and hence $\mathbf{x}_{\mathrm{LS}}^{\star} \in\left\{\mathbf{A}^{\dagger} \mathbf{b}+\mathbf{h}: \mathbf{h} \in \operatorname{null}(\mathbf{A})\right\}$.

Observation: $\quad \circ$ The estimation error $\left\|\mathbf{x}_{\mathrm{LS}}^{\star}-\mathbf{x}^{\natural}\right\|_{2}$ can be arbitrarily large!

A candidate solution

Continuing the LS example:

- There exist infinitely many x's such that $\mathbf{b}=\mathbf{A x}$
- Suppose that $\mathbf{w}=0$ (i.e. no noise). Let us just choose the one $\hat{\mathbf{x}}_{\text {candidate }}$ with the smallest norm $\|\mathbf{x}\|_{2}$.

Observation: \circ Unfortunately, this still fails when $n<p$

A candidate solution contd.

Proposition ([16])

Suppose that $\mathbf{A} \in \mathbb{R}^{n \times p}$ is a matrix of i.i.d. standard Gaussian random variables, and $\mathbf{w}=\mathbf{0}$. We have

$$
(1-\epsilon)\left(1-\frac{n}{p}\right)\left\|\mathbf{x}^{\natural}\right\|_{2}^{2} \leq\left\|\hat{\mathbf{x}}_{\text {candidate }}-\mathbf{x}^{\natural}\right\|_{2}^{2} \leq(1-\epsilon)^{-1}\left(1-\frac{n}{p}\right)\left\|\mathbf{x}^{\natural}\right\|_{2}^{2}
$$

with probability at least $1-2 \exp \left[-(1 / 4)(p-n) \epsilon^{2}\right]-2 \exp \left[-(1 / 4) p \epsilon^{2}\right]$, for all $\epsilon>0$ and $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$.

Summarizing the findings so far

The message so far:

- Even in the absence of noise, we cannot recover \mathbf{x}^{\natural} from the observations $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}$ unless $n \geq p$
- But in applications, p might be thousands, millions, billions...
- Can we get away with $n \ll p$ under some further assumptions on \mathbf{x} ?

A natural signal model

Definition (s-sparse vector)

A vector $\mathbf{x} \in \mathbb{R}^{p}$ is s-sparse if it has at most s non-zero entries.

Sparse representations

$\mathrm{x}^{\text { }}$: sparse transform coefficients

- Basis representations $\Psi \in \mathbb{R}^{p \times p}$
- Wavelets, DCT, ...
- Frame representations $\Psi \in \mathbb{R}^{m \times p}, m>p$
- Gabor, curvelets, shearlets, ...
- Other dictionary representations...

Sparse representations strike back!

- $\mathbf{b} \in \mathbb{R}^{n}, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$, and $n<p$

Sparse representations strike back!

- $\mathbf{b} \in \mathbb{R}^{n}, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}$, and $n<p$
- $\boldsymbol{\Psi} \in \mathbb{R}^{p \times p}, \mathbf{x}^{\natural} \in \mathbb{R}^{p}$, and $\left\|\mathbf{x}^{\natural}\right\|_{0} \leq s<n$

Sparse representations strike back!

$\triangleright \mathbf{b} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{n \times p}$, and $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, and $\left\|\mathbf{x}^{\natural}\right\|_{0} \leq s<n<p$

Sparse representations strike back!

b
A

$n \times 1$
$n \times s$

Observations: - The matrix A effectively becomes overcomplete.

- We could solve for \mathbf{x}^{\natural} if we knew the location of the non-zero entries of \mathbf{x}^{\natural}.

Compressible signals

- Real signals may not be exactly sparse, but approximately sparse, or compressible.

Definition (Compressible signals)

Roughly speaking, a vector $\mathbf{x}:=\left(x_{1}, \ldots, x_{p}\right)^{T} \in \mathbb{R}^{p}$ is compressible if the number of its significant components (i.e., entries larger than some $\epsilon>0:\left|\left\{k:\left|x_{k}\right| \geq \epsilon, 1 \leq k \leq p\right\}\right|$) is small.

- Cameraman@MIT.

- Solid curve: Sorted wavelet coefficients of the cameraman image.
- Dashed curve: Expected order statistics of generalized Pareto distribution with shape parameter 1.67 .

A different tale of the linear model $\mathbf{b}=\mathbf{A x}+\mathbf{w}$

A realistic linear model

Let $\mathbf{b}:=\tilde{\mathbf{A}} \mathbf{y}^{\natural}+\tilde{\mathbf{w}} \in \mathbb{R}^{n}$.

- Let $\mathbf{y}^{\natural}:=\Psi \mathbf{x}_{\text {real }} \in \mathbb{R}^{m}$ that admits a compressible representation $\mathbf{x}_{\text {real }}$.
- Let $\mathbf{x}_{\text {real }} \in \mathbb{R}^{p}$ that is compressible and let \mathbf{x}^{\natural} be its best s-term approximation.
- Let $\tilde{\mathbf{w}} \in \mathbb{R}^{n}$ denote the possibly nonzero noise term.
- Assume that $\Psi \in \mathbb{R}^{m \times p}$ and $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times m}$ are known.

Then we have

$$
\begin{aligned}
\mathbf{b} & =\tilde{\mathbf{A}} \Psi\left(\mathbf{x}^{\natural}+\mathbf{x}_{\text {real }}-\mathbf{x}^{\natural}\right)+\tilde{\mathbf{w}} . \\
& :=\underbrace{(\tilde{\mathbf{A}} \Psi)}_{\mathbf{A}} \mathbf{x}^{\natural}+\underbrace{\left[\tilde{\mathbf{w}}+\tilde{\mathbf{A}} \Psi\left(\mathbf{x}_{\text {real }}-\mathbf{x}^{\natural}\right)\right]}_{\mathbf{w}},
\end{aligned}
$$

equivalently, $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$.

Peeling the onion

- The realistic linear model uncovers yet another level of difficulty

Practical performance

The practical performance at time t is determined by

$$
\left\|\mathbf{x}^{t}-\mathbf{x}_{\text {real }}\right\|_{2} \leq \underbrace{\left\|\mathbf{x}^{t}-\mathbf{x}^{\star}\right\|_{2}}_{\text {numerical error }}+\underbrace{\left\|\mathbf{x}^{\star}-\mathbf{x}^{\natural}\right\|_{2}}_{\text {statistical error }}+\underbrace{\left\|\mathbf{x}_{\text {real }}-\mathbf{x}^{\natural}\right\|_{2}}_{\text {model error }} .
$$

Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating \mathbf{x}^{\natural} from $\mathbf{b}=\mathbf{A x} \mathbf{x}^{\natural}+\mathbf{w}$

We may search over all $\binom{p}{s}$ subsets $S \subset\{1, \ldots, p\}$ of cardinality s, solve the restricted least-squares problem $\min _{\mathbf{x}_{S}}\left\|\mathbf{b}-\mathbf{A}_{S} \mathbf{x}_{S}\right\|_{2}^{2}$, and return the resulting \mathbf{x} corresponding to the smallest error, putting zeros in the entries of \mathbf{x} outside S.

- Stable and robust recovery of any s-sparse signal is possible using just $n=2 s$ measurements.

Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating \mathbf{x}^{\natural} from $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$

We may search over all $\binom{p}{s}$ subsets $S \subset\{1, \ldots, p\}$ of cardinality s, solve the restricted least-squares problem $\min _{\mathbf{x}_{S}}\left\|\mathbf{b}-\mathbf{A}_{S} \mathbf{x}_{S}\right\|_{2}^{2}$, and return the resulting \mathbf{x} corresponding to the smallest error, putting zeros in the entries of \mathbf{x} outside S.

- Stable and robust recovery of any s-sparse signal is possible using just $n=2 s$ measurements.

Issues

- $\binom{p}{s}$ is a huge number - too many to search!
- s is not known in practice

The ℓ_{1}-norm heuristic

Heuristic: The ℓ_{1}-ball with radius c_{∞} is an "approximation" of the set of sparse vectors $\hat{\mathbf{x}} \in\left\{\mathbf{x}:\|\mathbf{x}\|_{0} \leq s,\|\mathbf{x}\|_{\infty} \leq c_{\infty}\right\}$ parameterized by their sparsity s and maximum amplitude c_{∞}.

$$
\hat{\mathbf{x}} \in\left\{\mathbf{x}:\|\mathbf{x}\|_{1} \leq c_{\infty}\right\} \quad \text { with some } c_{\infty}>0
$$

The set
$\left\{\mathbf{x}:\|\mathbf{x}\|_{0} \leq 1,\|\mathbf{x}\|_{\infty} \leq 1, \mathbf{x} \in \mathbb{R}^{3}\right\}$

The unit ℓ_{1}-norm ball $\left\{\mathbf{x}:\|\mathbf{x}\|_{1} \leq 1, \mathbf{x} \in \mathbb{R}^{3}\right\}$

Remark: \circ This heuristic leads to the so-called Lasso optimization problem.

Sparse recovery via the Lasso

Definition (Least absolute shrinkage and selection operator (Lasso))

$$
\mathbf{x}_{\text {Lasso }}^{\star}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\rho\|\mathbf{x}\|_{1}
$$

with some $\rho \geq 0$.

- The second term in the objective function is called the regularizer.
- The parameter ρ is called the regularization parameter. It is used to trade off the objectives:
- Minimize $\|\mathbf{b}-\mathbf{A x}\|_{2}^{2}$, so that the solution is consistent with the observations
- Minimize $\|\mathbf{x}\|_{1}$, so that the solution has the desired sparsity structure

Remark: $\quad \circ$ The Lasso has a convex but non-smooth objective function

Performance of the Lasso

Theorem (Existence of a stable solution in polynomial time [22])

This Lasso convex formulation is a second order cone program, which can be solved in polynomial time in terms of the inputs n and p. Surprisingly, if the signal \mathbf{x}^{\natural} is s-sparse and the noise \mathbf{w} is sub-Gaussian (e.g., Gaussian or bounded) with parameter σ, then choosing $\rho=\sqrt{\frac{16 \sigma^{2} \log p}{n}}$ yields an error of

$$
\left\|\mathbf{x}_{\text {Lasso }}^{\star}-\mathbf{x}^{\natural}\right\|_{2} \leq \frac{8 \sigma}{\kappa(\mathbf{A})} \sqrt{\frac{s \ln p}{n}}
$$

with probability at least $1-c_{1} \exp \left(-c_{2} n \rho^{2}\right)$, where c_{1} and c_{2} are absolute constants, and $\kappa(\mathbf{A})>0$ encodes the difficulty of the problem.

Remark: $\quad \circ$ The number of measurements is $\mathcal{O}(s \ln p)$ - this may be much smaller than p !

Non-smooth unconstrained convex minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

$$
\begin{equation*}
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x}) \tag{1}
\end{equation*}
$$

where f is proper, closed, convex, but not everywhere differentiable.

Subdifferentials: A generalization of the gradient

Definition

Let $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a convex function. The subdifferential of f at a point $\mathbf{x} \in \mathcal{Q}$ is defined by the set:

$$
\partial f(\mathbf{x})=\left\{\mathbf{v} \in \mathbb{R}^{p}: f(\mathbf{y}) \geq f(\mathbf{x})+\langle\mathbf{v}, \mathbf{y}-\mathbf{x}\rangle \text { for all } \mathbf{y} \in \mathcal{Q}\right\} .
$$

Each element \mathbf{v} of $\partial f(\mathbf{x})$ is called subgradient of f at \mathbf{x}.

Lemma

Let $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a differentiable convex function. Then, the subdifferential of f at a point $\mathbf{x} \in \mathcal{Q}$ contains only the gradient, i.e., $\partial f(\mathbf{x})=\{\nabla f(\mathbf{x})\}$.

Figure: (Left) Non-differentiability at point \mathbf{y}. (Right) Gradient as a subdifferential with a singleton entry.

(Sub)gradients in convex functions

Example

$$
f(x)=|x| \quad \longrightarrow \quad \partial|x|=\{\operatorname{sgn}(x)\}, \text { if } x \neq 0, \text { but }[-1,1], \text { if } x=0 .
$$

Figure: Subgradients of $f(x)=|x|$ in \mathbb{R}.

Subdifferentials: Two basic results

Lemma (Necessary and sufficient condition)

$$
\mathbf{x}^{\star} \in \operatorname{dom}(F) \text { is a globally optimal solution to }(1) \quad \text { iff } \quad 0 \in \partial F\left(\mathbf{x}^{\star}\right)
$$

Sketch of the proof.

- \Leftarrow : For any $\mathbf{x} \in \mathbb{R}^{p}$, by definition of $\partial F\left(\mathbf{x}^{\star}\right)$:

$$
F(\mathbf{x})-F\left(\mathbf{x}^{\star}\right) \geq 0^{T}\left(\mathbf{x}-\mathbf{x}^{\star}\right)=0
$$

that is, \mathbf{x}^{\star} is a global solution to (1).
$\circ \Rightarrow$: If \mathbf{x}^{\star} is a global of (1) then for every $\mathbf{x} \in \operatorname{dom}(F), F(\mathbf{x}) \geq F\left(\mathbf{x}^{\star}\right)$ and hence

$$
F(\mathbf{x})-F\left(\mathbf{x}^{\star}\right) \geq 0^{T}\left(\mathbf{x}-\mathbf{x}^{\star}\right), \forall \mathbf{x} \in \mathbb{R}^{p},
$$

which leads to $0 \in \partial F\left(\mathbf{x}^{\star}\right)$.

Theorem (Moreau-Rockafellar's theorem [25])

Let ∂f and ∂g be the subdiffierential of f and g, respectively. If $f, g \in \mathcal{F}\left(\mathbb{R}^{p}\right)$ and $\operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$, then:

$$
\partial(f+g)=\partial f+\partial g
$$

Non-smooth unconstrained convex minimization

Problem (Non-smooth convex minimization)

$$
\begin{equation*}
F^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x}) \tag{2}
\end{equation*}
$$

Subgradient method

The subgradient method relies on the fact that even though f is non-smooth, we can still compute its subgradients, informing of the local descent directions.

Subgradient method

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$ as a starting point.
2. For $k=0,1, \cdots$, perform:

$$
\begin{equation*}
\left\{\mathbf{x}^{k+1}=\mathbf{x}^{k}-\alpha_{k} \mathbf{d}^{k}\right. \tag{3}
\end{equation*}
$$

where $\mathbf{d}^{k} \in \partial f\left(\mathbf{x}^{k}\right)$ and $\alpha_{k} \in(0,1]$ is a given step size.

Convergence of the subgradient method

Theorem

Assume that the following conditions are satisfied:

1. $\|\mathbf{g}\|_{2} \leq G$ for all $\mathbf{g} \in \partial f(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{R}^{p}$.
2. $\left\|\mathrm{x}^{0}-\mathrm{x}^{\star}\right\|_{2} \leq R$

Let the stepsize be chosen as

$$
\alpha_{k}=\frac{R}{G \sqrt{k}}
$$

then the iterates generated by the subgradient method satisfy

$$
\min _{0 \leq i \leq k} f\left(\mathbf{x}^{i}\right)-f^{\star} \leq \frac{R G}{\sqrt{k}}
$$

Remarks

- Condition (1) holds, for example, when f is G-Lipschitz.
- The convergence rate of $\mathcal{O}(1 / \sqrt{k})$ is the slowest we have seen so far!

Stochastic subgradient methods

- An unbiased stochastic subgradient

$$
\mathbb{E}[G(\mathbf{x}) \mid \mathbf{x}] \in \partial f(\mathbf{x}) .
$$

- Stochastic gradient methods using unbiased subgradients instead of unbiased gradients work

The classic stochastic subgradient methods (SG)
1. Choose $\mathbf{x}_{1} \in \mathbb{R}^{p}$ and $\left(\gamma_{k}\right)_{k \in \mathbb{N}} \in(0,+\infty)^{\mathbb{N}}$.
2. For $k=1, \ldots$ perform:
$\qquad \mathbf{x}_{k+1}=\mathbf{x}_{k}-\gamma_{k} G\left(\mathbf{x}_{k}\right)$.

Theorem (Convergence in expectation [27])

Suppose that:

1. $\mathbb{E}\left[\left\|G\left(\mathbf{x}^{k}\right)\right\|^{2}\right] \leq M^{2}$,
2. $\gamma_{k}=\gamma_{0} / \sqrt{k}$.

Then,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)-f\left(\mathbf{x}^{\star}\right)\right] \leq\left(\frac{D^{2}}{\gamma_{0}}+\gamma_{0} M^{2}\right) \frac{2+\log k}{\sqrt{k}} .
$$

Remark: \quad The rate is $\mathcal{O}(\log k / \sqrt{k})$ instead of $\mathcal{O}(1 / \sqrt{k})$ for the deterministic algorithm.

Wrap up!

- Three supplementary lectures to take a look once the course is over!
- One on compressive sensing (Math of Data Lecture 4 from 2014): https://archive-wp.epfl.ch/lions/wp-content/uploads/2019/01/lecture-4-2014.pdf
- One on source separation (Math of Data Lecture 6 from 2014) https://archive-wp.epfl.ch/lions/wp-content/uploads/2019/01/lecture-6-2014.pdf
- One on convexification of structured sparsity models (research presentation) https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/volkan-TU-view-web.pdf

*Adaptive methods for stochastic optimization

Remark

- Adaptive methods have extensive applications in stochastic optimization.
- We will see another nature of adaptive methods in this lecture.
- Mild additional assumption: bounded variance of gradient estimates.

*AdaGrad for stochastic optimization

- Only modification: $\nabla f(\mathrm{x}) \Rightarrow G(\mathrm{x}, \theta)$

AdaGrad with $\mathbf{H}_{k}=\lambda_{k} \mathbf{I}$ [17]

1. Set $Q^{0}=0$.
2. For $k=0,1, \ldots$, iterate

$$
\begin{cases}Q^{k} & =Q^{k-1}+\left\|G\left(\mathbf{x}^{k}, \theta\right)\right\|^{2} \\ \mathbf{H}_{k} & =\sqrt{Q^{k} \mathbf{I}} \\ \mathbf{x}^{k+1} & =\mathbf{x}_{t}-\alpha_{k} \mathbf{H}_{k}^{-1} G\left(\mathbf{x}^{k}, \theta\right)\end{cases}
$$

Theorem (Convergence rate: stochastic, convex optimization [17])

Assume f is convex and L-smooth, such that minimizer of f lies in a convex, compact set \mathcal{K} with diameter D. Also consider bounded variance for unbiased gradient estimates, i.e., $\mathbb{E}\left[\|G(\mathbf{x}, \theta)-\nabla f(\mathbf{x})\|^{2} \mid \mathbf{x}\right] \leq \sigma^{2}$. Then,

$$
\mathbb{E}\left[f\left(\mathbf{x}^{k}\right)\right]-\min _{\mathbf{x} \in \mathbb{R}^{d}} f(\mathbf{x})=O\left(\frac{\sigma D}{\sqrt{k}}\right)
$$

- AdaGrad is adaptive also in the sense that it adapts to nature of the oracle.

* AcceleGrad for stochastic optimization

- Similar to AdaGrad, replace $\nabla f(\mathbf{x}) \Rightarrow G(\mathbf{x}, \theta)$

$$
\begin{aligned}
& \text { AcceleGrad (Accelerated Adaptive Gradient Method) } \\
& \text { Input: } \mathbf{x}^{0} \in \mathcal{K} \text {, diameter } D \text {, weights }\left\{\alpha_{k}\right\}_{k \in \mathbb{N}} \text {, learning } \\
& \text { rate }\left\{\eta_{k}\right\}_{k \in \mathbb{N}} \\
& \text { 1. Set } \mathbf{y}^{0}=\mathbf{z}^{0}=\mathbf{x}^{0} \\
& \text { 2. For } k=0,1, \ldots \text {, iterate } \\
& \begin{cases}\tau_{k} & :=1 / \alpha_{k} \\
\mathbf{x}^{k+1} & =\tau_{t} \mathbf{z}^{k}+\left(1-\tau_{k}\right) \mathbf{y}^{k} \text {, define } \mathbf{g}_{k}:=\nabla f\left(\mathbf{x}^{k+1}\right) \\
\mathbf{z}^{k+1} & =\Pi_{\mathcal{K}}\left(\mathbf{z}^{k}-\alpha_{k} \eta_{k} \mathbf{g}_{k}\right) \\
\mathbf{y}^{k+1}=\mathbf{x}^{k+1}-\eta_{k} \mathbf{g}_{k}\end{cases} \\
& \text { Output : } \overline{\mathbf{y}}^{k} \propto \sum_{i=0}^{k-1} \alpha_{i} \mathbf{y}^{i+1}
\end{aligned}
$$

Theorem (Convergence rate [18])

Assume f is convex and G-Lipschitz and that minimizer of f lies in a convex, compact set \mathcal{K} with diameter D. Also consider bounded variance for unbiased gradient estimates, i.e., $\mathbb{E}\left[\|G(\mathbf{x}, \theta)-\nabla f(\mathbf{x})\|^{2} \mid \mathbf{x}\right] \leq \sigma^{2}$. Then,

$$
\mathbb{E}\left[f\left(\overline{\mathbf{y}}^{k}\right)\right]-\min _{\mathbf{x}} f(\mathbf{x})=O\left(\frac{G D \sqrt{\log k}}{\sqrt{k}}\right) .
$$

*Example: Synthetic least squares

- $\mathbf{A} \in \mathbb{R}^{n \times d}$, where $n=200$ and $d=50$.
- Number of epochs: 20.
- Algorithms: SGD, AdaGrad \& AcceleGrad.

\star UniXGrad for stochastic optimization

UniXGrad
1. Set $\mathbf{x}^{0}=\mathbf{z}^{0}=\mathbf{x}^{0}$
2. For $k=0,1, \ldots$, iterate
$\begin{cases}\mathbf{x}^{k+1 / 2} & =\Pi_{\mathcal{X}}\left(\mathbf{x}^{k}-\alpha_{k} \eta_{k} \nabla f\left(\tilde{\mathbf{x}}^{k}\right)\right) \\ \mathbf{x}^{k+1} & =\Pi_{\mathcal{X}}\left(\mathbf{x}^{k}-\alpha_{k} \eta_{k} \nabla f\left(\overline{\mathbf{x}}^{k+1 / 2}\right)\right)\end{cases}$

- $\Pi_{\mathcal{X}}(\mathbf{x})$ is Euclidean projection onto \mathcal{X} and $\alpha_{k}=k$
$\triangleright \tilde{\mathbf{x}}^{k}=\frac{\alpha_{k} \mathbf{x}^{k}+\sum_{i=1}^{k-1} \alpha_{i} \mathbf{x}^{i+1 / 2}}{\sum_{i=1}^{k} \alpha_{i}}, \quad \overline{\mathbf{x}}^{k+1 / 2}=\frac{\sum_{i=1}^{k} \alpha_{i} \mathbf{x}^{i+1 / 2}}{\sum_{i=1}^{k} \alpha_{i}}$
$\nabla \eta_{k}=\frac{2 D}{\sqrt{1+\sum_{i=1}^{k}\left(\alpha_{k}\right)^{2}\left\|\nabla f\left(\overline{\mathbf{x}}^{k+1 / 2}\right)-\nabla f\left(\tilde{\mathbf{x}}^{k}\right)\right\|^{2}}}$

Theorem (Convergence rate of UniXGrad)

Let the sequence $\left\{\mathbf{x}^{k+1 / 2}\right\}$ be generated by UniXGrad. Under the assumptions

- f is convex and L-smooth,
- Constraint set \mathcal{X} has bounded diameter, i.e., $D=\max _{\mathbf{x}, \mathbf{y} \in \mathcal{X}}\|\mathbf{x}-\mathbf{y}\|$,
- $\mathbb{E}[\tilde{\nabla} f(\mathbf{x}) \mid \mathbf{x}]=\nabla f(\mathbf{x})$ and $\mathbb{E}\left[\|\tilde{\nabla} f(\mathbf{x})-\nabla f(\mathbf{x})\|^{2} \mid \mathbf{x}\right] \leq \sigma^{2}$

UniXGrad guarantees the following:

$$
f\left(\overline{\mathbf{x}}^{k+1 / 2}\right)-\min _{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) \leq O\left(\frac{L D^{2}}{k^{2}}+\frac{\sigma D}{\sqrt{k}}\right) .
$$

*Randomized Kaczmarz algorithm

Problem

Given a full-column-rank matrix $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^{n}$, solve the linear system

$$
\mathbf{A x}=\mathbf{b}
$$

Notations: $\mathbf{b}:=\left(b_{1}, \ldots, b_{n}\right)^{T}$ and \mathbf{a}_{j}^{T} is the j-th row of \mathbf{A}.

Randomized Kaczmarz algorithm (RKA)

1. Choose $\mathbf{x}^{0} \in \mathbb{R}^{p}$
2. For $k=0,1, \ldots$ perform:

2a. Pick $j_{k} \in\{1, \cdots, n\}$ randomly with $\operatorname{Pr}\left(j_{k}=i\right)=\left\|\mathbf{a}_{i}\right\|_{2}^{2} /\|\mathbf{A}\|_{F}^{2}$
2b. $\mathbf{x}^{k+1}=\mathbf{x}^{k}-\left(\left\langle\mathbf{a}_{j_{k}}, \mathbf{x}^{k}\right\rangle-b_{j_{k}}\right) \mathbf{a}_{j_{k}} /\left\|\mathbf{a}_{j_{k}}\right\|_{2}^{2}$.

Linear convergence [28]

Let \mathbf{x}^{\star} be the solution of $\mathbf{A x}=\mathbf{b}$ and $\kappa=\|\mathbf{A}\|_{F}\left\|\mathbf{A}^{-1}\right\|$. Then

$$
\mathbb{E}\left\|\mathbf{x}^{k}-\mathbf{x}^{\star}\right\|_{2}^{2} \leq\left(1-\kappa^{-2}\right)^{k}\left\|\mathbf{x}^{0}-\mathbf{x}^{*}\right\|_{2}^{2}
$$

- RKA can be seen as a particular case of SGD [21].
*Other models with simplicity

Information level:
$s \ll p$
large
wavelet
coefficients
(blue $=0$)

sparse
signals

low-rank
matrices

nonlinear models

There are many models extending far beyond sparsity, coming with other non-smooth regularizers.

*Generalization via simple representations

Definition (Atomic sets \& atoms [8])

An atomic set \mathcal{A} is a set of vectors in \mathbb{R}^{p}. An atom is an element in an atomic set.

Terminology (Simple representation [8])

A parameter $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ admits a simple representation with respect to an atomic set $\mathcal{A} \subseteq \mathbb{R}^{p}$, if it can be represented as a non-negative combination of few atoms, i.e., $\mathbf{x}^{\natural}=\sum_{i=1}^{k} c_{i} \mathbf{a}_{i}, \quad \mathbf{a}_{i} \in \mathcal{A}, c_{i} \geq 0$.

Example (Sparse parameter)

Let \mathbf{x}^{\natural} be s-sparse. Then \mathbf{x}^{\natural} can be represented as the non-negative combination of s elements in \mathcal{A}, with $\mathcal{A}:=\left\{ \pm \mathbf{e}_{1}, \ldots, \pm \mathbf{e}_{p}\right\}$, where $\mathbf{e}_{i}:=\left(\delta_{1, i}, \delta_{2, i}, \ldots, \delta_{p, i}\right)$ for all i.

Example (Sparse parameter with a dictionary)

Let $\Psi \in \mathbb{R}^{m \times p}$, and let $\mathbf{y}^{\natural}:=\Psi \mathbf{x}^{\natural}$ for some s-sparse \mathbf{x}^{\natural}. Then \mathbf{y}^{\natural} can be represented as the non-negative combination of s elements in \mathcal{A}, with $\mathcal{A}:=\left\{ \pm \psi_{1}, \ldots, \pm \psi_{p}\right\}$, where ψ_{k} denotes the k th column of Ψ.

*Atomic norms

- Recall the Lasso problem

$$
\mathbf{x}_{\text {Lasso }}^{\star}:=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\rho\|\mathbf{x}\|_{1}
$$

Observations: $\circ \ell_{1}$-norm is the atomic norm associated with the atomic set $\mathcal{A}:=\left\{ \pm \mathbf{e}_{1}, \ldots, \pm \mathbf{e}_{p}\right\}$.

- The norm is closely tied with the convex hull of the set.
- We can extend the same principle for a wide range of regularizers

$$
\begin{aligned}
& \mathcal{A}:=\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
-1
\end{array}\right]\right\} . \\
& \mathcal{C}:=\operatorname{conv}(\mathcal{A}) .
\end{aligned}
$$

*Gauge functions and atomic norms

Definition (Gauge function)

Let \mathcal{C} be a convex set in \mathbb{R}^{p}, the gauge function associated with \mathcal{C} is given by

$$
g_{\mathcal{C}}(\mathbf{x}):=\inf \{t>0: \mathbf{x}=t \mathbf{c} \text { for some } \mathbf{c} \in \mathcal{C}\}
$$

Definition (Atomic norm)

Let \mathcal{A} be a symmetric atomic set in \mathbb{R}^{p} such that if $\mathbf{a} \in \mathcal{A}$ then $-\mathbf{a} \in \mathcal{A}$ for all $\mathbf{a} \in \mathcal{A}$. Then, the atomic norm associated with a symmetric atomic set \mathcal{A} is given by

$$
\|\mathbf{x}\|_{\mathcal{A}}:=g_{\operatorname{conv}(\mathcal{A})}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^{p}
$$

where $\operatorname{conv}(\mathcal{A})$ denotes the convex hull of \mathcal{A}.

A generalization of the Lasso

Given an atomic set \mathcal{A}, solve the following regularized least-squares problem:

$$
\begin{equation*}
\mathbf{x}^{\star}=\arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\rho\|\mathbf{x}\|_{\mathcal{A}} \tag{4}
\end{equation*}
$$

${ }^{*}$ Pop quiz

Let $\mathcal{A}:=\left\{(1,0)^{T},(0,1)^{T},(-1,0)^{T},(0,-1)^{T}\right\}$, and let $\mathbf{x}:=\left(-\frac{1}{5}, 1\right)^{T}$. What is $\|\mathbf{x}\|_{\mathcal{A}}$?

$$
\text { merr} \left.\begin{array}{r}
-\frac{1}{5} \\
1
\end{array}\right]
$$

${ }^{*}$ Pop quiz

Let $\mathcal{A}:=\left\{(1,0)^{T},(0,1)^{T},(-1,0)^{T},(0,-1)^{T}\right\}$, and let $\mathbf{x}:=\left(-\frac{1}{5}, 1\right)^{T}$. What is $\|\mathbf{x}\|_{\mathcal{A}}$? ANS: $\|\mathbf{x}\|_{\mathcal{A}}=\frac{6}{5}$.

$$
\text { merr} \left.\begin{array}{r}
-\frac{1}{5} \\
1
\end{array}\right]
$$

*Pop quiz 2

What is the expression of $\|\mathbf{x}\|_{\mathcal{A}}$ for any $\mathbf{x}:=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3}$?

*Pop quiz 2

What is the expression of $\|\mathbf{x}\|_{\mathcal{A}}$ for any $\mathbf{x}:=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3}$?
ANS: $\|\mathbf{x}\|_{\mathcal{A}}=\left|x_{1}\right|+\left\|\left(x_{2}, x_{3}\right)^{T}\right\|_{2}$.

*Application: Multi-knapsack feasibility problem

Problem formulation [19]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ which is a convex combination of k vectors in $\mathcal{A}:=\{-1,+1\}^{p}$, and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. How can we recover \mathbf{x}^{\natural} given \mathbf{A} and $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}$?

The answer: $\quad \circ$ We can use the ℓ_{∞}-norm, $\|\cdot\|_{\infty}$ as $\|\cdot\|_{\mathcal{A}}$. The regularized estimator is given by

$$
\mathbf{x}^{\star} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\rho\|\mathbf{x}\|_{\infty}, \rho>0
$$

*Application: Multi-knapsack feasibility problem

Problem formulation [19]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ which is a convex combination of k vectors in $\mathcal{A}:=\{-1,+1\}^{p}$, and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. How can we recover \mathbf{x}^{\natural} given \mathbf{A} and $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}$?

The answer: $\quad \circ$ We can use the ℓ_{∞}-norm, $\|\cdot\|_{\infty}$ as $\|\cdot\|_{\mathcal{A}}$. The regularized estimator is given by

$$
\mathbf{x}^{\star} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\rho\|\mathbf{x}\|_{\infty}, \rho>0
$$

The derivation: \circ In this case, we have $\operatorname{conv}(\mathcal{A})=[-1,1]^{p}$ and

$$
g_{\operatorname{conv}(\mathcal{A})}(\mathbf{x})=\inf \left\{t>0: \mathbf{x}=t \mathbf{c} \text { for some } \mathbf{c} \text { such that }\left|c_{i}\right| \leq 1 \forall i\right\}
$$

- We also have, $\forall \mathbf{x} \in \mathbb{R}^{p}, \mathbf{c} \in \operatorname{conv}(\mathcal{A}), t>0$,

$$
\begin{aligned}
\mathbf{x}=t \mathbf{c} & \Rightarrow \forall i,\left|x_{i}\right|=\left|t c_{i}\right| \leq t \\
& \Rightarrow g_{\operatorname{conv}(\mathcal{A})}(\mathbf{x}) \geq \max _{i}\left|x_{i}\right|
\end{aligned}
$$

- Let $\mathbf{x} \neq 0$, let $j \in \arg \max _{i}\left|x_{i}\right|$ and choose $t=\max _{i}\left|x_{i}\right|, c_{i}=x_{i} / t \in[-1,1]^{p}$.
- Then, $\mathbf{x}=t \mathbf{c}$, and so $g_{\operatorname{conv}(\mathcal{A})}(\mathbf{x}) \leq \max _{i}\left|x_{i}\right|$.

*Application: Matrix completion

Problem formulation $[5,12]$

Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with $\operatorname{rank}\left(\mathbf{X}^{\natural}\right)=r$, and let $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}$ be matrices in $\mathbb{R}^{p \times p}$. How do we estimate \mathbf{X}^{\natural} given $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}$ and $b_{i}=\operatorname{Tr}\left(\mathbf{A}_{i} \mathbf{X}^{\natural}\right)+w_{i}, i=1, \ldots, n$, where $\mathbf{w}:=\left(w_{1}, \ldots, w_{n}\right)^{T}$ denotes unknown noise?

The answer: \quad o We can use the nuclear norm, $\|\cdot\|_{*}$ as $\|\cdot\|_{\mathcal{A}}$. The regularized estimator is given by

$$
\mathbf{x}^{\star} \in \arg \min _{\mathbf{X} \in \mathbb{R}^{p \times p}} \sum_{i=1}^{n}\left(b_{i}-\operatorname{Tr}\left(\mathbf{A}_{i} \mathbf{X}\right)\right)^{2}+\rho\|\mathbf{X}\|_{*}, \rho>0 .
$$

*Application: Matrix completion

Problem formulation $[5,12]$

Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with $\operatorname{rank}\left(\mathbf{X}^{\natural}\right)=r$, and let $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}$ be matrices in $\mathbb{R}^{p \times p}$. How do we estimate \mathbf{X}^{\natural} given $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}$ and $b_{i}=\operatorname{Tr}\left(\mathbf{A}_{i} \mathbf{X}^{\natural}\right)+w_{i}, i=1, \ldots, n$, where $\mathbf{w}:=\left(w_{1}, \ldots, w_{n}\right)^{T}$ denotes unknown noise?

The answer: \quad o We can use the nuclear norm, $\|\cdot\|_{*}$ as $\|\cdot\|_{\mathcal{A}}$. The regularized estimator is given by

$$
\mathbf{x}^{\star} \in \arg \min _{\mathbf{X} \in \mathbb{R}^{p \times p}} \sum_{i=1}^{n}\left(b_{i}-\operatorname{Tr}\left(\mathbf{A}_{i} \mathbf{X}\right)\right)^{2}+\rho\|\mathbf{X}\|_{*}, \rho>0 .
$$

The derivation: \circ Let us use the following atomic set $\mathcal{A}=\left\{\mathbf{X}: \operatorname{rank}(\mathbf{X})=1,\|\mathbf{X}\|_{F}=1, \mathbf{X} \in \mathbb{R}^{p \times p}\right\}$.

- Let $\forall \mathbf{X} \in \mathbb{R}^{p \times p}, \mathbf{C}=\sum_{i} \lambda_{i} \mathbf{C}_{i} \in \operatorname{conv}(\mathcal{A}), \sum_{i} \lambda_{i}=1, \mathbf{C}_{i} \in \mathcal{A}, t>0$. Then, we have

$$
\mathbf{X}=t \sum_{i} \lambda_{i} \mathbf{C}_{i} \Rightarrow\|\mathbf{X}\|_{*}=t\left\|\sum_{i} \lambda_{i} \mathbf{C}_{i}\right\|_{*} \leq t \sum_{i} \lambda_{i}\left\|\mathbf{C}_{i}\right\|_{*} \leq t \Rightarrow g_{\operatorname{conv}(\mathcal{A})}(\mathbf{X}) \geq\|\mathbf{X}\|_{*} .
$$

- Let $\mathbf{X} \neq 0$, let $\mathbf{X}=\sum_{i} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{t}$ be its SVD decomposition, where σ_{i} 's are its singular values.
- Let $t=\|\mathbf{X}\|_{*}=\sum_{i}\left|\sigma_{i}\right|, \mathbf{C}_{i}=\mathbf{u}_{i} \mathbf{v}_{i}^{T} \in \mathcal{A}, \forall i$. Then, $\mathbf{X}=t \sum_{i} \lambda_{i} \mathbf{C}_{i}, \lambda_{i}=\frac{\left|\sigma_{i}\right|}{t}$.
- Since t is feasible and $\sum_{i} \lambda_{i}=1$, it follows that $g_{\text {conv }(\mathcal{A})}(\mathbf{X}) \leq\|\mathbf{X}\|_{*}$.

*Structured Sparsity

There exist many more structures that we have not covered here, each of which is handled using different non-smooth regularizers. Some examples [3, 10]:

- Group Sparsity: Many signals are not only sparse, but the non-zero entries tend to cluster according to known patterns.
- Tree Sparsity: When natural images are transformed to the Wavelet domain, their significant entries form a rooted connected tree.

Figure: (Left panel) Natural image in the Wavelet domain. (Right panel) Rooted connected tree containing the significant coefficients.

*Selection of the Parameters

In all of these problems, there remain the issues of how to design A and how to choose ρ.

Design of A:

- Sometimes \mathbf{A} is given "by nature", whereas sometimes it can be designed
- For the latter case, i.i.d. Gaussian designs provide good theoretical guarantees, whereas in practice we must resort to structured matrices permitting more efficient storage and computation
- See [13] for an extensive study in the context of compressive sensing

Selection of ρ :

- Theoretical bounds provide some insight, but usually the direct use of the theoretical choice does not suffice
- In practice, a common approach is cross-validation [9], which involves searching for a parameter that performs well on a set of known training signals
- Other approaches include covariance penalty [9] and upper bound heuristic [29]

References I

[1] Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth. Lower bounds for non-convex stochastic optimization.
arXiv preprint arXiv:1912.02365, 2019.
(Cited on page 27.)
[2] Francis Bach and Eric Moulines.
Non-strongly-convex smooth stochastic approximation with convergence rate $\circ(1 / n)$. Advances in neural information processing systems, 26, 2013.
(Cited on page 24.)
[3] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde.
Model-based compressive sensing.
Information Theory, IEEE Transactions on, 56(4):1982-2001, 2010.
(Cited on page 75.)
[4] Léon Bottou, Frank E Curtis, and Jorge Nocedal.
Optimization methods for large-scale machine learning.
Siam Review, 60(2):223-311, 2018.
(Cited on pages 14 and 15.)

References II

[5] Emmanuel Candès and Benjamin Recht.
Exact matrix completion via convex optimization.
Found. Comp. Math., 9:717-772, 2009.
(Cited on pages 73 and 74.)
[6] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford.
Lower bounds for finding stationary points II: first-order methods.
Math. Program., 185(1-2):315-355, 2021.
(Cited on page 27.)
[7] Volkan Cevher and Bang Cong Vu.
On the linear convergence of the stochastic gradient method with constant step-size. arXiv:1712.01906 [math], June 2018.
(Cited on page 14.)
[8] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry of linear inverse problems.

```
Found. Comp. Math., 12:805-849, }2012
```

(Cited on page 64.)

References III

[9] Bradley Efron.
The estimation of prediction error: Covariance penalities and cross-validation.
J. Amer. Math. Soc., 99(467):619-632, September 2004.
(Cited on page 76.)
[10] Marwa El Halabi and Volkan Cevher.
A totally unimodular view of structured sparsity.
preprint, 2014.
arXiv:1411.1990v1 [cs.LG].
(Cited on page 75.)
[11] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang.
SPIDER: near-optimal non-convex optimization via stochastic path-integrated differential estimator. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 687-697, 2018.
(Cited on page 27.)

References IV

[12] Steven T. Flammia, David Gross, Yi-Kai Liu, and Jens Eisert.
Quantum tomography via compressed sensing: Error bounds, sample complexity and efficient estimators.
New J. Phys., 14, 2012.
(Cited on pages 73 and 74.)
[13] Simon Foucart and Holger Rauhut.
A mathematical introduction to compressive sensing, volume 1.
Birkhäuser Basel, 2013.
(Cited on page 76.)
[14] Saeed Ghadimi and Guanghui Lan.
Stochastic first-and zeroth-order methods for nonconvex stochastic programming.
SIAM Journal on Optimization, 23(4):2341-2368, 2013.
(Cited on page 26.)
[15] Saeed Ghadimi and Guanghui Lan.
Accelerated gradient methods for nonconvex nonlinear and stochastic programming.
Math. Program., 156(1-2):59-99, March 2016.
(Cited on pages 4 and 5.)

References V

[16] Rémi Gribonval, Volkan Cevher, and Mike E. Davies.
Compressible distributions for high-dimensional statistics.
IEEE Trans. Inf. Theory, 58(8):5016-5034, 2012.
(Cited on page 34.)
[17] Kfir Levy.
Online to offline conversions, universality and adaptive minibatch sizes.
In Advances in Neural Information Processing Systems, pages 1613-1622, 2017.
(Cited on page 58.)
[18] Kfir Levy, Alp Yurtsever, and Volkan Cevher.
Online adaptive methods, universality and acceleration.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018.
(Cited on page 59.)
[19] O. L. Mangasarian and Benjamin Recht.
Probability of unique integer solution to a system of linear equations.
Eur. J. Oper. Res., 214:27-30, 2011.
(Cited on pages 71 and 72.)

References VI

[20] Panayotis Mertikopoulos, Ya-Ping Hsieh, and Volkan Cevher.
Learning in games from a stochastic approximation viewpoint.
arXiv preprint arXiv:2206.03922, 2022.
(Cited on page 26.)
[21] Deanna Needell, Rachel Ward, and Nati Srebro.
Stochastic gradient descent, weighted sampling, and the randomized kaczmarz algorithm.
Advances in neural information processing systems, 27, 2014.
(Cited on page 62.)
[22] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu.
A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers.
Stat. Sci., 27(4):538-557, 2012.
(Cited on page 48.)
[23] Arkadi Semen Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro.
Robust stochastic approximation approach to stochastic programming.
SIAM Journal on Optimization, 19(4):1574-1609, 2009.
(Cited on page 20.)

References VII

[24] Boris T. Polyak.
Introduction to Optimization.
Optimization Softw., Inc., New York, 1987.
(Cited on page 14.)
[25] R. Tyrrell Rockafellar.
Convex Analysis.
Princeton Univ. Press, Princeton, NJ, 1970.
(Cited on page 52.)
[26] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter.
Pegasos: Primal estimated sub-gradient solver for svm.
Mathematical programming, 127(1):3-30, 2011.
(Cited on page 21.)
[27] Ohad Shamir and Tong Zhang.
Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes.
In ICML '13: Proceedings of the 30th International Conference on Machine Learning, 2013.
(Cited on pages 13 and 55.)

References VIII

[28] Thomas Strohmer and Roman Vershynin.
Comments on the randomized kaczmarz method.
J. Fourier Anal. and Apps., 15(4):437-440, 2009.
(Cited on page 62.)
[29] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. Simple error bounds for regularized noisy linear inverse problems. 2014.
arXiv:1401.6578v1 [math.OC].
(Cited on page 76.)

[^0]: ${ }^{1}$ We have $n \leq O\left(\epsilon^{-4}\right)$ in order to match the respective upper bound of $O\left(n+\sqrt{n} \epsilon^{-2}\right)$ achieved by [11]

