Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 4: The role of computation

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2022)

License Information for Mathematics of Data Slides

▶ This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes — unless they get the licensor's permission.

Share Alike

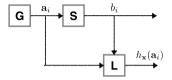
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ► Full Text of the License

Outline

► This lecture

- 1. Principles of iterative descent methods
- 2. Gradient descent for smooth convex problems
- 3. Gradient descent for smooth non-convex problems

Recall: Learning machines result in optimization problems



$$(\mathbf{a}_i,b_i)_{i=1}^n \xrightarrow{\mathsf{modeling}} P(b_i|\mathbf{a}_i,\mathbf{x}) \xrightarrow{\mathsf{independency}} \mathsf{p}_\mathbf{x}(\mathbf{b}) := \prod_{i=1}^n P(b_i|\mathbf{a}_i,\mathbf{x})$$

Definition (Maximum-likelihood estimator)

The maximum-likelihood (ML) estimator is given by

$$\mathbf{x}_{\mathsf{ML}}^{\star} \in \arg\min_{\mathbf{x} \in \mathcal{X}} \left\{ L(h_{\mathbf{x}}(\mathbf{a}), \mathbf{b}) := -\log \mathsf{p}_{\mathbf{x}}(\mathbf{b}) \right\},$$

where $p_{\mathbf{x}}(\cdot)$ denotes the probability density function or probability mass function of $\mathbb{P}_{\mathbf{x}}$, for $\mathbf{x} \in \mathcal{X}$.

M-Estimators

Roughly speaking, estimators can be formulated as optimization problems of the following form:

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathcal{X}} \left\{ F(\mathbf{x}) \right\},$$

with some constraints $\mathcal{X} \subseteq \mathbb{R}^p$. The term "M-estimator" denotes "maximum-likelihood-type estimator" [2].

Unconstrained minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) \right\}$$
 (1)

Note that (1) is unconstrained.

Definition (Optimal solutions and solution set)

- 1. $\mathbf{x}^{\star} \in \mathbb{R}^p$ is a solution to (1) if $F(\mathbf{x}^{\star}) = F^{\star}$
- 3. (1) has solution if S^* is non-empty.

Approximate vs. exact optimality

Is it possible to solve an optimization problem?

"In general, optimization problems are unsolvable" - Y. Nesterov [4]

Observations: • Even when a closed-form solution exists, numerical accuracy may still be an issue.

 \circ We must be content with $\mbox{\bf approximately}$ optimal solutions.

Definition

We say that $\mathbf{x}^{\star}_{\epsilon}$ is ϵ -optimal in **objective value** if

$$f(\mathbf{x}_{\epsilon}^{\star}) - f^{\star} \le \epsilon$$
.

Definition

We say that $\mathbf{x}_{\epsilon}^{\star}$ is ϵ -optimal in **sequence** if, for some norm $\|\cdot\|$,

$$\|\mathbf{x}_{\epsilon}^{\star} - \mathbf{x}^{\star}\| \leq \epsilon.$$

Remark: • The latter approximation guarantee is considered stronger.

A basic iterative strategy

General idea of an optimization algorithm

Guess a solution, and then refine it based on oracle information.

Repeat the procedure until the result is good enough.

Basic principles of descent methods

Template for iterative descent methods

- 1. Let $\mathbf{x}^0 \in \text{dom}(f)$ be a starting point.
- 2. Generate a sequence of vectors $\mathbf{x}^1, \mathbf{x}^2, \dots \in \text{dom}(f)$ so that we have descent:

$$f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k), \ \ \text{for all} \ k = 0, 1, \dots$$

until \mathbf{x}^k is ϵ -optimal.

Such a sequence $\left\{\mathbf{x}^k\right\}_{k>0}$ can be generated as:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{p}^k$$

where \mathbf{p}^k is a descent direction and $\alpha_k > 0$ a step-size.

Remarks:

- o Iterative algorithms can use various oracle information in the optimization problem
- o The type of oracle information used becomes a defining characteristic of the algorithm
- o Example oracles: Objective value, gradient, and Hessian result in 0-th, 1-st, 2-nd order methods
- \circ The oracle choices determine $lpha_k$ and \mathbf{p}^k as well as the overall convergence rate and complexity

Basic principles of descent methods

A condition for local descent directions

The iterates are given as follows:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{p}^k.$$

For a differentiable f, we have by Taylor's theorem

$$f(\mathbf{x}^{k+1}) = f(\mathbf{x}^k) + \alpha_k \langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle + \mathcal{O}(\alpha_k^2 \|\mathbf{p}\|_2^2).$$

For α_k small enough, the term $\alpha_k \langle \nabla f(\mathbf{x}^k), \ \mathbf{p}^k \rangle$ dominates $\mathcal{O}(\alpha_k^2)$ for a fixed \mathbf{p}^k .

Therefore, in order to have $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$, we require

$$\langle \nabla f(\mathbf{x}^k), \ \mathbf{p}^k \rangle < 0$$

Basic principles of descent methods

Local steepest descent direction

Since

$$\langle \nabla f(\mathbf{x}^k), \mathbf{p}^k \rangle = ||\nabla f(\mathbf{x}^k)|| ||\mathbf{p}^k|| \cos \theta,$$

where θ is the angle between $\nabla f(\mathbf{x}^k)$ and \mathbf{p}^k , we have

$$\mathbf{p}^k := -\nabla f(\mathbf{x}^k)$$

as the local steepest descent direction.

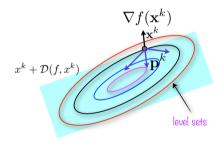
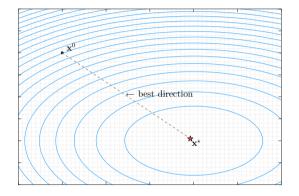


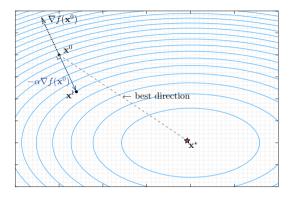
Figure: Descent directions in 2D should be an element of the cone of descent directions $\mathcal{D}(f,\cdot)$.

A simple iterative algorithm: Gradient descent



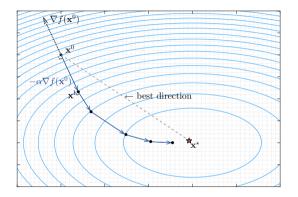
1. Choose initial point: x^0 .

A simple iterative algorithm: Gradient descent



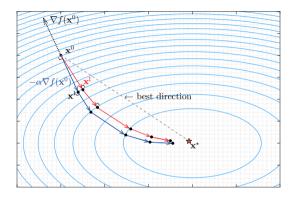
- 1. Choose initial point: x^0 .
- 2. Take a step in the negative gradient direction with a step size $\alpha > 0$: $\mathbf{x}^{k+1} = \mathbf{x}^k \alpha \nabla f(\mathbf{x}^k)$.

A simple iterative algorithm: Gradient descent



- 1. Choose initial point: x^0 .
- 2. Take a step in the negative gradient direction with a step size $\alpha > 0$: $\mathbf{x}^{k+1} = \mathbf{x}^k \alpha \nabla f(\mathbf{x}^k)$.
- 3. Repeat this procedure until x^k is accurate enough.

A simple iterative algorithm: Proximal-point method [5]



- 1. Choose initial point: x^0 .
- 2. Take a step in the negative gradient direction with a step size $\alpha > 0$: $\mathbf{x}^{k+1} = \mathbf{x}^k \alpha \nabla f(\mathbf{x}^{k+1})$.
- 3. Repeat this procedure until x^k is accurate enough.

Recall the statistical estimation context

Observations:

- \circ Denote \mathbf{x}^{\natural} is the unknown true parameter
- o The estimator \mathbf{x}^{\star} 's performance, e.g., $\|\mathbf{x}^{\star} \mathbf{x}^{\natural}\|_{2}^{2}$ depends on the data size n.
- \circ Evaluating $\|\mathbf{x}^{\star} \mathbf{x}^{\natural}\|_2^2$ is not enough for evaluating the performance of a Learning Machine
 - ▶ We can only *numerically approximate* the solution of

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) \right\}.$$

 \circ We use algorithms to *numerically approximate* \mathbf{x}^{\star} .

Practical performance

Denote the numerical approximation by an algorithm at time t by \mathbf{x}^t .

The practical performance at time $t\ \mbox{using}\ n\ \mbox{data}$ samples is determined by

$$\underbrace{\|\mathbf{x}^t - \mathbf{x}^{\natural}\|_2}_{\bar{\varepsilon}(t,n)} \leq \underbrace{\|\mathbf{x}^t - \mathbf{x}^{\star}\|_2}_{\epsilon(t)} + \underbrace{\|\mathbf{x}^{\star} - \mathbf{x}^{\natural}\|_2}_{\epsilon(n)},$$

where $\varepsilon(n)$ denotes the statistical error, $\epsilon(t)$ is the numerical error, and $\bar{\varepsilon}(t,n)$ denotes the total error of the Learning Machine.

Recall the statistical estimation context

Observations:

- \circ Denote \mathbf{x}^{\natural} is the unknown true parameter
- o The estimator \mathbf{x}^{\star} 's performance, e.g., $\|\mathbf{x}^{\star} \mathbf{x}^{\natural}\|_{2}^{2}$ depends on the data size n.
- \circ Evaluating $\|\mathbf{x}^{\star} \mathbf{x}^{\natural}\|_2^2$ is not enough for evaluating the performance of a Learning Machine
 - ▶ We can only *numerically approximate* the solution of

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) \right\}.$$

 \circ We use algorithms to *numerically approximate* \mathbf{x}^{\star} .

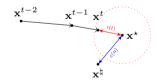
Practical performance

Denote the numerical approximation by an algorithm at time t by \mathbf{x}^t .

The practical performance at time t using n data samples is determined by

$$\underbrace{\|\mathbf{x}^t - \mathbf{x}^{\natural}\|_2}_{\bar{\varepsilon}(t,n)} \leq \underbrace{\|\mathbf{x}^t - \mathbf{x}^{\star}\|_2}_{\epsilon(t)} + \underbrace{\|\mathbf{x}^{\star} - \mathbf{x}^{\natural}\|_2}_{\epsilon(n)},$$

where $\varepsilon(n)$ denotes the statistical error, $\epsilon(t)$ is the numerical error, and $\bar{\varepsilon}(t,n)$ denotes the total error of the Learning Machine.



Recall the statistical estimation context

Observations:

- \circ Denote \mathbf{x}^{\natural} is the unknown true parameter
- o The estimator \mathbf{x}^{\star} 's performance, e.g., $\|\mathbf{x}^{\star} \mathbf{x}^{\natural}\|_{2}^{2}$ depends on the data size n.
- \circ Evaluating $\|\mathbf{x}^{\star} \mathbf{x}^{\natural}\|_2^2$ is not enough for evaluating the performance of a Learning Machine
 - ▶ We can only *numerically approximate* the solution of

$$\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) \right\}.$$

 \circ We use algorithms to *numerically approximate* \mathbf{x}^{\star} .

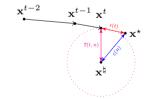
Practical performance

Denote the numerical approximation by an algorithm at time t by $\mathbf{x}^t.$

The practical performance at time t using n data samples is determined by

$$\underbrace{\|\mathbf{x}^t - \mathbf{x}^{\natural}\|_2}_{\bar{\varepsilon}(t,n)} \leq \underbrace{\|\mathbf{x}^t - \mathbf{x}^{\star}\|_2}_{\epsilon(t)} + \underbrace{\|\mathbf{x}^{\star} - \mathbf{x}^{\natural}\|_2}_{\epsilon(n)},$$

where $\varepsilon(n)$ denotes the statistical error, $\epsilon(t)$ is the numerical error, and $\bar{\varepsilon}(t,n)$ denotes the total error of the Learning Machine.

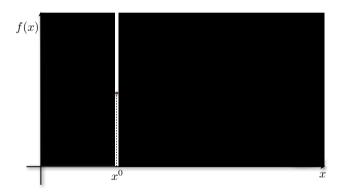


Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of f(x), given starting point x^0 based on only local information.

o Fog of war

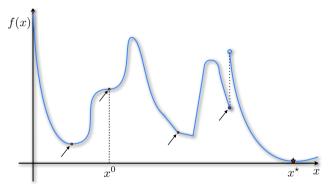


Challenges for an iterative optimization algorithm

Problem

Find the minimum x^{\star} of f(x), given starting point x^0 based on only local information.

o Fog of war, non-differentiability, discontinuities, local minima, stationary points...



A notion of convergence: Stationarity

 \circ Let $f: \mathbb{R}^p \to \mathbb{R}$ be twice-differentiable and $\mathbf{x}^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$.

Gradient method

Choose a starting point x^0 and iterate

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k)$$

where $\alpha > 0$ is a step-size to be chosen so that \mathbf{x}^k converges to \mathbf{x}^{\star} .

Definition (First order stationary point (FOSP))

A point $\bar{\mathbf{x}}$ is a first order stationary point of a twice differentiable function f if

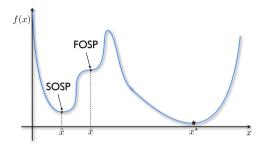
$$\nabla f(\bar{\mathbf{x}}) = \mathbf{0}.$$

Fixed-point characterization

Multiply by -1 and add $\bar{\mathbf{x}}$ to both sides to obtain the fixed point condition:

$$\bar{\mathbf{x}} = \bar{\mathbf{x}} - \alpha \nabla f(\bar{\mathbf{x}})$$
 for all $\alpha \in \mathbb{R}$.

Geometric interpretation of stationarity



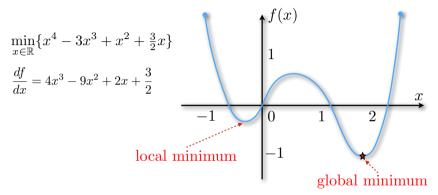
Observation: \circ Neither $\bar{\mathbf{x}}$, nor $\tilde{\mathbf{x}}$ is necessarily equal to \mathbf{x}^* !!

Proposition (*Local minima, maxima, and saddle points)

Let $\bar{\mathbf{x}}$ be a stationary point of a twice differentiable function f.

- 1. If $\nabla^2 f(\bar{\mathbf{x}}) \succ 0$, then the point $\bar{\mathbf{x}}$ is called a local minimum or a second order stationary point (SOSP).
- 2. If $\nabla^2 f(\bar{\mathbf{x}}) \prec 0$, then the point $\bar{\mathbf{x}}$ is called a local maximum.
- 3. If $\nabla^2 f(\bar{\mathbf{x}}) = 0$, then the point $\bar{\mathbf{x}}$ can be a saddle point, a local minimum, or a local maximum.

Local minima



Choose
$$x^0=0$$
 and $\alpha=\frac{1}{6}$
$$x^1=x^0-\alpha\frac{df}{dx}\big|_{x=x^0}=0-\frac{1}{6}\frac{3}{2}=-\frac{1}{4}$$

$$x^2=-\frac{5}{16}$$

 x^k converges to a **local minimum**!

. . .

From local to global optimality

Definition (Local minimum)

Given $f: \mathbb{R}^p \to \mathbb{R} \cup \{+\infty\}$, a vector $\mathbf{x}^\star \in \mathbb{R}^p$ is called a *local minimum* of f if there exists $\epsilon > 0$ s.t.

$$f(\mathbf{x}^*) \le f(\mathbf{x}) \quad \forall \mathbf{x} \in \mathbb{R}^p \quad \text{with} \quad \|\mathbf{x} - \mathbf{x}^*\| \le \epsilon.$$

Theorem

If $Q \subset \mathbb{R}^p$ is a convex set and $f : \mathbb{R}^p \to (-\infty, +\infty]$ is a proper convex function, then a local minimum of f over Q is also a global minimum of f over Q.

Proof.

Suppose \mathbf{x}^* is a local minimum but not global, i.e. there exist $\mathbf{x} \in \mathbb{R}^p$ s.t. $f(\mathbf{x}) < f(\mathbf{x}^*)$. By convexity,

$$f(\alpha \mathbf{x}^* + (1 - \alpha)\mathbf{x}) \le \alpha f(\mathbf{x}^*) + (1 - \alpha)f(\mathbf{x}) < f(\mathbf{x}^*), \forall \alpha \in [0, 1]$$

which contradicts the local minimality of x^* .

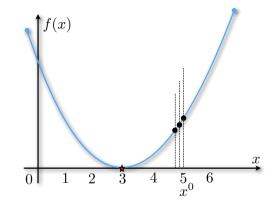
Theorem

Let $f: \mathbb{R}^p \to \mathbb{R}$ be a convex differentiable function. Then any stationary point of f is a global minimum.

Effect of very small step-size $\alpha...$

$$\min_{x \in \mathbb{R}} \frac{1}{2} (x - 3)^2$$

$$\frac{df}{dx} = x - 3$$



Choose
$$x^0=5$$
 and $\alpha=\frac{1}{10}$
$$x^1=x^0-\alpha\frac{df}{dx}\big|_{x=x^0}=5-\frac{1}{10}2=4.8$$

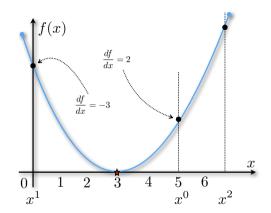
$$x^2=x^1-\alpha\frac{df}{dx}\big|_{x=x^1}=4.8-\frac{1}{10}1.8=4.62$$

 x^k converges **very slowly**.

Effect of very large step-size α ...

$$\min_{x \in \mathbb{R}} \frac{1}{2} (x - 3)^2$$

$$\frac{df}{dx} = x - 3$$

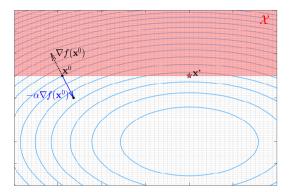


Choose
$$x^0 = 5$$
 and $\alpha = \frac{5}{2}$
$$x^1 = x^0 - \alpha \frac{df}{dx}\big|_{x=x^0} = 5 - \frac{5}{2}2 = 0$$

$$x^2 = x^1 - \alpha \frac{df}{dx}\big|_{x=x^1} = 0 - \frac{5}{2}(-3) = \frac{15}{2}$$

 x^k diverges.

Discontinuities

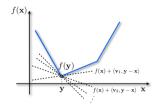


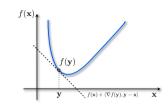
In many practical problems,

we need to minimize the cost under some constraints.

$$f^\star := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{X} \right\}$$

Nonsmooth functions





Definition (Subdifferential)

The subdifferential of f at x, denoted $\partial f(x)$, is the set of all vectors v satisfying

$$f(y) \ge f(x) + \langle v, y - x \rangle + o(||y - x||)$$
 as $y \to x$

If the function f is differentiable, then its subdifferential contains only the gradient.

Subgradient method

Choose a starting point x^0 , receive a subgradient from the (set of) subdifferential, and iterate

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \partial f(\mathbf{x}^k)$$

where $\alpha_k > 0$ is a step-size procedure to be chosen so that \mathbf{x}^k converges to a stationary point.

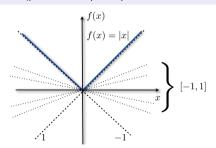
Subdifferentials and (sub)gradients

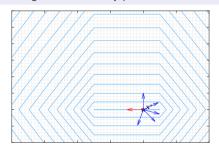
Subgradient method

Choose a starting point x^0 , receive a subgradient from the (set of) subdifferential, and iterate

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \partial f(\mathbf{x}^k)$$

where $\alpha_k > 0$ is a step-size procedure to be chosen so that \mathbf{x}^k converges to a stationary point.





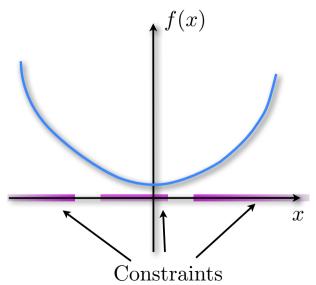
Example

 $\partial |x| = \{ \operatorname{sgn}(x) \}, \text{ if } x \neq 0, \text{ but } [-1, 1], \text{ if } x = 0.$

Remark:

The step-size α_k often needs to decrease with k.

Is convexity of f enough for an iterative optimization algorithm?



Smooth unconstrained convex minimization

Problem (Mathematical formulation)

The unconstrained convex minimization problem is defined as:

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$

- 1. f is a convex function that is
 - ▶ proper : $\forall \mathbf{x} \in \mathbb{R}^p$, $-\infty < f(\mathbf{x})$ and there exists $\mathbf{x} \in \mathbb{R}^p$ such that $f(\mathbf{x}) < +\infty$.
 - closed: The epigraph epif = $\{(\mathbf{x},t) \in \mathbb{R}^{p+1}, f(\mathbf{x}) \leq t\}$ is closed.
 - **smooth**: f is differentiable and its gradient ∇f is L-Lipschitz.
- 2. The solution set $S^* := \{ \mathbf{x}^* \in \text{dom}(f) : f(\mathbf{x}^*) = f^* \}$ is nonempty.

Example: Maximum likelihood estimation and M-estimators

Problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ be unknown and $b_1, ..., b_n$ be i.i.d. samples of a random variable B with p.d.f. $p_{\mathbf{x}^{\natural}}(b) \in \mathcal{P} := \{p_{\mathbf{x}}(b) : \mathbf{x} \in \mathbb{R}^p\}$. Goal: Estimate \mathbf{x}^{\natural} from b_1, \ldots, b_n .

Optimization formulation (ML estimator)

$$\mathbf{x}_{\mathsf{ML}}^{\star} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ -\frac{1}{n} \sum_{i=1}^n \ln \left[\mathsf{p}_{\mathbf{x}}(b_i) \right] \right\} = \arg\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$

Theorem (Performance of the ML estimator [3, 6])

The random variable $\hat{\mathbf{x}}_{\scriptscriptstyle MI}$ satisfies

$$\lim_{n \to \infty} \sqrt{n} \mathbf{J}^{-1/2} \left(\hat{\mathbf{x}}_{ML} - \mathbf{x}^{\natural} \right) \stackrel{d}{=} Z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

where $\mathbf{J} := -\mathbb{E}\left[\nabla_{\mathbf{x}}^2 \ln\left[p_{\mathbf{x}}(B)\right]\right]\Big|_{\mathbf{x} = -\mathbf{x}^{\text{h}}}$ is the Fisher information matrix associated with one sample. Roughly speaking.

$$\|\sqrt{n}\mathbf{J}^{-1/2}\left(\hat{\mathbf{x}}_{ML}-\mathbf{x}^{\sharp}\right)\|_{2}^{2}\sim\operatorname{Tr}\left(\mathbf{I}\right)=p\quad\Rightarrow\qquad \left\|\hat{\mathbf{x}}_{ML}-\mathbf{x}^{\sharp}\right\|_{2}^{2}=\mathcal{O}(p/n)$$

$$\|\hat{\mathbf{x}}_{\mathit{ML}} - \mathbf{x}^{\natural}\|_2^2 = \mathcal{O}(p/n)$$

Gradient descent methods

Definition

Gradient descent (GD) Starting from $\mathbf{x}^0 \in \mathrm{dom}(f)$, update $\{\mathbf{x}^k\}_{k \geq 0}$ as

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k) = \mathbf{x}^k + \alpha_k \mathbf{p}^k.$$

Notice that $\mathbf{p}^k := -\nabla f(\mathbf{x}^k)$ is the steepest descent (anti-gradient) search direction.

Key question: how to choose α_k to have descent/contraction?

Gradient descent methods

Definition

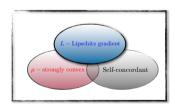
Gradient descent (GD) Starting from $\mathbf{x}^0 \in \mathrm{dom}(f)$, update $\{\mathbf{x}^k\}_{k \geq 0}$ as

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k) = \mathbf{x}^k + \alpha_k \mathbf{p}^k.$$

Notice that $\mathbf{p}^k := -\nabla f(\mathbf{x}^k)$ is the steepest descent (anti-gradient) search direction.

Key question: how to choose α_k to have descent/contraction?

Next few slides: structural assumptions



L-smooth, μ -strongly convex functions

Definition (Recall Recitation 2)

Let $f: \mathcal{Q} \to \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^p$ be a continuously differentiable function. Then, f μ -strongly convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||_2^2.$$

The function f is L-smooth if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$,

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2.$$

If f is twice differentiable, an equivalent characterization of f being L-smooth and μ -strongly convex is

$$\mu \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbf{I}.$$

L-smooth, μ -strongly convex functions

Definition (Recall Recitation 2)

Let $f: \mathcal{Q} \to \mathbb{R}, \mathcal{Q} \subseteq \mathbb{R}^p$ be a continuously differentiable function. Then, f μ -strongly convex if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||_2^2.$$

The function f is L-smooth if for any $\mathbf{x}, \mathbf{y} \in \mathcal{Q}$,

$$f(\mathbf{y}) \le f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||_2^2.$$

If f is twice differentiable, an equivalent characterization of f being L-smooth and μ -strongly convex is

$$\mu \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbf{I}.$$

Observations: \circ Both μ and L show up in convergence rate characterization of algorithms

- \circ Unfortunately, μ,L are usually not known a priori...
- o When they are known, they can help significantly (even in stopping algorithms)

Example: Least-squares estimation

Problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ and $\mathbf{A} \in \mathbb{R}^{n \times p}$ (full column rank). Goal: estimate \mathbf{x}^{\natural} , given \mathbf{A} and

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w},$$

where w denotes unknown noise.

Optimization formulation (Least-squares estimator)

$$\min_{\mathbf{x} \in \mathbb{R}^p} \underbrace{\frac{1}{2} \| \, \mathbf{b} - \mathbf{A} \mathbf{x} \, \|_2^2}_{f(\mathbf{x})} \, .$$

Structural properties

- 1. $\nabla f(\mathbf{x}) = \mathbf{A}^T (\mathbf{A} \mathbf{x} \mathbf{b})$, and $\nabla^2 f(\mathbf{x}) = \mathbf{A}^T \mathbf{A}$.
- 2. $\lambda_p \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq \lambda_1 \mathbf{I}$, where $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$ are the eigenvalues of $\mathbf{A}^T \mathbf{A}$.
- 3. It follows that $L=\lambda_1$ and $\mu=\lambda_p$. If $\lambda_p>0$, then f is L-smooth and μ -strongly convex, otherwise f is just L-smooth.
- 4. Since rank($\mathbf{A}^T \mathbf{A}$) $\leq \min\{n, p\}$, if n < p, then $\lambda_p = 0$.

Back to gradient descent methods

Gradient descent (GD) algorithm

Starting from $\mathbf{x}^0 \in \mathrm{dom}(f)$, produce the sequence $\mathbf{x}^1,...,\mathbf{x}^k,...$ according to

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k) = \mathbf{x}^k + \alpha_k \mathbf{p}^k.$$

Notice that $\mathbf{p}^k := -\nabla f(\mathbf{x}^k)$ is the steepest descent (anti-gradient) direction.

Key question: how do we choose α_k to have descent/contraction?

Back to gradient descent methods

Gradient descent (GD) algorithm

Starting from $\mathbf{x}^0 \in \mathrm{dom}(f)$, produce the sequence $\mathbf{x}^1,...,\mathbf{x}^k,...$ according to

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k) = \mathbf{x}^k + \alpha_k \mathbf{p}^k.$$

Notice that $\mathbf{p}^k := -\nabla f(\mathbf{x}^k)$ is the steepest descent (anti-gradient) direction.

Key question: how do we choose α_k to have descent/contraction?

Step-size selection

Case 1: If f is L-smooth, then:

- 1. We can choose $0<\alpha_k<\frac{2}{L}.$ The optimal choice is $\alpha_k:=\frac{1}{L}.$
- 2. α_k can be determined by a line-search procedure:
 - 2.1 Exact line search: $\alpha_k := \arg \min f(\mathbf{x}^k \alpha \nabla f(\mathbf{x}^k))$.
 - $\alpha > 0$
 - 2.2 Back-tracking line search with Armijo-Goldstein's condition:

$$f(\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k)) \le f(\mathbf{x}^k) - c\alpha \|\nabla f(\mathbf{x}^k)\|^2, \quad c \in (0, 1/2].$$

Case 2: If in addition to being L-smooth, f is μ -strongly convex, then:

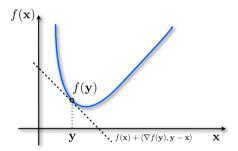
1. We can choose $0 < \alpha_k \le \frac{2}{L+\mu}$. The optimal choice is $\alpha_k := \frac{2}{L+\mu}$.

Towards a geometric interpretation I

Remarks:

- \circ Let f be L-smooth with gradient $\nabla f(\mathbf{x})$ and Hessian $\nabla^2 f(\mathbf{x})$.
- \circ First-order Taylor approximation of f at y:

$$f(\mathbf{x}) \ge f(\mathbf{y}) + \langle \nabla f(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle$$



• Convex functions: 1st-order Taylor approximation is a global lower surrogate.

An equivalent characterization of smoothness

Lemma

Let f be a continuously differentiable convex function :

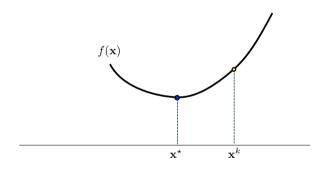
$$f$$
 is L -Lipschitz gradient $\implies f(\mathbf{y}) \leq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$

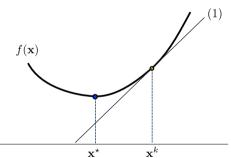
Proof: • By Taylor's theorem:

$$f(\mathbf{y}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \int_0^1 \langle \nabla f(\mathbf{x} + \tau(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle d\tau.$$

Therefore,

$$f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \int_0^1 \|\nabla f(\mathbf{x} + \tau(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x})\|^* \cdot \|\mathbf{y} - \mathbf{x}\| d\tau$$
$$\le L \|\mathbf{y} - \mathbf{x}\|_2^2 \int_0^1 \tau d\tau = \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$$





Structure in optimization:

(1)
$$f(\mathbf{x}) \ge f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle$$

Majorize:

$$f(\mathbf{x}) \leq f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{L}{2} \|\mathbf{x} - \mathbf{x}^k\|_2^2 := Q_L(\mathbf{x}, \mathbf{x}^k)$$

$$\mathbf{Minimize:} \\ \mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} Q_L(\mathbf{x}, \mathbf{x}^k)$$

$$= \arg\min_{\mathbf{x}} \left\| \mathbf{x} - \left(\mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k) \right) \right\|^2$$

$$= \mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k)$$

$$(1)$$

Structure in optimization:

(1)
$$f(\mathbf{x}) \ge f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle$$

(2)
$$f(\mathbf{x}) \le f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{x}^k||_2^2$$

 $\mathbf{v}^{k+1}\mathbf{x}^k$

Majorize:

$$f(\mathbf{x}) \leq f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} - \mathbf{x}^k \rangle + \frac{L'}{2} \|\mathbf{x} - \mathbf{x}^k\|_2^2 := Q_{L'}(\mathbf{x}, \mathbf{x}^k)$$

$$\mathbf{Minimize:}$$

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} Q_{L'}(\mathbf{x}, \mathbf{x}^k)$$

$$= \arg\min_{\mathbf{x}} \left\| \mathbf{x} - \left(\mathbf{x}^k - \frac{1}{L'} \nabla f(\mathbf{x}^k) \right) \right\|^2$$

$$= \mathbf{x}^k - \frac{1}{L'} \nabla f(\mathbf{x}^k)$$
slower

Structure in optimization:

- $f(\mathbf{x}) \ge f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} \mathbf{x}^k \rangle$ $f(\mathbf{x}) \le f(\mathbf{x}^k) + \langle \nabla f(\mathbf{x}^k), \mathbf{x} \mathbf{x}^k \rangle + \frac{L}{2} \|\mathbf{x} \mathbf{x}^k\|_2^2$

Convergence rate of gradient descent

Theorem

Let f be a twice-differentiable convex function, if

$$a = \frac{1}{L}: f(\mathbf{x}^k) - f(\mathbf{x}^\star) \le \frac{2L}{k+4} \|\mathbf{x}^0 - \mathbf{x}^\star\|_2^2$$

$$f$$
 is L -smooth and μ -strongly convex, $\alpha = \frac{2}{L+\mu}: \|\mathbf{x}^k - \mathbf{x}^\star\|_2 \leq \left(\frac{L-\mu}{L+\mu}\right)^k \|\mathbf{x}^0 - \mathbf{x}^\star\|_2$

$$f$$
 is L -smooth and μ -strongly convex,
$$\alpha = \frac{1}{L}: \|\mathbf{x}^k - \mathbf{x}^\star\|_2 \leq \left(\frac{L - \mu}{L + \mu}\right)^{\frac{k}{2}} \|\mathbf{x}^0 - \mathbf{x}^\star\|_2$$

Note that $\frac{L-\mu}{L+\mu}=\frac{\kappa-1}{\kappa+1}$, where $\kappa:=\frac{L}{\mu}$ is the condition number of $\nabla^2 f$.

Convergence rate of gradient descent

Theorem

Let f be a twice-differentiable convex function, if

$$\alpha = \frac{1}{L}: \quad f(\mathbf{x}^k) - f(\mathbf{x}^\star) \quad \leq \frac{2L}{k+4} \qquad \|\mathbf{x}^0 - \mathbf{x}^\star\|_2^2$$

$$f \text{ is L-smooth and μ-strongly convex,} \qquad \alpha = \frac{2}{L+\mu}: \quad \|\mathbf{x}^k - \mathbf{x}^\star\|_2 \qquad \leq \left(\frac{L-\mu}{L+\mu}\right)^k \quad \|\mathbf{x}^0 - \mathbf{x}^\star\|_2$$

$$f \text{ is L-smooth and μ-strongly convex,} \qquad \alpha = \frac{1}{L}: \quad \|\mathbf{x}^k - \mathbf{x}^\star\|_2 \qquad \leq \left(\frac{L-\mu}{L+\mu}\right)^{\frac{k}{2}} \quad \|\mathbf{x}^0 - \mathbf{x}^\star\|_2$$

Note that $\frac{L-\mu}{L+\mu}=\frac{\kappa-1}{\kappa+1}$, where $\kappa:=\frac{L}{\mu}$ is the condition number of $\nabla^2 f$.

- o Assumption: Lipschitz gradient. Result: convergence rate in objective values.
- o Assumption: Strong convexity. Result: convergence rate in sequence of the iterates and in objective values.

Remark:

- \circ Note that the suboptimal step-size choice $lpha=rac{1}{L}$ adapts to the strongly convex case
- o That is, it features a linear rate vs. the standard sublinear rate.

Example: Ridge regression

Optimization formulation

- ▶ Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^n$ given by $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$, where $\mathbf{w} \in \mathbb{R}^n$ is some noise.
- ightharpoonup A classical estimator of \mathbf{x}^{\natural} , known as ridge regression, is

$$\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) := \frac{1}{2} \| \, \mathbf{b} - \mathbf{A} \mathbf{x} \, \|_2^2 + \frac{\rho}{2} \| \mathbf{x} \|_2^2.$$

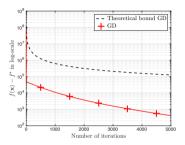
where $\rho \geq 0$ is a regularization parameter

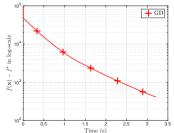
Remarks:

- o f is L-smooth and μ -strongly convex with:
 - 1. $L = \lambda_1(\mathbf{A}^T\mathbf{A}) + \rho$;
 - 2. $\mu = \lambda_p(\mathbf{A}^T\mathbf{A}) + \rho$;
 - 3. where $\lambda_1 \geq \ldots \geq \lambda_p$ are the eigenvalues of $\mathbf{A}^T \mathbf{A}$.
- \circ The ratio $\kappa = rac{L}{\mu}$ decreases as ho increases, leading to faster linear convergence.
- \circ Note that if n < p and $\rho = 0$, we have $\mu = 0$, hence f is only L-smooth.
- \circ We can expect only $\mathcal{O}(1/k)$ convergence from the gradient descent method.

Example: Ridge regression

$$n = 500, p = 2000, \rho = 0$$

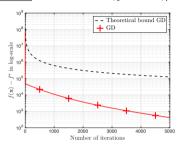


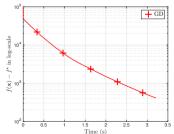


Slide 36/45

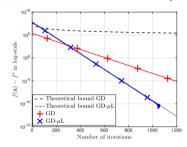
Example: Ridge regression

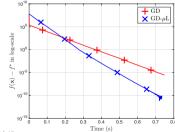
$$n = 500, p = 2000, \rho = 0$$





Case 2: $n = 500, p = 2000, \rho = 0.01\lambda_p(\mathbf{A}^T\mathbf{A})$





Smooth unconstrained non-convex minimization

Problem (Mathematical formulation)

Let us consider the following problem formulation:

$$\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$

- ▶ f is a smooth and possibly non-convex function.
- ▶ Recall that finding the global minimizer, i.e., $f^* := \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$, is NP-hard

Example: Image classification using neural networks

Neural network formulation

- $ightharpoonup (\mathbf{a}_i,b_i)$: sample points, $\sigma(\cdot)$: non-linear activation function
- lacktriangle the function class ${\cal H}$ is given by ${\cal H}:=\left\{h_{f x}({f a}),{f x}\in\mathbb{R}^d
 ight\}$, where

$$\begin{split} \mathbf{x} &= (\mathbf{W}_1, \boldsymbol{\mu}_1, \mathbf{W}_2, \boldsymbol{\mu}_2, \dots, \mathbf{W}_k, \boldsymbol{\mu}_k), \quad \mathbf{W}_i \in \mathbb{R}^{d_i \times d_{i-1}}, \quad \boldsymbol{\mu}_i \in \mathbb{R}^{d_i}, \\ h_{\mathbf{x}}(\mathbf{a}) &= \sigma \left(\mathbf{W}_k \sigma \left(\cdots \sigma \left(\mathbf{W}_2 \sigma \left(\mathbf{W}_1 \mathbf{a} + \boldsymbol{\mu}_1 \right) + \boldsymbol{\mu}_2 \right) \cdots \right) + \boldsymbol{\mu}_k \right) \end{split}$$

▶ the loss function is given by $L(h_{\mathbf{x}}(\mathbf{a}), b) := (b - h_{\mathbf{x}}(\mathbf{a}))^2$.

Example: Image classification

Imagenet: 1000 object classes. 1.2M/100K train/test images Below human level error rates!

Example: Phase retrieval for fourier ptychography

Definition (Phase retrieval)

Given a set of measurements of the amplitude of a signal, phase retrieval is the task of finding the phase for the original signal that satisfies certain constraints/properties.

Definition (Fourier ptychography)

Fourier ptychography is the task of reconstructing high-resolution images from low resolution samples, based on optical microscopy. It is a special case of phase retrieval problem.

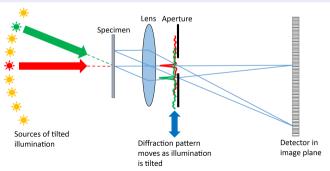
Example: Phase retrieval for fourier ptychography

Definition (Phase retrieval)

Given a set of measurements of the amplitude of a signal, phase retrieval is the task of finding the phase for the original signal that satisfies certain constraints/properties.

Definition (Fourier ptychography)

Fourier ptychography is the task of reconstructing high-resolution images from low resolution samples, based on optical microscopy. It is a special case of phase retrieval problem.



The necessity of non-convex optimization

Why non-convex?

- Inherent properties of optimization problem, e.g., phase retrieval
- ▶ Robustness or better estimation, e.g., binary classification with non-convex losses

Optimization Formulation: Phase Retrieval

$$\min_{\mathbf{x}} \||\mathbf{A}\mathbf{x}|^2 - \mathbf{b}\|_2^2$$

where $\mathbf{x} \in \mathbb{C}^p$ is a complex signal and $|\mathbf{A}\mathbf{x}|$ is the component-wise magnitude of the measurement $\mathbf{A}\mathbf{x}$.

Optimization Formulation: Binary Classification

$$\min_{x} \left\{ \frac{1}{n} \sum_{i=1}^{n} (b_i - g(\mathbf{a}_i, \mathbf{x}))^2 \right\}$$

where $q(\cdot, \cdot)$ is non-linear, and hence, the loss function is non-convex.

Notion of convergence: Stationarity

 \circ Let $f:\mathbb{R}^d\to\mathbb{R}$ be twice-differentiable and $\mathbf{x}^\star\in \arg\min_{x\in\mathbb{R}^d}f(\mathbf{x})$

Definition (Recall - First order stationary point)

A point $ar{\mathbf{x}}$ is a first order stationary point of a twice differentiable function $f(\mathbf{x})$ if

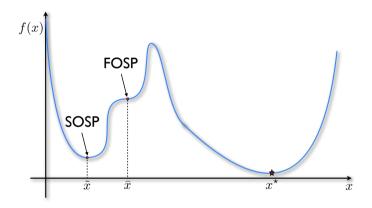
$$\nabla f(\bar{\mathbf{x}}) = \mathbf{0}.$$

Definition (Recall - Second order stationary point)

A point $ilde{\mathbf{x}}$ is a second order stationary point of a twice differentiable function $f(\mathbf{x})$ if

$$\nabla f(\tilde{\mathbf{x}}) = \mathbf{0} \quad \text{and} \quad \nabla^2 f(\tilde{\mathbf{x}}) \succeq \mathbf{0}.$$

Geometric interpretation of stationarity



o Note that neither $\bar{\mathbf{x}}$, nor $\tilde{\mathbf{x}}$ is **not necessarily** equal to \mathbf{x}^{\star} !!

Assumptions and the gradient method

Assumption: Smoothness

Let f be a twice differentiable function that is L-Lipschitz gradient with respect to ℓ_2 -norm, such that,

$$||\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})||_2 \le L||\mathbf{x} - \mathbf{y}||_2$$

Gradient descent

Let $\alpha \leq \frac{1}{L}$ be the constant step size and $\mathbf{x}^0 \in \text{dom}(f)$ be the initial point. Then, gradient method produces iterates using the following iterative update,

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k)$$

Convergence rate and iteration complexity

Theorem ([1])

Let f be a twice differentiable L-Lipschitz gradient function, and $\alpha \leq \frac{1}{L}$. Then, gradient method converges to the FOSP with the following properties:

Convergence rate to an ϵ -FOSP:

$$\|\nabla f(\mathbf{x}^k)\| = O\left(\frac{1}{\sqrt{k}}\right).$$

Iteration complexity to reach an ϵ -FOSP:

$$O\left(\frac{1}{\epsilon^2}\right)$$
.

Wrap up!

- Questions/Self study on Monday 11:00 12:00
- ► Lecture on Friday 16:00 18:00
- ► Unsupervised work on Friday 18:00 19:00

References |

 Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary points i. Mathematical Programming, pages 1–50, 2019. (Cited on page 58.)

[2] Peter J. Huber and Elvezio M. Ronchetti. Robust Statistics. John Wiley & Sons, Hoboken, NJ, 2009. (Cited on page 4.)

[3] Lucien Le Cam.

Asymptotic methods in Statistical Decision Theory. Springer-Verl., New York, NY, 1986.

(Cited on page 31.)

[4] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer, 2004.

(Cited on page 6.)

References II

[5] R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on control and optimization, 14(5):877–898, 1976. (Cited on page 14.)

[6] A. W. van der Vaart. Asymptotic Statistics. Cambridge Univ. Press, Cambridge, UK, 1998. (Cited on page 31.)