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Outline

I Stochastic optimization
I Deficiency of smooth models
I Sparsity and compressive sensing
I Non-smooth minimization via Subgradient descent
I ?Atomic norms
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Recall: Gradient descent

Problem (Unconstrained optimization problem)
Consider the following minimization problem:

f? = min
x∈Rp

f(x)

f(x) is proper and closed.

Gradient descent
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f(xk)

where αk is a step-size to be chosen so that xk converges to x?.

f is L-smooth & convex f is L-gradient Lipschitz & non-convex
GD O(1/k) (fast) O(1/k) (optimal)
AGD O(1/k2) (optimal) O(1/k) (optimal) [15]

Why should we study anything else?
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Statistical learning with streaming data
◦ Recall that statistical learning seeks to find a h? ∈ H that minimizes the expected risk,

h? ∈ arg min
h∈H

{
R(h) := E(a,b) [L(h(a), b)]

}
.

Abstract gradient method

hk+1 = hk − αk∇R(hk) = hk − αkE(a,b)[∇L(hk(a), b)].

Remark: ◦ This algorithm can not be implemented as the distribution of (a, b) is unknown.

◦ In practice, data can arrive in a streaming way.

A parametric example: Markowitz portfolio optimization

x? := min
x∈X

{
E
[
|b− 〈x,a〉|2

]}
I hx(·) = 〈x, ·〉
I b ∈ R is the desired return & a ∈ Rp are the stock returns
I X is intersection of the standard simplex and the constraint: 〈x,E[a]〉 ≥ ρ.
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Stochastic programming

Problem (Mathematical formulation)
Consider the following convex minimization problem:

f? = min
x∈Rp

{
f(x) := E[f(x, θ)]

}
I θ is a random vector whose probability distribution is supported on set Θ.
I f(x) := E[f(x, θ)] is proper, closed, and convex.
I The solution set S? := {x? ∈ dom (f) : f(x?) = f?} is nonempty.
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Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

◦ G(xk, θk) is an unbiased estimate of the full gradient:

E[G(xk, θk)] = ∇f(xk).

Remarks: ◦ The cost of computing G(xk, θk) is n times cheaper than that of ∇f(xk).

◦ As G(xk, θk) is an unbiased estimate of the full gradient, SGD would perform well.

◦ We assume {θk} are jointly independent.

◦ SGD is not a monotonic descent method.
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Example: Convex optimization with finite sums

Convex optimization with finite sums
The problem

arg min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)

}
,

can be rewritten as

arg min
x∈Rp

{f(x) := Ei[fi(x)]} , i is uniformly distributed over {1, 2, · · · , n}.

A stochastic gradient descent (SGD) variant for finite sums

xk+1 = xk − αk∇fi(xk) i is uniformly distributed over{1, ..., n}

Remarks: ◦ Note: Ei[∇fi(xk)] =
∑n

j=1∇fj(x
k)/n = ∇f(xk).

◦ The computational cost of SGD per iteration is p.
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Synthetic least-squares problem

min
x

{
f(x) :=

1
2n
‖Ax− b‖22 : x ∈ Rp

}
Setup
I A := randn(n, p) - standard Gaussian N (0, I), with n = 104, p = 102.
I x\ is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to ‖x\‖2 = 1.
I b := Ax\ + w, where w is Gaussian white noise with variance 1.
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◦ 1 epoch = 1 pass over the full gradient
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Convergence of SGD when the objective is not strongly convex

Theorem (decaying step-size [27])
Assume
I E[‖xk − x?‖2] ≤ D2 for all k,
I E[‖G(xk, θk)‖2] ≤M2 (bounded gradient),
I αk = α0/

√
k.

Then

E[f(xk)− f(x?)] ≤
(
D2

α0
+ α0M

2
)

2 + log k
√
k

.

Observation: ◦ O(1/
√
k) rate is optimal for SGD if we do not consider the strong convexity.
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Convergence of SGD for strongly convex problems I

Theorem (strongly convex objective, fixed step-size [4])
Assume
I f is µ-strongly convex and L-smooth,
I E[‖G(xk, θk)‖2]2 ≤ σ2 +M‖∇f(xk)‖22 (bounded variance),
I αk = α ≤ 1

LM
.

Then
E[f(xk)− f(x?)] ≤

αLσ2

2µ
+ (1− µα)k−1

(
f(x1)− f?

)
.

Observations: ◦ Converge fast (linearly) to a neighborhood around x?.
◦ Smaller step-sizes α =⇒ converge to a better point, but with a slower rate.
◦ Zero variance (σ = 0) =⇒ linear convergence.
◦ This is also known as the relative noise model [24] or the strong growth condition [7].
◦ The growth condition is in fact a necessary and sufficient condition for linear convergence [7].
◦ The theory applies to the Kaczmarz algorithm (see advanced material).
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Convergence of SGD for strongly convex problems II

Theorem (strongly convex objective, decaying step-size [4])
Assume
I f is µ-strongly convex and L-smooth,
I E[‖G(xk, θk)‖2]2 ≤ σ2 +M‖∇f(xk)‖22 (bounded variance),
I αk = c

k0+k with some appropriate constants c and k0.

Then
E[‖xk − x?‖2] ≤

C

k + 1
,

where C is a constant independent of k.

Observations: ◦ Using the L-smooth property,

E[f(xk)− f(x?)] ≤ LE[‖xk − x?‖2] ≤
C

k + 1
.

◦ The rate is optimal if σ2 > 0 with the assumption of strongly-convexity.
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Example: SGD with different step sizes
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Setup
◦ Synthetic least-squares problem as before.

◦ We use αk = α0/(k + k0).

Observation: ◦ α0 = 1/µ is the best choice.
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Comparison with GD

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ f : µ-strongly convex with L-Lipschitz smooth.

rate iteration complexity cost per iteration total cost
GD ρk log(1/ε) n n log(1/ε)
SGD 1/k 1/ε 1 1/ε

Remark: ◦ SGD is more favorable when n is large — large-scale optimization problems
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Motivation for SGD with Averaging

◦ SGD iterates tend to oscillate around global minimizers

◦ Averaging iterates can reduce the oscillation effect

◦ Two types of averaging:

x̄k =
1
k

k∑
j=1

αjxj (vanilla averaging)

x̄k =

∑k

j=1 αjx
j∑k

j=1 αj
(weighted averaging)

Remark: ◦ Do not confuse the averaging above with the ones used in Federated Learning.
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Convergence for SGD-A I: non-strongly convex case
Stochastic gradient method with averaging (SGD-A)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ ]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

2b. x̄k = (
∑k

j=0 αj)
−1
∑k

j=0 αjx
j .

Theorem (Convergence of SGD-A [23])
Let D = ‖x0 − x?‖ and E[‖G(xk, θk)‖2] ≤M2.
Then,

E[f(x̄k+1)− f(x?)] ≤
D2 +M2

∑k

j=0 α
2
j

2
∑k

j=0 αj
.

In addition, choosing αk = D/(M
√
k + 1), we get,

E[f(x̄k)− f(x?)] ≤
MD(2 + log k)

√
k

.

Observation: ◦ Same convergence rate with vanilla SGD.
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Convergence for SGD-A II: strongly convex case
Stochastic gradient method with averaging (SGD-A)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ ]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

2b. x̄k = 1
k

∑k

j=1 xj .

Theorem (Convergence of SGD-A [26])
Assume
I f is µ-strongly convex,
I E[‖G(xk, θk)‖2] ≤M2,
I αk = α0/k for some α0 ≥ 1/µ.

Then
E[f(x̄k)− f(x?)] ≤

α0M2(1 + log k)
2k

.

Observation: ◦ Same convergence rate with vanilla SGD.
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Example: SGD-A method with different step sizes
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{
f(x) :=
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◦ Synthetic least-squares problem as before

◦ αk = α0/(k + k0).

Observations: ◦ SGD-A is more stable than SGD.

◦ α0 = 2/µ is the best choice.
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Least mean squares algorithm

Least-square regression problem
Solve

x? ∈ arg min
x∈Rp

{
f(x) :=

1
2
E(a,b)(〈a,x〉 − b)2

}
,

given i.i.d. samples {(aj , bj)}nj=1 (particularly in a streaming way).

Stochastic gradient method with averaging

1. Choose x0 ∈ Rp and α > 0.
2a. For k = 1, . . . , n perform:

xk = xk−1 − α
(
〈ak,xk−1〉 − bk

)
ak.

2b. x̄k = 1
k+1

∑k

j=0 xj .

O(1/k) convergence rate, without strongly convexity [2]
Let ‖aj‖2 ≤ R and |〈aj ,x?〉 − bj | ≤ σ a.s.. Pick α = 1/(4R2). Then, the average sequence x̄k−1 satisfies the
following

Ef(x̄k−1)− f∗ ≤
2
k

(
σ
√
p+R‖x0 − x?‖2

)2
.
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Popular SGD Variants

◦ Mini-batch SGD: For each iteration,

xk+1 = xk − αk
1
b

∑
θ∈Γ

G(xk, θ).

I αk: step-size
I b : mini-batch size
I Γ : a set of random variables θ of size b

◦ Accelerated SGD (Nesterov accelerated technique)

◦ SGD with Momentum

◦ Adaptive stochastic methods: AdaGrad...
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SGD - Non-convex stochastic optimization

◦ SGD and several variants are also well-studied for non-convex problems [20].

◦ Sometimes, there are gaps between SGD’s practical performance and theoretical understanding (more later!).

◦ Recall SGD update rule:

xk+1 = xk − αkG(xk, θ)

Theorem (A well-known result for SGD & Non-convex problems [14])
Let f be a non-convex and L-smooth function. Set αk = min

{
1
L
, C

σ
√
T

}
, ∀k = 1, ..., T , where σ2 is the

variance of the gradients and C > 0 is constant. Then, it holds that

E[‖∇f(xR)‖2] = O

(
σ
√
T

)
,

where P(R = k) = 2αk−Lα2
k∑T

k=1
(2αk−Lα2

k
)
.
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Lower bounds in non-convex optimization

Assumptions on f Additional assumptions Sample complexity

L-smooth Deterministic Oracle
f(x0)− infx f(x) ≤ ∆ Ω(∆Lε−2)[6]

L1-smooth
L2-Lipschitz Hessian

Deterministic Oracle
f(x0)− infx f(x) ≤ ∆ Ω(∆L3/7

1 L
2/7
2 ε−12/7)[6]

L-smooth
E[G(x, θ)] = ∇f(x)

E[‖G(x, θ)−∇f(x)‖2] ≤ σ2

f(x0)− infx f(x) ≤ ∆
Ω(∆Lσ2ε−4)[1]

G(x, θ) has averaged L-Lipschitz gradient
=⇒ L-smooth

E[G(x, θ)] = ∇f(x)
E[‖G(x, θ)−∇f(x)‖2] ≤ σ2

f(x0)− infx f(x) ≤ ∆
Ω(∆Lσε−3 + σ2ε−2)[1]

f(x) := 1
n

∑n

i=1
fi(x)

fi(x) has averaged L-Lipschitz gradient
=⇒ L-smooth

Access to ∇fi(x)
f(x0)− infx f(x) ≤ ∆

n ≤ O(ε−4)1
Ω(∆L

√
nε−2)[11]

◦ Measure of stationarity: ‖∇f(x)‖ ≤ ε or E[‖∇f(x)‖ ≤ ε

◦ Sample complexity: # of total oracle calls (deterministic or stochastic gradients)

◦ Averaged L-Lipschitz gradient: E
[
‖∇fi(x)−∇fi(y)‖2

]
≤ L2‖x− y‖2

◦ G(x, θ) denotes a stochastic gradient estimate for f at x with randomness governed by θ.

1We have n ≤ O(ε−4) in order to match the respective upper bound of O(n +
√
nε−2) achieved by [11]
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Non-smooth minimization: A simple example

What if we simultaneously want f1(x), f2(x), . . . , fk(x) to be small?
A natural approach in some cases: Minimize f(x) = max{f1(x), . . . , fk(x)}
I The good news: If each fi(x) is convex, then f(x) is convex
I The bad (!) news: Even if each fi(x) is smooth, f(x) may be non-smooth

I e.g., f(x) = max{x, x2}

x

f(x) = max{f1(x), f2(x)}

f2(x) =
1

2
x2

f1(x) = x

Figure: Maximum of two smooth convex functions.
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A statistical learning motivation for non-smooth optimization

Linear Regression
Consider the classical linear regression problem:

b = Ax\ + w

with b ∈ Rn, A ∈ Rn×p are known, x\ is unknown, and w is noise. Assume for now that n ≥ p (more later).

◦ Standard approach: Least squares: x?LS ∈ arg minx ‖b−Ax‖22
I Convex, smooth, and an explicit solution: x?LS = (ATA)−1ATb = A†b

◦ Alternative approach: Least absolute value deviation: x? ∈ arg minx ‖b−Ax‖1
I The advantage: Improved robustness against outliers (i.e., less sensitive to high noise values)
I The bad (!) news: A non-differentiable objective function

Our main motivating example this lecture: The case n� p
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Deficiency of smooth models

Recall the practical performance of an estimator x?.

Practical performance
Denote the numerical approximation at time t by xt. The practical performance is determined by

‖xt − x\ ‖2 ≤ ‖xt − x? ‖2︸            ︷︷            ︸
numerical error

+ ‖x? − x\ ‖2︸            ︷︷            ︸
statistical error

.

Remarks: ◦ Non-smooth estimators of x\ can help reduce the statistical error.
◦ This improvement may require higher computational costs.
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Example: Least-squares estimation in the linear model

◦ Recall the linear model and the LS estimator.

LS estimation in the linear model
Let x\ ∈ Rp and A ∈ Rn×p. The samples are given by b = Ax\ + w, where w denotes the unknown noise.
The LS estimator for x\ given A and b is defined as

x?LS ∈ arg min
x∈Rp

{
‖b−Ax ‖22

}
.

Remarks: ◦ If A has full column rank, x?LS = A†b is uniquely defined.

◦ When n < p, A cannot have full column rank, and hence x?LS ∈
{

A†b + h : h ∈ null (A)
}
.

Observation: ◦ The estimation error ‖x?LS − x\ ‖2 can be arbitrarily large!
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A candidate solution

Continuing the LS example:
I There exist infinitely many x’s such that b = Ax
I Suppose that w = 0 (i.e. no noise). Let us just choose the one x̂candidate with the smallest norm ‖x ‖2.

b = Ax
x1

x2

x3

Thursday, June 19, 14

Observation: ◦ Unfortunately, this still fails when n < p
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A candidate solution contd.

Proposition ([16])
Suppose that A ∈ Rn×p is a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have

(1− ε)
(

1−
n

p

)
‖x\ ‖22 ≤ ‖ x̂candidate − x\ ‖22 ≤ (1− ε)−1

(
1−

n

p

)
‖x\ ‖22

with probability at least 1− 2 exp
[
−(1/4)(p− n)ε2

]
− 2 exp

[
−(1/4)pε2

]
, for all ε > 0 and x\ ∈ Rp.
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Summarizing the findings so far

The message so far:
I Even in the absence of noise, we cannot recover x\ from the observations b = Ax\ unless n ≥ p
I But in applications, p might be thousands, millions, billions...
I Can we get away with n� p under some further assumptions on x?
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A natural signal model

Definition (s-sparse vector)
A vector x ∈ Rp is s-sparse if it has at most s
non-zero entries.

Rp

x\

Sparse representations
x\: sparse transform coefficients
I Basis representations Ψ ∈ Rp×p

I Wavelets, DCT, ...
I Frame representations Ψ ∈ Rm×p, m > p

I Gabor, curvelets, shearlets, ...
I Other dictionary representations...

=y\ x\ 
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Sparse representations strike back!

b Ã y\

I b ∈ Rn, Ã ∈ Rn×p, and n < p

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x\ if we knew the location of the non-zero entries of x\.
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Sparse representations strike back!

b A x\

n× 1 n× s s× 1

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x\ if we knew the location of the non-zero entries of x\.
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Compressible signals
◦ Real signals may not be exactly sparse, but approximately sparse, or compressible.

Definition (Compressible signals)
Roughly speaking, a vector x := (x1, . . . , xp)T ∈ Rp is compressible if the number of its significant components
(i.e., entries larger than some ε > 0: |{k : |xk| ≥ ε, 1 ≤ k ≤ p}|) is small.

I Cameraman@MIT.

100 105101 102 103 10410-10
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I Solid curve: Sorted wavelet coefficients of the cameraman image.
I Dashed curve: Expected order statistics of generalized Pareto

distribution with shape parameter 1.67.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 46



A different tale of the linear model b = Ax + w

A realistic linear model
Let b := Ãy\ + w̃ ∈ Rn.
I Let y\ := Ψxreal ∈ Rm that admits a compressible representation xreal.
I Let xreal ∈ Rp that is compressible and let x\ be its best s-term approximation.
I Let w̃ ∈ Rn denote the possibly nonzero noise term.
I Assume that Ψ ∈ Rm×p and Ã ∈ Rn×m are known.

Then we have

b = ÃΨ
(
x\ + xreal − x\

)
+ w̃.

:=
(
ÃΨ
)︸   ︷︷   ︸

A

x\ +
[
w̃ + ÃΨ

(
xreal − x\

)]︸                             ︷︷                             ︸
w

,

equivalently, b = Ax\ + w.
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Peeling the onion

◦ The realistic linear model uncovers yet another level of difficulty

Practical performance
The practical performance at time t is determined by

‖xt − xreal ‖2 ≤ ‖xt − x? ‖2︸            ︷︷            ︸
numerical error

+ ‖x? − x\ ‖2︸            ︷︷            ︸
statistical error

+ ‖xreal − x\ ‖2︸              ︷︷              ︸
model error

.
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Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating x\ from b = Ax\ + w
We may search over all

(
p
s

)
subsets S ⊂ {1, . . . , p} of cardinality s, solve the restricted least-squares problem

minxS ‖b−ASxS‖22, and return the resulting x corresponding to the smallest error, putting zeros in the
entries of x outside S.

◦ Stable and robust recovery of any s-sparse signal is possible using just n = 2s measurements.

Issues
I
(
p
s

)
is a huge number - too many to search!

I s is not known in practice
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The `1-norm heuristic

Heuristic: The `1-ball with radius c∞ is an “approximation” of the set of sparse vectors
x̂ ∈ {x : ‖x ‖0 ≤ s, ‖x ‖∞ ≤ c∞} parameterized by their sparsity s and maximum amplitude c∞.

x̂ ∈ {x : ‖x ‖1 ≤ c∞} with some c∞ > 0.

The set{
x : ‖x ‖0 ≤ 1, ‖x ‖∞ ≤ 1,x ∈ R3

} The unit `1-norm ball{
x : ‖x ‖1 ≤ 1,x ∈ R3

}
Remark: ◦ This heuristic leads to the so-called Lasso optimization problem.
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Sparse recovery via the Lasso

Definition (Least absolute shrinkage and selection operator (Lasso))

x?Lasso := arg min
x∈Rp

‖b−Ax ‖22 + ρ‖x ‖1

with some ρ ≥ 0.

◦ The second term in the objective function is called the regularizer.

◦ The parameter ρ is called the regularization parameter. It is used to trade off the objectives:
I Minimize ‖b−Ax‖22, so that the solution is consistent with the observations
I Minimize ‖x‖1, so that the solution has the desired sparsity structure

Remark: ◦ The Lasso has a convex but non-smooth objective function
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Performance of the Lasso

Theorem (Existence of a stable solution in polynomial time [22])
This Lasso convex formulation is a second order cone program, which can be solved in polynomial time in terms
of the inputs n and p. Surprisingly, if the signal x\ is s-sparse and the noise w is sub-Gaussian (e.g., Gaussian

or bounded) with parameter σ, then choosing ρ =
√

16σ2 log p
n

yields an error of

‖x?Lasso − x\ ‖2 ≤
8σ
κ(A)

√
s ln p
n

,

with probability at least 1− c1 exp(−c2nρ2), where c1 and c2 are absolute constants, and κ(A) > 0 encodes
the difficulty of the problem.

Remark: ◦ The number of measurements is O (s ln p) – this may be much smaller than p!
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Non-smooth unconstrained convex minimization

Problem (Mathematical formulation)
How can we find an optimal solution to the following optimization problem?

F ? := min
x∈Rp

f(x) (1)

where f is proper, closed, convex, but not everywhere differentiable.
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Subdifferentials: A generalization of the gradient

Definition
Let f : Q → R ∪ {+∞} be a convex function. The subdifferential of f at a point x ∈ Q is defined by the set:

∂f(x) = {v ∈ Rp : f(y) ≥ f(x) + 〈v, y− x〉 for all y ∈ Q} .

Each element v of ∂f(x) is called subgradient of f at x.

Lemma
Let f : Q → R ∪ {+∞} be a differentiable convex function. Then, the subdifferential of f at a point x ∈ Q
contains only the gradient, i.e., ∂f(x) = {∇f(x)}.

f(x)

x
...

f(x) + hv1,y � xi

f(x) + hv2,y � xi

f(y)

y

Tuesday, May 27, 14

f(x)

xf(x) + hrf(y),y � xi

f(y)

y

Tuesday, May 27, 14

Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.
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(Sub)gradients in convex functions

Example
f(x) = |x| −→ ∂|x| = {sgn(x)} , if x , 0, but [−1, 1], if x = 0.

x

f(x)

f(x) = |x|

�11

o
[�1, 1]

Tuesday, May 27, 14

Figure: Subgradients of f(x) = |x| in R.
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Subdifferentials: Two basic results
Lemma (Necessary and sufficient condition)

x? ∈ dom (F ) is a globally optimal solution to (1) iff 0 ∈ ∂F (x?).

Sketch of the proof.
◦ ⇐: For any x ∈ Rp, by definition of ∂F (x?):

F (x)− F (x?) ≥ 0T (x− x?) = 0,

that is, x? is a global solution to (1).

◦ ⇒: If x? is a global of (1) then for every x ∈ dom (F ), F (x) ≥ F (x?) and hence

F (x)− F (x?) ≥ 0T (x− x?), ∀x ∈ Rp,

which leads to 0 ∈ ∂F (x?). �

Theorem (Moreau-Rockafellar’s theorem [25])
Let ∂f and ∂g be the subdiffierential of f and g, respectively. If f, g ∈ F(Rp) and dom (f)∩ dom (g) , ∅, then:

∂(f + g) = ∂f + ∂g.
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Non-smooth unconstrained convex minimization

Problem (Non-smooth convex minimization)

F ? := min
x∈Rp

f(x) (2)

Subgradient method
The subgradient method relies on the fact that even though f is non-smooth, we can still compute its
subgradients, informing of the local descent directions.

Subgradient method
1. Choose x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , perform:{

xk+1 = xk − αkdk, (3)

where dk ∈ ∂f(xk) and αk ∈ (0, 1] is a given step size.
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Convergence of the subgradient method

Theorem
Assume that the following conditions are satisfied:
1. ‖g‖2 ≤ G for all g ∈ ∂f(x) for any x ∈ Rp.
2. ‖x0 − x?‖2 ≤ R

Let the stepsize be chosen as
αk =

R

G
√
k

then the iterates generated by the subgradient method satisfy

min
0≤i≤k

f(xi)− f? ≤
RG
√
k
.

Remarks
I Condition (1) holds, for example, when f is G-Lipschitz.
I The convergence rate of O

(
1/
√
k
)
is the slowest we have seen so far!
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Stochastic subgradient methods
◦ An unbiased stochastic subgradient

E[G(x)|x] ∈ ∂f(x).
◦ Stochastic gradient methods using unbiased subgradients instead of unbiased gradients work

The classic stochastic subgradient methods (SG)
1. Choose x1 ∈ Rp and (γk)k∈N ∈ (0,+∞)N.
2. For k = 1, . . . perform:

xk+1 = xk − γkG(xk).

Theorem (Convergence in expectation [27])
Suppose that:
1. E[‖G(xk)‖2] ≤M2,
2. γk = γ0/

√
k.

Then,

E[f(xk)− f(x?)] ≤
(
D2

γ0
+ γ0M

2
)

2 + log k
√
k

.

Remark: ◦ The rate is O(log k/
√
k) instead of O(1/

√
k) for the deterministic algorithm.
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Wrap up!

◦ Three supplementary lectures to take a look once the course is over!
I One on compressive sensing (Math of Data Lecture 4 from 2014):

https://archive-wp.epfl.ch/lions/wp-content/uploads/2019/01/lecture-4-2014.pdf
I One on source separation (Math of Data Lecture 6 from 2014)

https://archive-wp.epfl.ch/lions/wp-content/uploads/2019/01/lecture-6-2014.pdf
I One on convexification of structured sparsity models (research presentation)

https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/volkan-TU-view-web.pdf
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?Adaptive methods for stochastic optimization

Remark
I Adaptive methods have extensive applications in stochastic optimization.

I We will see another nature of adaptive methods in this lecture.

I Mild additional assumption: bounded variance of gradient estimates.
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?AdaGrad for stochastic optimization
◦ Only modification: ∇f(x)⇒ G(x, θ)

AdaGrad with Hk = λkI [17]
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{

Qk = Qk−1 + ‖G(xk, θ)‖2

Hk =
√
QkI

xk+1 = xt − αkH−1
k
G(xk, θ)

Theorem (Convergence rate: stochastic, convex optimization [17])
Assume f is convex and L-smooth, such that minimizer of f lies in a convex, compact set K with diameter D.
Also consider bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then,

E[f(xk)]− min
x∈Rd

f(x) = O

(
σD
√
k

)

◦ AdaGrad is adaptive also in the sense that it adapts to nature of the oracle.
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?AcceleGrad for stochastic optimization
◦ Similar to AdaGrad, replace ∇f(x)⇒ G(x, θ)

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : x0 ∈ K, diameter D, weights {αk}k∈N, learning
rate {ηk}k∈N
1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk
xk+1 = τtzk + (1− τk)yk, define gk := ∇f(xk+1)
zk+1 = ΠK(zk − αkηkgk)
yk+1 = xk+1 − ηkgk

Output : yk ∝
∑k−1

i=0 αiy
i+1

Theorem (Convergence rate [18])
Assume f is convex and G-Lipschitz and that minimizer of f lies in a convex, compact set K with diameter D.
Also consider bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then,

E[f(yk)]−min
x
f(x) = O

(
GD
√

log k
√
k

)
.
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?Example: Synthetic least squares
◦ A ∈ Rn×d, where n = 200 and d = 50.
◦ Number of epochs: 20.
◦ Algorithms: SGD, AdaGrad & AcceleGrad.

0 5 10 15 20
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10
0

10
1
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?UniXGrad for stochastic optimization

UniXGrad
1. Set x0 = z0 = x0

2. For k = 0, 1, . . ., iterate{
xk+1/2 = ΠX

(
xk − αkηk∇f(x̃k)

)
xk+1 = ΠX

(
xk − αkηk∇f(x̄k+1/2)

)
I ΠX (x) is Euclidean projection onto X and αk = k

I x̃k =
αkxk+

∑k−1
i=1

αixi+1/2∑k

i=1
αi

, x̄k+1/2 =
∑k

i=1
αixi+1/2∑k

i=1
αi

I ηk = 2D√
1+
∑k

i=1
(αk)2‖∇f(x̄k+1/2)−∇f(x̃k)‖2

Theorem (Convergence rate of UniXGrad)
Let the sequence {xk+1/2} be generated by UniXGrad. Under the assumptions
I f is convex and L-smooth,
I Constraint set X has bounded diameter, i.e., D = maxx,y∈X ‖x− y‖,
I E[∇̃f(x)|x] = ∇f(x) and E[‖∇̃f(x)−∇f(x)‖2|x] ≤ σ2

UniXGrad guarantees the following:

f(x̄k+1/2)− min
x∈X

f(x) ≤ O
(
LD2

k2 +
σD
√
k

)
.
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?Randomized Kaczmarz algorithm

Problem
Given a full-column-rank matrix A ∈ Rn×p and b ∈ Rn, solve the linear system

Ax = b.

Notations: b := (b1, . . . , bn)T and aTj is the j-th row of A.

Randomized Kaczmarz algorithm (RKA)

1. Choose x0 ∈ Rp .
2. For k = 0, 1, . . . perform:
2a. Pick jk ∈ {1, · · · , n} randomly with Pr(jk = i) = ‖ai‖22/‖A‖2F
2b. xk+1 = xk −

(
〈ajk

,xk〉 − bjk

)
ajk

/‖ajk
‖22.

Linear convergence [28]
Let x? be the solution of Ax = b and κ = ‖A‖F ‖A−1‖. Then

E‖xk − x?‖22 ≤ (1− κ−2)k‖x0 − x∗‖22

◦ RKA can be seen as a particular case of SGD [21].
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?Other models with simplicity

pixels 
large 
wavelet 
coefficients 
 

(blue = 0) 

sparse 
signals 

low-rank 
matrices 

Information  
level: 

nonlinear 
models 

p
s ⌧ p

Rp Rp

x\
x\

There are many models extending far beyond sparsity, coming with other non-smooth regularizers.
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?Generalization via simple representations

Definition (Atomic sets & atoms [8])
An atomic set A is a set of vectors in Rp. An atom is an element in an atomic set.

Terminology (Simple representation [8])
A parameter x\ ∈ Rp admits a simple representation with respect to an atomic set A ⊆ Rp, if it can be
represented as a non-negative combination of few atoms, i.e., x\ =

∑k

i=1 ciai, ai ∈ A, ci ≥ 0.

Example (Sparse parameter)
Let x\ be s-sparse. Then x\ can be represented as the non-negative combination of s elements in A, with
A := {±e1, . . . ,±ep}, where ei := (δ1,i, δ2,i, . . . , δp,i) for all i.

Example (Sparse parameter with a dictionary)
Let Ψ ∈ Rm×p, and let y\ := Ψx\ for some s-sparse x\. Then y\ can be represented as the non-negative
combination of s elements in A, with A := {±ψ1, . . . ,±ψp}, where ψk denotes the kth column of Ψ.
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?Atomic norms

◦ Recall the Lasso problem
x?Lasso := arg min

x∈Rp
‖b−Ax ‖22 + ρ‖x ‖1

Observations: ◦ `1-norm is the atomic norm associated with the atomic set A := {±e1, . . . ,±ep}.
◦ The norm is closely tied with the convex hull of the set.
◦ We can extend the same principle for a wide range of regularizers

A :=
{[

1
0

]
,

[
0
1

]
,

[
−1

0

]
,

[
0
−1

]}
.

C := conv (A) .

C
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?Gauge functions and atomic norms

Definition (Gauge function)
Let C be a convex set in Rp, the gauge function associated with C is given by

gC(x) := inf {t > 0 : x = tc for some c ∈ C} .

Definition (Atomic norm)
Let A be a symmetric atomic set in Rp such that if a ∈ A then −a ∈ A for all a ∈ A. Then, the atomic norm
associated with a symmetric atomic set A is given by

‖x‖A := gconv(A)(x), ∀x ∈ Rp,

where conv(A) denotes the convex hull of A.

A generalization of the Lasso
Given an atomic set A, solve the following regularized least-squares problem:

x? = arg min
x∈Rp

‖b−Ax ‖22 + ρ‖x ‖A (4)
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?Pop quiz
Let A :=

{
(1, 0)T , (0, 1)T , (−1, 0)T , (0,−1)T

}
, and let x := (− 1

5 , 1)T . What is ‖x ‖A?

ANS: ‖x ‖A = 6
5 .

x =


� 1

5
1

�

conv(A)

x1

x2
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?Pop quiz 2

What is the expression of ‖x ‖A for any x := (x1, x2, x3)T ∈ R3?

ANS: ‖x ‖A = |x1|+ ‖ (x2, x3)T ‖2.
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?Application: Multi-knapsack feasibility problem

Problem formulation [19]
Let x\ ∈ Rp which is a convex combination of k vectors in A := {−1,+1}p, and let A ∈ Rn×p. How can we
recover x\ given A and b = Ax\?

The answer: ◦ We can use the `∞-norm, ‖ · ‖∞ as ‖ · ‖A. The regularized estimator is given by

x? ∈ arg min
x∈Rp

‖b−Ax ‖22 + ρ‖x ‖∞, ρ > 0.

The derivation: ◦ In this case, we have conv(A) = [−1, 1]p and

gconv(A)(x) = inf {t > 0 : x = tc for some c such that |ci| ≤ 1 ∀i} .

◦ We also have, ∀x ∈ Rp, c ∈ conv(A), t > 0,

x = tc⇒ ∀i, |xi| = |tci| ≤ t
⇒ gconv(A)(x) ≥ max

i
|xi|.

◦ Let x , 0, let j ∈ arg maxi |xi| and choose t = maxi |xi|, ci = xi/t ∈ [−1, 1]p.

◦ Then, x = tc, and so gconv(A)(x) ≤ maxi |xi|.
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?Application: Multi-knapsack feasibility problem

Problem formulation [19]
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?Application: Matrix completion

Problem formulation [5, 12]
Let X\ ∈ Rp×p with rank(X\) = r, and let A1, . . . ,An be matrices in Rp×p. How do we estimate X\ given
A1, . . . ,An and bi = Tr

(
AiX\

)
+ wi, i = 1, . . . , n, where w := (w1, . . . , wn)T denotes unknown noise?

The answer: ◦ We can use the nuclear norm, ‖ · ‖∗ as ‖ · ‖A. The regularized estimator is given by

x? ∈ arg min
X∈Rp×p

n∑
i=1

(bi − Tr (AiX))2 + ρ‖X ‖∗, ρ > 0.

The derivation: ◦ Let us use the following atomic set A =
{

X : rank (X) = 1, ‖X ‖F = 1,X ∈ Rp×p
}
.

◦ Let ∀X ∈ Rp×p,C =
∑

i
λiCi ∈ conv(A),

∑
i
λi = 1,Ci ∈ A, t > 0. Then, we have

X = t
∑
i

λiCi ⇒ ‖X‖∗ = t

∥∥∥∥∥∑
i

λiCi

∥∥∥∥∥
∗

≤ t
∑
i

λi ‖Ci‖∗ ≤ t⇒ gconv(A)(X) ≥ ‖X‖∗ .

◦ Let X , 0, let X =
∑

i
σiuivti be its SVD decomposition, where σi’s are its singular values.

◦ Let t = ‖X‖∗ =
∑

i
|σi|, Ci = uivTi ∈ A, ∀i. Then, X = t

∑
i
λiCi, λi = |σi|

t
.

◦ Since t is feasible and
∑

i
λi = 1, it follows that gconv(A)(X) ≤ ‖X‖∗.
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?Structured Sparsity
There exist many more structures that we have not covered here, each of which is handled using different
non-smooth regularizers. Some examples [3, 10]:
I Group Sparsity: Many signals are not only sparse, but the non-zero entries tend to cluster according to

known patterns.
I Tree Sparsity: When natural images are transformed to the Wavelet domain, their significant entries form

a rooted connected tree.

 

 

Figure: (Left panel) Natural image in the Wavelet domain. (Right panel) Rooted connected tree containing the significant
coefficients.
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?Selection of the Parameters

In all of these problems, there remain the issues of how to design A and how to choose ρ.

Design of A:
I Sometimes A is given “by nature”, whereas sometimes it can be designed
I For the latter case, i.i.d. Gaussian designs provide good theoretical guarantees, whereas in practice we must

resort to structured matrices permitting more efficient storage and computation
I See [13] for an extensive study in the context of compressive sensing

Selection of ρ:
I Theoretical bounds provide some insight, but usually the direct use of the theoretical choice does not suffice
I In practice, a common approach is cross-validation [9], which involves searching for a parameter that

performs well on a set of known training signals
I Other approaches include covariance penalty [9] and upper bound heuristic [29]
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