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Recall: Gradient descent

Problem (Unconstrained convex problem)
Consider the following convex minimization problem:

f? = min
x∈Rp

f(x)

I f is a convex function that is
I proper : ∀x ∈ Rp, −∞ < f(x) and there exists x ∈ Rp such that f(x) < +∞.
I closed : The epigraph epif = {(x, t) ∈ Rp+1, f(x) ≤ t} is closed.
I smooth : f is differentiable and its gradient ∇f is L-Lipschitz.

I The solution set S? := {x? ∈ dom (f) : f(x?) = f?} is nonempty.

Gradient descent (GD)
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f(xk)

where αk is a step-size to be chosen so that xk converges to x?.
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Convergence rate of gradient descent

Theorem
Let f be a twice-differentiable convex function, if

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
2L
k + 4

‖x0 − x?‖22

f is L-smooth and µ-strongly convex, α =
2

L+ µ
: ‖xk − x?‖2 ≤

(
L− µ
L+ µ

)k
‖x0 − x?‖2

f is L-smooth and µ-strongly convex, α =
1
L

: ‖xk − x?‖2 ≤
(
L− µ
L+ µ

) k
2
‖x0 − x?‖2

Note that L−µ
L+µ = κ−1

κ+1 , where κ := L
µ

is the condition number of ∇2f .
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Information theoretic lower bounds [20]
Question: ◦ What is the best achievable rate for a first-order method?

f ∈ F∞L : ∞-differentiable and L-smooth
It is possible to construct a function in F∞L , for which any first order method must satisfy

f(xk)− f(x?) ≥
3L

32(k + 1)2 ‖x
0 − x?‖22 for all k ≤ (p− 1)/2.

f ∈ F∞L,µ: ∞-differentiable, L-smooth and µ-strongly convex
It is possible to construct a function in F∞L,µ, for which any first order method must satisfy

‖xk − x?‖2 ≥
( √

L− √µ
√
L+ √µ

)k
‖x0 − x?‖2.

Observations: ◦ Gradient descent is O(1/k) for F∞L
◦ It is also slower for F∞L,µ, hence it does not achieve the lower bounds!
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Accelerated gradient descent algorithm

Problem
Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]
Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth
(AGD-L)

1. Set x0 = y0 ∈ dom (f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L
∇f(yk)

tk+1 = (1 +
√

4t2
k

+ 1)/2
yk+1 = xk+1 + (tk−1)

tk+1
(xk+1 − xk)

Accelerated Gradient algorithm for L-smooth
and µ-strongly convex (AGD-µL)

1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L
∇f(yk)

yk+1 = xk+1 + α(xk+1 − xk)
where α =

√
L−√µ√
L+√µ

.

Remark: ◦ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.
◦ The momentum xk+1 − xk acts like an “extra-gradient.”
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Global convergence of AGD [20]

Theorem (f is convex with Lipschitz gradient)
If f is L-smooth or L-smooth and µ-strongly convex, the sequence {xk}k≥0 generated by AGD-L satisfies

f(xk)− f? ≤
4L

(k + 2)2 ‖x
0 − x?‖22, ∀k ≥ 0. (1)

AGD-L is optimal for L-smooth but NOT for L-smooth and µ-strongly convex!

Theorem (f is strongly convex with Lipschitz gradient)
If f is L-smooth and µ-strongly convex, the sequence {xk}k≥0 generated by AGD-µL satisfies

f(xk)− f? ≤ L
(

1−
√

µ

L

)k
‖x0 − x?‖22, ∀k ≥ 0 (2)

‖xk − x?‖2 ≤

√
2L
µ

(
1−

√
µ

L

) k
2
‖x0 − x?‖2, ∀k ≥ 0. (3)

Observations: ◦ AGD-L’s iterates are not guaranteed to converge in general.
◦ AGD-L does not have a linear convergence rate for L-smooth and µ-strongly convex.
◦ AGD-µL does, but needs to know µ.
◦ AGD achieves the iteration lowerbound within a constant!
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Example: Ridge regression
Case 1: n = 500, p = 2000, ρ = 0
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Case 2: n = 500, p = 2000, ρ = 0.01λp(ATA)
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Hidden gems in AGD: The method of similar triangles

◦ There are several variants of Nesterov’s AGD [23].

xk
<latexit sha1_base64="QvtyQtGRnY++DBLOkJRXqackGsA=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFclaQKuiy6cVnBPqCJZTKdtEMnkzAPsYT+hhsXirj1Z9z5N07aLLT1wMDhnHu5Z06Ycqa06347K6tr6xubpa3y9s7u3n7l4LCtEiMJbZGEJ7IbYkU5E7Slmea0m0qK45DTTji+yf3OI5WKJeJeT1IaxHgoWMQI1lby/RjrURhlT9OHcb9SdWvuDGiZeAWpQoFmv/LlDxJiYio04VipnuemOsiw1IxwOi37RtEUkzEe0p6lAsdUBdks8xSdWmWAokTaJzSaqb83MhwrNYlDO5lnVIteLv7n9YyOroKMidRoKsj8UGQ40gnKC0ADJinRfGIJJpLZrIiMsMRE25rKtgRv8cvLpF2veee1+t1FtXFd1FGCYziBM/DgEhpwC01oAYEUnuEV3hzjvDjvzsd8dMUpdo7gD5zPH4IRkf0=</latexit>

xk+1
<latexit sha1_base64="QpZyVRekfkZ6yiJZPDM2sYLQbWo=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBEEoSRV0GXRjcsK9gFtLJPppB06mYSZSbGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8Wyura+sbm6Wt8vbO7t6+fXDYUlEiCW2SiEey42NFORO0qZnmtBNLikOf07Y/vs399oRKxSLxoKcx9UI8FCxgBGsj9W27F2I98oP0KXtMx+du1rcrTtWZAS0TtyAVKNDo21+9QUSSkApNOFaq6zqx9lIsNSOcZuVeomiMyRgPaddQgUOqvHSWPEOnRhmgIJLmCY1m6u+NFIdKTUPfTOY51aKXi/953UQH117KRJxoKsj8UJBwpCOU14AGTFKi+dQQTCQzWREZYYmJNmWVTQnu4peXSatWdS+qtfvLSv2mqKMEx3ACZ+DCFdThDhrQBAITeIZXeLNS68V6tz7moytWsXMEf2B9/gCnepOq</latexit>

zk+1
<latexit sha1_base64="PTIyfDumfAZ/64tN279pSi/YkR0=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBEEoSRV0GXRjcsK9gFtLJPppB06mYSZSaGG/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8Wyura+sbm6Wt8vbO7t6+fXDYUlEiCW2SiEey42NFORO0qZnmtBNLikOf07Y/vs399oRKxSLxoKcx9UI8FCxgBGsj9W27F2I98oP0KXtMx+du1rcrTtWZAS0TtyAVKNDo21+9QUSSkApNOFaq6zqx9lIsNSOcZuVeomiMyRgPaddQgUOqvHSWPEOnRhmgIJLmCY1m6u+NFIdKTUPfTOY51aKXi/953UQH117KRJxoKsj8UJBwpCOU14AGTFKi+dQQTCQzWREZYYmJNmWVTQnu4peXSatWdS+qtfvLSv2mqKMEx3ACZ+DCFdThDhrQBAITeIZXeLNS68V6tz7moytWsXMEf2B9/gCqkJOs</latexit>zk

<latexit sha1_base64="TAFM4PJAtR0ZsUXQqT0LAN+mqaE=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiS1oMuiG5cV7APatEymk3boZBJmJkoN+Q83LhRx67+482+ctFlo64GBwzn3cs8cL+JMadv+tgpr6xubW8Xt0s7u3v5B+fCorcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1vepP5nQcqFQvFvZ5F1A3wWDCfEayNNOgHWE88P3lKB8k0HZYrdtWeA60SJycVyNEclr/6o5DEARWacKxUz7Ej7SZYakY4TUv9WNEIkyke056hAgdUuck8dYrOjDJCfijNExrN1d8bCQ6UmgWemcxSqmUvE//zerH2r9yEiSjWVJDFIT/mSIcoqwCNmKRE85khmEhmsiIywRITbYoqmRKc5S+vknat6lxUa3f1SuM6r6MIJ3AK5+DAJTTgFprQAgISnuEV3qxH68V6tz4WowUr3zmGP7A+fwBRsJML</latexit>

yk+1
<latexit sha1_base64="vYeXTNF27AXnOpss4NqkWS2DvPg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBosgCCWpgi6LblxWsA9oY5lMJ+3QySTMTAol5E/cuFDErX/izr9x0mahrQcGDufcyz1z/JgzpR3n2yqtrW9sbpW3Kzu7e/sH9uFRW0WJJLRFIh7Jro8V5UzQlmaa024sKQ59Tjv+5C73O1MqFYvEo57F1AvxSLCAEayNNLDtfoj12A/SWfaUTi7cbGBXnZozB1olbkGqUKA5sL/6w4gkIRWacKxUz3Vi7aVYakY4zSr9RNEYkwke0Z6hAodUeek8eYbOjDJEQSTNExrN1d8bKQ6VmoW+mcxzqmUvF//zeokObryUiTjRVJDFoSDhSEcorwENmaRE85khmEhmsiIyxhITbcqqmBLc5S+vkna95l7W6g9X1cZtUUcZTuAUzsGFa2jAPTShBQSm8Ayv8Gal1ov1bn0sRktWsXMMf2B9/gCpBZOr</latexit>

Accelerated Gradient Descent Algorithm
1. Set x0 = y0 = z0 ∈ dom (f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

tk+1 = 2
k+1

yk+1 = (1− tk+1)xk + tk+1zk
xk+1 = yk+1 − 1

L
∇f(yk+1)

zk+1 = xk+1 +
(

1
tk+1 − 1

)
(xk+1 − xk)

Remarks: ◦ Triangles (xk,yk+1,xk+1) and (xk, zk, zk+1) are “similar.”
◦ This geometric construction via averaging is typical of accelerated methods.
◦ Sequences (yk+1, zk+1) enable acceleration by estimating a lower-bound to the problem.
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The extra-gradient algorithm
◦ Recall: The momentum-term xk+1 − xk in AGD acts like an “extra-gradient.”

◦ However, the name extra-gradient is reserved for another algorithm approximating the proximal-point method:

xk+1 = xk − γ∇f(xk+1) (PPM)

Extra-gradient algorithm [13]
1. Choose x0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1/2 = xk − γ∇f(xk)
xk+1 = xk − γ∇f(xk+1/2)

I Pick γ < 1
L
.

I Define x̄k+1/2 =
∑k

i=1 xi+1/2/k

I f(x̄k+1/2)− f(x?) ≤ O
(

1
k

)

Accelerated extra-gradient algorithm [7]
1. Set x0 = z0 = x0

2. For k = 0, 1, . . ., iterate{
xk+1/2 = xk − αkγ∇f(x̃k)
xk+1 = xk − αkγ∇f(x̄k+1/2)

I Pick γ < 1
L

and define αk = O(k)

I x̃k =
αkxk+

∑k−1
i=1

αixi+1/2∑k

i=1
αi

, x̄k+1/2 =
∑k

i=1
αixi+1/2∑k

i=1
αi

I f(x̄k+1/2)− f(x?) ≤ O
(

1
k2

)
[7]
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Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates
Gradient descent:

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
2L
k + 4

‖x0 − x?‖22.

Accelerated Gradient Descent:

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
4L

(k + 2)2 ‖x
0 − x?‖22, ∀k ≥ 0.

Observations: ◦ We require αt to be a function of L.

◦ It may not be possible to know exactly the Lipschitz constant.

◦ Adaptation to local geometry → may lead to larger steps.
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Adaptive first-order methods and Newton method

Adaptive methods
Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.

Newton method
Higher-order information, e.g., Hessian, gives a finer characterization of local behavior.

Newton method achieves asymptotically better local rates, but for additional cost.
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How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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f(x)
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⇢
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�
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Variable metric gradient descent algorithm

Variable metric gradient descent algorithm
1. Choose x0 ∈ Rp as a starting point and H0 � 0.
2. For k = 0, 1, · · · , perform:{

dk := −H−1
k
∇f(xk),

xk+1 := xk + αkdk,

where αk ∈ (0, 1] is a given step size.
3. Update Hk+1 � 0 if necessary.

Common choices of the variable metric Hk

I Hk := λkI =⇒ gradient descent method.
I Hk := Dk (a positive diagonal matrix) =⇒ adaptive gradient methods.
I Hk := ∇2f(xk) =⇒ Newton method.
I Hk ≈ ∇2f(xk) =⇒ quasi-Newton method.
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Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting Hk as a function of past gradient information.

◦ Roughly speaking, Hk = function(∇f(x1),∇f(x2), · · · ,∇f(xk))

◦ Some well-known examples:

AdaGrad (Scalar) [8]
Hk =

√∑k

t=1(∇f(xt)>∇f(xt))

?RmsProp [28]
Hk =

√
βHk−1 + (1− β)diag(∇f(xk))2

?ADAM [12]
Ĥk = βĤk−1 + (1− β)diag(∇f(xk))2

Hk =
√

Ĥk/(1− βk)
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AdaGrad - Adaptive gradient method with Hk = λkI

◦ If Hk = λkI, it becomes gradient descent method with adaptive step-size αk
λk

.

How step-size adapts?
If gradient ‖∇f(xk)‖ is large/small → AdaGrad adjusts step-size αk/λk smaller/larger

Adaptive gradient descent (AdaGrad with Hk = λkI) [15]
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{

Qk = Qk−1 + ‖∇f(xk)‖2

Hk =
√
QkI

xk+1 = xk − αkH−1
k
∇f(xk)

Adaptation through first-order information
I When Hk = λkI, AdaGrad estimates local geometry through gradient norms.
I Akin to estimating a local quadratic upper bound (majorization / minimization) using gradient history.
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AdaGrad - Adaptive gradient method with Hk = Dk

Adaptation strategy with a positive diagonal matrix Dk

Adaptive step-size + coordinate-wise extension = adaptive step-size for each coordinate

�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

D�1
k

<latexit sha1_base64="RcBFv+9WMTiD8KYpeDUFT84TVOE="></latexit>
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AdaGrad - Adaptive gradient method with Hk = Dk

◦ Suppose Hk is diagonal,

Hk :=

λk,1 0
. . .

0 λk,d

 ,
◦ For each coordinate i, we have different step-size αk

λk,i
is the step-size.

Adaptive gradient descent(AdaGrad with Hk = Dk)
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

Adaptation across each coordinate
I When Hk = Dk, we adapt across each coordinate individually.
I Essentially, we have a finer treatment of the function we want to optimize.
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Convergence rate for AdaGrad

Original convergence for a different function class
Consider a proper, convex function f such that it is G-Lipschitz continuous (NOT L-smooth). Let
D = max

k
‖xk − x?‖2 and αk = D√

2
. Define x̄k = (

∑k

i=1 xi)/k. Then,

f(x̄k)− f(x?) ≤
1
k

√√√√2D2
k∑
i=1

‖∇f(xi)‖22 ≤
√

2DG
√
k

A more familiar convergence result [15]
Assume f is L-smooth, D = max

t
‖xk − x?‖2 and αk = D√

2
. Define x̄k = (

∑k

i=1 xi)/k. Then,

f(x̄k)− f(x?) ≤
1
k

√√√√2D2
k∑
i=1

‖∇f(xi)‖22 ≤
4D2L

k
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AcceleGrad - Adaptive gradient + Accelerated gradient [16]

Motivation behind AcceleGrad
Is it possible to achieve acceleration for when f is L-smooth, without knowing the Lipschitz constant?

◦ The answer is yes! AcceleGrad combines an accelerated algorithm with AdaGrad step-size.

◦ A rough comparison of the accelerated methods:

Accelerated Gradient algorithm
1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − α∇f(yk)
yk+1 = xk+1 + γk+1(xk+1 − xk)

I for some proper choice of α and γk+1.

AcceleGrad (Accelerated Adaptive Gradient Method)
1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk
xk+1 = τkzk + (1− τk)yk
zk+1 = zk − αkηk∇f(xk)
yk+1 = xk+1 − ηk∇f(xk)

I for αk = (k + 1)/4, and

I ηk = 2D√
G2+
∑k

i=0
(αk)2‖∇f(xk)‖2

.
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Convergence of AcceleGrad

Theorem (Convergence rate of AcceleGrad)
Let the sequence {yk} be generated by AcceleGrad. Under the assumptions
I f is convex and L-smooth,
I Iterates are bounded, such that D = maxx,y∈Rd ‖x− y‖,
I Gradient norms are bounded ‖∇f(x)‖ ≤ G,

AcceleGrad has the following guarantee:

f(ȳk)− min
x∈Rd

f(x) ≤ O
(
DG+ LD2 log(LD/G)

k2

)
,

where ȳk = (
∑k−1

i=0 αkyk+1)/(
∑k−1

i=0 αk) is the average iterate.

Remarks: ◦ Accelegrad is a nearly “universal” algorithm (more on this later!)
◦ We still need a bound on G and D to run the algorithm.
◦ It cannot handle constraints.
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UniXGrad - Accelerated Extra-gradient (!) algorithm for constraints [11]

◦ Universal extra-gradient method offers improvements over AcceleGrad

Extra-Gradient algorithm
1. Choose x0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1/2 = xk − α∇f(xk)
xk+1 = xk − α∇f(xk+1/2)

I Pick α < 1/L.

UniXGrad
1. Set x0 = z0 = x0

2. For k = 0, 1, . . ., iterate{
xk+1/2 = ΠX

(
xk − αkηk∇f(x̃k)

)
xk+1 = ΠX

(
xk − αkηk∇f(x̄k+1/2)

)
I ΠX (x) is Euclidean projection onto X and αk = k

I x̃k =
αkxk+

∑k−1
i=1

αixi+1/2∑k

i=1
αi

, x̄k+1/2 =
∑k

i=1
αixi+1/2∑k

i=1
αi

I ηk = 2D√
1+
∑k

i=1
(αk)2‖∇f(x̄k+1/2)−∇f(x̃k)‖2
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Convergence of UniXGrad

Theorem (Convergence rate of UniXGrad)
Let the sequence {xk+1/2} be generated by UniXGrad. Under the assumptions
I f is convex and L-smooth,
I Constraint set X has bounded diameter, i.e., D = maxx,y∈X ‖x− y‖,

UniXGrad guarantees the following:

f(x̄k+1/2)− min
x∈X

f(x) ≤ O
(
LD2

k2

)
,

where x̄k+1/2 =
∑k

i=1
αixi+1/2∑k

i=1
αi

is the average iterate.

Remarks: ◦ UniXGrad is a truly “universal” algorithm (more on this later!)
◦ We still need a bound on D to run the algorithm.
◦ It can handle constraints.
◦ It removes the log-factor in AcceleGrad.
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Adaptive methods and open questions

Question: ◦ Can we improve diameter D dependence on adaptive methods?

Answer: ◦ UnderGrad [3] has O(logD) dependence instead of O(D) while retaining the fast rates.

Figure: UniXGrad vs. UnderGrad vs. Accelerated extra-gradient algorithm.

Question: ◦ Can we go beyond O(1/k2) rate while adapting to problem parameters and oracle noise?

Answer: ◦ Yes, ExtraNewtonTM achieves a rate of O
(

1
k3

)
using a regularized Newton update.
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A quick look at descent methods: beyond first-order minimization

Revisiting majorization-minimization
I Gradient descent, for α > 0:

xk+1 = arg minx∈Rd

{
f(xk) + 〈∇f(xk),x− xk〉+ 1

2α‖x− xk‖2
}

= xk − α∇f(xk).

I Newton’s method, for α > 0:
xk+1 = arg minx∈Rd

{
f(xk) + 〈∇f(xk),x− xk〉+ 1

2α 〈∇
2f(xk)(x− xk),x− xk〉

}
= xk − α(∇2f(xk))−1∇f(xk).

I Regularized Newton’s method, for α, β > 0 [14, 17]:
xk+1 = arg minx∈Rd

{
f(xk) + 〈∇f(xk),x− xk〉+ 1

2α 〈∇
2f(xk)(x− xk),x− xk〉+ 1

2αβ ‖x− xk‖2
}

= xk − α(∇2f(xk) + βI)−1∇f(xk).

Remarks: ◦ Global convergence of the Newton method is difficult.
◦ Local convergence of the Newton method using self-concordance is well-studied.
◦ Quasi-Newton methods that approximate the Newton method are well-studied.
◦ See advanced material at the end of the lecture.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 41



A quick look at descent methods: beyond first-order minimization

Revisiting majorization-minimization
I Gradient descent, for α > 0:

xk+1 = arg minx∈Rd

{
f(xk) + 〈∇f(xk),x− xk〉+ 1

2α‖x− xk‖2
}

= xk − α∇f(xk).

I Newton’s method, for α > 0:
xk+1 = arg minx∈Rd

{
f(xk) + 〈∇f(xk),x− xk〉+ 1

2α 〈∇
2f(xk)(x− xk),x− xk〉

}
= xk − α(∇2f(xk))−1∇f(xk).

I Regularized Newton’s method, for α, β > 0 [14, 17]:
xk+1 = arg minx∈Rd

{
f(xk) + 〈∇f(xk),x− xk〉+ 1

2α 〈∇
2f(xk)(x− xk),x− xk〉+ 1

2αβ ‖x− xk‖2
}

= xk − α(∇2f(xk) + βI)−1∇f(xk).

Remarks: ◦ Global convergence of the Newton method is difficult.
◦ Local convergence of the Newton method using self-concordance is well-studied.
◦ Quasi-Newton methods that approximate the Newton method are well-studied.
◦ See advanced material at the end of the lecture.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 41



ExtraNewton: Adaptive Newton’s method with fast rates

Question: ◦ Under what minimal regularity conditions, can we achieve faster rates beyond O(1/k2)?

Answer: ◦ Higher-order smoothness

Second-order smoothness
If the objective f has L-Lipschitz continuous Hessian, then∣∣∣f(x)− f(y)− 〈∇f(y),x− y〉 −

1
2
〈∇2f(y)(x− y),x− y〉

∣∣∣ ≤ L

6
‖x− y‖3

Question: ◦ How can we exploit the higher-order smoothness?

Answer: ◦ Proximal Point method (PPM) + Newton-type updates!
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Better approximation, better rates
◦ The extra-gradient method approximates PPM through the “extrapolation” sequence xk+1/2 [18]

Higher-order information for better approximation
I Extra-gradient approximates the “next” iterate, xk+1, using first-order information.
I Can we achieve a better estimate xk+1/2 using second-order information? YES!

ExtraNewton [2]

1. Set x0 = z0 = x0. Define αk = k2 and Ak =
∑k

i=1 αk
2. For k = 0, 1, . . ., iterate{

xk+1/2 = xk − αkηk
(
ηk

α2
k

Ak
∇2f(x̃k) + I

)−1
∇f(x̃k)

xk+1 = xk − αkηk∇f(x̄k+1/2)

I x̃k =
αkxk+

∑k−1
i=1

αixi+1/2∑k

i=1
αi

, x̄k+1/2 =
∑k

i=1
αixi+1/2∑k

i=1
αi

,

I ηk = γ√
1+
∑k−1

i=1
(αk)2‖∇f(x̄k+1/2)−∇f(x̃k)−∇2f(x̃k)(x̄k+1/2−x̃k)‖2

.
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Convergence of ExtraNewton

Theorem ([2])
Let the sequence xk+1/2 be generated by ExtraNewton. Under the assumptions
I f has L-Lipschitz Hessian (not Lipschitz smooth),
I D = maxx,y∈X ‖x− y‖

ExtraNewton guarantees that

f(x̄k+1/2)− min
x∈X

f(x) ≤ O

L

(
D4

γ
+Dγ2

)
k3

 ,

where x̄k+1/2 =
∑k

i=1
αixi+1/2∑k

i=1
αi

is the average sequence.

Remarks: ◦ The first globally convergent Newton method without a line-search procedure.
◦ The algorithm does not need to know the diameter D.
◦ ExtraNewton is also noise-adaptive; continuously adapts to noise in oracles.
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Logistic regression: ExtraNewton vs. adaptive first-order methods

◦ Logistic regression with regularization using a1a dataset.

◦ Comparison against first-order adaptive methods.

100 101 102 103 104

# oracle calls

10 7

10 5

10 3

10 1

101

f(x
)

f(x
* )

GD
AdaGrad
AcceleGrad
UniXGrad
ExtraNewton
Newton
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Tensor methods
◦ Let us investigate a generic method for handling p-th order smooth problems using p-th order derivatives.

Taylor polynomial
Let us focus on the Taylor polynomial expansion for a function f(x) of order p at x:

Tp(x; y) = f(x) +
p∑
i=1

1
i!
Dif(x)[y− x]i,

I Dif(x)[h]i is the directional derivative along h such that

D1f(x)[h] = 〈∇f(x), h〉, and D2f(x)[h]2 = 〈∇2f(x)h, h〉,

I p-th order smoothness:
|f(y)− Tp(x,y)| ≤

Lp

(p+ 1)!
‖x− y‖p+1,

I Regularized Taylor polynomial of order p at x:

T̂p,H(x; y) = f(x) +
p∑
i=1

1
i!
Dif(x)[y− x]i +

pH

(p+ 1)!
‖x− xk‖p+1.

Remark: ◦ If H ≥ Lp, then, f(y) ≤ T̂p(x; y) and T̂p(x; y) is convex. We will assume this condition!
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Tensor methods
◦ Recall regularized Taylor polynomial of order p at xk:

T̂p,H(x; y) = f(x) +
p∑
i=1

1
i!
Dif(x)[y− x]i +

pH

(p+ 1)!
‖x− xk‖p+1.

Approach: ◦ Use T̂p,H(xk; x) as the new majorizer, and minimize to obtain xk+1

Tensor method [24]
1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = arg min
x∈Rd

T̂p,H(xk; x)

Theorem (Convergence of p-th order tensor method [24])
Consider f to be p-th order smooth and let {xk} be generated by the Tensor method. Then, it holds that

f(xk)− min
x∈Rd

f(x) ≤ O
( 1
tp

)
.
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Lower bounds for higher-order smoothness?

◦ Higher-order methods and the limits of their performance has received great attention lately.

◦ Beyond Lipschitz smoothness, we can achieve improving sublinear rates.

Theorem ([24])
Consider that f is p-th order smooth (equivalently has Lipschitz continuous p+ 1-th order derivative). Let xk
be generated by some p-th order iterative tensor method. Then, it holds that

min
0≤i≤k

f(xi)− min
x∈Rd

f(x) = Ω
(

1

k
3p+1

2

)
.

Remarks: ◦ AGD matches the lower bound for 1-st order smooth function.
◦ The lower bound for second-order methods evaluates to O

(
1

k7/2

)
.

◦ Monteiro-Svaiter’s accelerated Newton method [19] and a recent work [5] archive this rate.
◦ In practice, all of them seem slower than ExtraNewton.
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Logistic regression: ExtraNewton vs. second-order methods

◦ Logistic regression with regularization using a9a dataset.

◦ Comparison against second-order methods with matching and optimal rates.

100 101 102 103

Linear system solutions

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

lo
ss

Logistic Regression - Dataset:a9a - Deterministic - Second-order Methods

Newton
ExtraNewton
Opt Monteiro-Svaiter
Cubic Reg
Acc Cubic Reg

◦ Legend:
I Optimal Monteiro-Svaiter [5],
I Cubic regularization of Newton’s method [22],
I Accelerated cubic regularization of Newton’s

methods [21].
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Performance of optimization algorithms

Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

◦ The speed of numerical solutions depends on two factors:
I Convergence rate determines the number of iterations needed to obtain an ε-optimal solution.
I Per-iteration time depends on the information oracles, implementation, and the computational platform.

◦ In general, convergence rate and per-iteration time are inversely proportional.

Finding the fastest algorithm is tricky!
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Performance of optimization algorithms (convex)
A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

AdaGrad Sublinear (1/k) One gradient
Accelerated GD Sublinear (1/k2) One gradient

L-smooth AcceleGrad Sublinear (1/k2) One gradient
UniXGrad Sublinear (1/k2) Two gradients

Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Reg. Newton method Sublinear (1/k2) One gradient, one linear system
ExtraNewton method Sublinear (1/k3) Two gradients, one linear system

Gradient descent Linear (e−k) One gradient
L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient

Newton method Linear (e−k), Quadratic One gradient, one linear system

Gradient descent:

xk+1 = xk − α∇f(xk),

where the stepsize is chosen as α ∈ (0, 2
L

).

AdaGrad:

xk+1 = xk − αk∇f(xk),

where scalar version of the step size is given by

αk =
D√∑k

i=1 ‖∇f(xi)‖2
.
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Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Newton method Linear (e−k), Quadratic One gradient, one linear system

UniXGrad:

xk+1/2 = xk − αkηk∇f(x̃k)

xk+1 = xk + αkηk∇f(x̄k+1/2).

for some proper choice of αk = k and ηk.

AcceleGrad:

xk+1 = τkzk + (1− τk)yk

zk+1 = zk − αkηk∇f(xk)

yk+1 = xk+1 − ηk∇f(xk).

for αk = (k + 1)/4, τk = 1/αk and
ηk = 2D√

G2+
∑k

i=0
(αk)2‖∇f(xk)‖2

.
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:
Assumptions on f Algorithm Convergence rate Iteration complexity

Gradient descent Sublinear (1/k) One gradient
AdaGrad Sublinear (1/k) One gradient

Accelerated GD Sublinear (1/k2) One gradient
L-smooth AcceleGrad Sublinear (1/k2) One gradient

UniXGrad Sublinear (1/k2) Two gradients
Newton method Sublinear (1/k), Quadratic One gradient, one linear system

Reg. Newton method Sublinear (1/k2) One gradient, one linear system
ExtraNewton method Sublinear (1/k3) Two gradients, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Newton method Linear (e−k), Quadratic One gradient, one linear system

The main computation of the Newton method requires the solution of the linear system

(γt∇2f(xk) + βtI)pk = −∇f(xk) .
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The gradient method for non-convex optimization

Remarks: ◦ Gradient descent does not match lower bounds in convex setting.

◦ How about non-convex problems?

Lower bounds for non-convex problems [4]
Assume f is L-gradient Lipschitz and non-convex. Then any first-order method must satisfy,

‖∇f(xk)‖2 = Ω
( 1
k

)
.

Observations: ◦ Gradient descent is optimal for non-convex problems, up to some constant factor!

◦ Acceleration for non-convex, L-Lipschitz gradient functions is not as meaningful.
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Wrap up!

◦ The remaining slides in this lecture are advanced material.

◦ Lecture on Monday!
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?Enhancements

Two enhancements
1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?
We can use a line-search procedure for both GD and AGD when
I L is known but it is expensive to evaluate;
I The global constant L usually does not capture the local behavior of f or it is unknown.

Line-search
At each iteration, we try to find a constant Lk that satisfies:

f(xk+1) ≤ QLk
(xk+1,yk) := f(yk) + 〈∇f(yk),xk+1 − yk〉+

Lk

2
‖xk+1 − yk‖22.

Here: L0 > 0 is given (e.g., L0 := c
‖∇f(x1)−∇f(x0)‖2

‖x1−x0‖2
) for c ∈ (0, 1].
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?How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
Lk

2
kx � xkk2

2
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?Enhancements

Why do we need a restart strategy?
I AGD-µL requires knowledge of µ and AGD-L does not have optimal convergence for strongly convex f .
I AGD is non-monotonic (i.e., f(xk+1) ≤ f(xk) is not always satisfied).
I AGD has a periodic behavior, where the momentum depends on the local condition number κ = L/µ.
I A restart strategy tries to reset this momentum whenever we observe high periodic behavior. We often use

function values but other strategies are possible.

Restart strategies
1. O’Donoghue - Candes’s strategy [26]: There are at least three options: Restart with fixed number of

iterations, restart based on objective values, and restart based on a gradient condition.
2. Giselsson-Boyd’s strategy [10]: Do not require tk = 1 and do not necessary require function evaluations.
3. Fercoq-Qu’s strategy [9]: Unconditional periodic restart for strongly convex functions. Do not require the

strong convexity parameter.
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?Example: Ridge regression
Case 1: n = 500, p = 2000, ρ = 0
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Case 2: n = 500, p = 2000, ρ = 0.01λp(ATA)
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?AcceleGrad - Adaptive gradient + Accelerated gradient [16]

Motivation behind AcceleGrad
Is it possible to achieve acceleration when f is L-smooth, without knowing the Lipschitz constant?

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : x0 ∈ K, diameter D, weights {αk}k∈N, learning
rate {ηk}k∈N
1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk
xk+1 = τkzk + (1− τk)yk, define gk := ∇f(xk+1)
zk+1 = ΠK(zk − αkηkgk)
yk+1 = xk+1 − ηkgk

Output : yk ∝
∑k−1

i=0 αiy
i+1

where ΠK(y) = arg minx∈K 〈x− y,x− y〉 (projection onto K).

Remark: ◦ This is essentially the MD + GD scheme [1], with an adaptive step size!
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?AcceleGrad - Properties and convergence

Learning rate and weight computation
Assume that function f has uniformly bounded gradient norms ‖∇f(xk)‖2 ≤ G2, i.e., f is G-Lipschitz
continuous. AcceleGrad uses the following weights and learning rate:

αk =
k + 1

4
, ηk =

2D√
G2 +

∑k

τ=0 α
2
τ‖∇f(xτ+1)‖2

◦ Similar to RmsProp, AcceleGrad assignes greater weights to recent gradients.

Convergence rate of AcceleGrad
Assume that f is convex and L-smooth. Let K be a convex set with bounded diameter D, and assume x? ∈ K.
Define ȳk = (

∑k−1
i=0 αiy

i+1)/(
∑k−1

i=0 αi). Then,

f(yk)− min
x∈Rd

f(x) ≤ O
(
DG+ LD2 log(LD/G)

k2

)
If f is only convex and G-Lipschitz, then

f(yk)− min
x∈Rd

f(x) ≤ O
(
GD
√

log k/
√
k

)
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?Example: Logistic regression

Problem (Logistic regression)
Given A ∈ {0, 1}n×p and b ∈ {−1,+1}n, solve:

f? := min
x,β

{
f(x) :=

1
n

n∑
j=1

log
(
1 + exp

(
−bj(aTj x + β)

))}
.

Real data
I Real data: a4a with A ∈ Rn×d, where n = 4781 data points, d = 122 features
I All methods are run for T = 10000 iterations

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 32



?RMSProp - Adaptive gradient method with Hk = Dk

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum → slow convergence at flat region.

AdaGrad with Hk = Dk

1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

RMSProp
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = βQk−1 + (1− β)diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

◦ RMSProp uses weighted averaging with constant β

◦ Recent gradients have greater importance
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?ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM
Input. Step size α, exponential decay rates β1, β2 ∈ [0, 1)
1. Set m0,v0 = 0
2. For k = 0, 1, . . ., iterate

gk = ∇f(xk−1)
mk = β1mk−1 + (1− β1)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g2

k ← 2nd order estimate
m̂k = mk/(1− βk1 ) ← Bias correction
v̂k = vk/(1− βk2 ) ← Bias correction
Hk =

√
v̂k + ε

xk+1 = xk − αm̂k/Hk

Output : xk

(Every vector operation is an element-wise operation)
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?Non-convergence of ADAM and a new method: AmsGrad

◦ It has been shown that ADAM may not converge for some objective functions [27].

◦ An ADAM alternative is proposed that is proved to be convergent [27].

AmsGrad
Input. Step size {αk}k∈N, exponential decay rates {β1,k}k∈N, β2 ∈ [0, 1)
1. Set m0 = 0,v0 = 0 and v̂0 = 0
2. For k = 1, 2, . . ., iterate

gk = G(xk, θ)
mk = β1,kmk−1 + (1− β1,k)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g2

k ← 2nd order estimate
v̂k = max{v̂k−1,vk} and V̂k = diag(v̂k)
Hk =

√
v̂k

xk+1 = Π
√

V̂k
X (xk − αkm̂k/Hk)

Output : xk

where ΠA
K (y) = arg minx∈K 〈(x− y),A(x− y)〉 (weighted projection onto K).

(Every vector operation is an element-wise operation)
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The key ingredient of acceleration: (weighted) averaging

◦ One common theme we see in acceleration schemes is iterate averaging.

◦ It is important to compute averages with larger weights on recent iterates.

◦ Through UniXGrad/Extra-gradient framework, we could summarize the effect of averaging.

Convergence rate vs. averaging parameter
Let {xk+1/2} be a sequence generated by UniXGrad algorithm, and define 0 < αk < O(k) to be a
non-decreasing sequence of weights. It is ensured that,

f(x̄k+1/2)− min
x∈X

f(x) ≤ O

(
1∑k

i=1 αk

)

Remarks: ◦ Uniform averaging: αk = 1 =⇒ O
(

1
k

)
convergence rate

◦ Weighted averaging: αk = O(k) =⇒ O
(

1
k2

)
convergence rate

◦ In general: αk = O(kp) for p ∈ [0, 1] =⇒ O
(

1
kp+1

)
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?Newton method
• Fast (local) convergence but expensive per iteration cost

• Useful when warm-started near a solution

Local quadratic approximation using the Hessian

I Obtain a local quadratic approximation using the second-order Taylor series approximation to f(xk + p):

f(xk + p) ≈ f(xk) + 〈p,∇f(xk)〉+
1
2
〈p,∇2f(xk)p〉

I The Newton direction is the vector pk that minimizes f(xk + p); assuming the Hessian ∇2fk to be
positive definite:

∇2f(xk)pk = −∇f(xk) ⇔ pk = −
(
∇2f(xk)

)−1
∇f(xk)

I A unit step-size αk = 1 can be chosen near convergence:

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk) .

Remark
I For f ∈ F2,1

L but f < F2,1
L,µ, the Hessian may not always be positive definite.
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?Newton method
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?(Local) Convergence of Newton method

Lemma
Assume f is a twice differentiable convex function with minimum at x? such that:
I ∇2f(x?) � µI for some µ > 0,
I ‖∇2f(x)−∇2f(y)‖2→2 ≤M‖x− y‖2 for some constant M > 0 and all x,y ∈ dom(f).

Moreover, assume the starting point x0 ∈ dom(f) is such that ‖x0 − x?‖2 < 2µ
3M .

Then, the Newton method iterates converge quadratically:

‖xk+1 − x?‖ ≤
M‖xk − x?‖22

2
(
µ−M‖xk − x?‖2

) .
Remark
This is the fastest convergence rate we have seen so far, but it requires to solve a p× p linear system at each
iteration, ∇2f(xk)pk = −∇f(xk)!
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?Locally quadratic convergence of the Newton method–I

Newton’s method local quadratic convergence - Proof [25]
Since ∇f(x?) = 0 we have

xk+1 − x? = xk − x? − (∇2f(xk))−1∇f(xk)

= (∇2f(xk))−1
(
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

)
By Taylor’s theorem, we also have

∇f(xk)−∇f(x?) =
∫ 1

0
∇2f(xk + t(x? − xk))(xk − x?)dt

Combining the two above, we obtain
‖∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))‖

=

∥∥∥∥∫ 1

0

(
∇2f(xk)−∇2f(xk + t(x? − xk))

)
(xk − x?)dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2f(xk)−∇2f(xk + t(x? − xk))
∥∥ ‖xk − x?‖dt

≤M‖xk − x?‖2
∫ 1

0
tdt =

1
2
M‖xk − x?‖2
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?Locally quadratic convergence of the Newton method–II

Newton’s method local quadratic convergence - Proof [25].
I Recall

xk+1 − x? = (∇2f(xk))−1
(
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

)
‖∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))‖ ≤

1
2
M‖xk − x?‖2

I Since ∇2f(x?) is nonsingular, there must exist a radius r such that ‖(∇2f(xk))−1‖ ≤ 2‖(∇2f(x?))−1‖
for all xk with ‖xk − x∗‖ ≤ r.

I Substituting, we obtain

‖xk+1 − x?‖ ≤M‖(∇2f(x?))−1‖‖xk − x?‖2 = M̃‖xk − x?‖2,

where M̃ = M‖(∇2f(x?))−1‖.
I If we choose ‖x0 − x?‖ ≤ min(r, 1/(2M̃)), we obtain by induction that the iterates xk converge

quadratically to x?.
�
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?Example: Logistic regression - GD, AGD, AcceleGrad + NM
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Parameters
I Newton’s method: maximum number of iterations 30, tolerance 10−6.
I For GD, AGD & AcceleGrad: maximum number of iterations 10000, tolerance 10−6.
I Ground truth: Get a high accuracy approximation of x? and f? by applying Newton’s method for 200

iterations.
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?Approximating Hessian: Quasi-Newton methods
Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

• Useful for f(x) :=
∑n

i=1 fi(x) with n� p.

Main ingredients
Quasi-Newton direction:

pk = −H−1
k
∇f(xk) = −Bk∇f(xk).

I Matrix Hk, or its inverse Bk, undergoes low-rank updates:
I Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
I Limited memory BFGS (L-BFGS).

I Line-search: The step-size αk is chosen to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk〈∇f(xk),pk〉 (sufficient decrease)

〈∇f(xk + αkpk),pk〉 ≥ c2〈∇f(xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.
I Convergence is guaranteed under the Dennis & Moré condition [6].
I For more details on quasi-Newton methods, see Nocedal&Wright’s book [25].
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?Quasi-Newton methods

How do we update Bk+1?
Suppose we have (note the coordinate change from p to p̄)

mk+1(p̄) := f(xk+1) + 〈∇f(xk+1), p̄− xk+1〉+
1
2
〈

Bk+1(p̄− xk+1), (p̄− xk+1))
〉
.

We require the gradient of mk+1 to match the gradient of f at xk and xk+1.
I ∇mk+1(xk+1) = ∇f(xk+1) as desired;
I For xk, we have

∇mk+1(xk) = ∇f(xk+1) + Bk+1(xk − xk+1)

which must be equal to ∇f(xk).
I Rearranging, we have that Bk+1 must satisfy the secant equation

Bk+1sk = yk

where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).
I The secant equation can be satisfied with a positive definite matrix Bk+1 only if 〈sk,yk〉 > 0, which is

guaranteed to hold if the step-size αk satisfies the Wolfe conditions.
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?Quasi-Newton methods

BFGS method [25] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k
. The update on the inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (4)

The solution is a rank-2 update of the matrix Hk:

Hk+1 = VT
k HkVk + ηksk(sk)T ,

where Vk = I− ηkyk(sk)T .
I Initialization of H0 is an art. We can choose to set it to be an approximation of ∇2f(x0) obtained by

finite differences or just a multiple of the identity matrix.
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?Quasi-Newton methods

BFGS method [25] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k
. The update on the inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (4)

The solution is a rank-2 update of the matrix Hk:

Hk+1 = VT
k HkVk + ηksk(sk)T ,

where Vk = I− ηkyk(sk)T .

Theorem (Convergence of BFGS)
Let f ∈ C2. Assume that the BFGS sequence {xk} converges to a point x? and

∑∞
k=1 ‖x

k − x?‖ ≤ ∞.
Assume also that ∇2f(x) is Lipschitz continuous at x?. Then xk converges to x? at a superlinear rate.

Remarks
The proof shows that given the assumptions, the BFGS updates for Bk satisfy the Dennis & Moré condition,
which in turn implies superlinear convergence.
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?L-BFGS
Challenges for BFGS
I BFGS approach stores and applies a dense p× p matrix Hk.
I When p is very large, Hk can prohibitively expensive to store and apply.

L(imited memory)-BFGS
I Do not store Hk, but keep only the m most recent pairs {(si,yi)}.
I Compute Hk∇f(xk) by performing a sequence of operations with si and yi:

I Choose a temporary initial approximation H0
k.

I Recursively apply Hk+1 = VT
k HkVk + ηksk(sk)T , m times starting from H0

k:

Hk =
(

VT
k−1 · · ·V

T
k−m

)
H0

k (Vk−m · · ·Vk−1)

+ ηk−m

(
VT

k−1 · · ·V
T
k−m+1

)
sk−m(sk−m)T (Vk−m+1 · · ·Vk−1)

+ · · ·

+ ηk−1sk−1(sk−1)T

I From the previous expression, we can compute Hk∇f(xk) recursively.
I Replace the oldest element in {si,yi} with (sk,yk).
I From practical experience, m ∈ (3, 50) does the trick.
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?L-BFGS: A quasi-Newton method
Procedure for computing Hk∇f(xk)

0. Recall ηk = 1/〈yk, sk〉.
1. q = ∇f(xk).
2. For i = k − 1, . . . , k −m

αi = ηi〈si,q〉
q = q − αiyi.

3. r = H0
kq.

4. For i = k −m, . . . , k − 1
β = ηi〈yi, r〉
r = r + (αi − β)si.

5. Hk∇f(xk) = r.

Remarks
I Apart from the step r = H0

kq, the algorithm requires only 4mp multiplications.
I If H0

k is chosen to be diagonal, another p multiplications are needed.
I An effective initial choice is H0

k = γkI, where

γk =
〈sk−1,yk−1〉
〈yk−1,yk−1〉
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?L-BFGS: A quasi-Newton method

L-BFGS

1. Choose starting point x0 and m > 0.
2. For k = 0, 1, . . .

2.a Choose H0
k.

2.b Compute pk = −Hk∇f(xk) using the previous algorithm.
2.c Set xk+1 = xk + αkpk, where αk satisfies the Wolfe conditions.

if k > m, discard the pair {sk−m,pk−m} from storage.
2.d Compute and store sk = xk+1−xk, yk = ∇f(xk+1)−∇f(xk).

Warning
L-BFGS updates does not guarantee positive semidefiniteness of the variable metric Hk in contrast to BFGS.
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?Example: Logistic regression - numerical results
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Parameters
I For BFGS, L-BFGS and Newton’s method: maximum number of iterations 200, tolerance 10−6. L-BFGS

memory m = 50.
I For accelerated gradient method: maximum number of iterations 20000, tolerance 10−6.
I Ground truth: Get a high accuracy approximation of x?, f? by running Newton’s method for 200 iterations.
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