Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 1: The role of models and data

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2022)

License Information for Mathematics of Data Slides

▶ This work is released under a <u>Creative Commons License</u> with the following terms:

Attribution

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.

Non-Commercial

► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes — unless they get the licensor's permission.

Share Alike

The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.

► Full Text of the License

Logistics

- Credits: 6
- ► Lectures: Monday 9:00-12:00 (MA B1 11)
- **Exercise hours:** Friday 16:00-19:00 (BC 07-08)
- Prerequisites: Previous coursework in calculus, linear algebra, and probability is required. Familiarity with optimization is useful.
- ► **Grading:** Homework exercises & exam (cf., syllabus).
- Moodle: My courses > Genie electrique et electronique (EL) > Master > EE-556
 syllabus & course outline & HW exercises.
- ▶ TA's: Pedro Abranches, Leello Dadi (Head TA), Andrej Janchevski, Ali Kavis, Igor Krawczuk, Thomas Pethick, Luca Viano, Zhenyu Zhu.
- LIONS: Grigoris Chrysos, Stratis Skoulakis, Kimon Antonakopoulos, Angeliki Kamoutsi, Fanghui Lui.

Logistics for online teaching

Zoom link for video lectures and exercise hours:

https://go.epfl.ch/mod-zoom

Passcode: 994779

Switchtube channel for recorded videos:

https://tube.switch.ch/channels/90d486a0

Moodle:

https://moodle.epfl.ch/course/view.php?id=14220

Outline

- Overview of Mathematics of Data
- ► Empirical Risk Minimization
- ► Statistical Learning with Maximum Likelihood Estimators

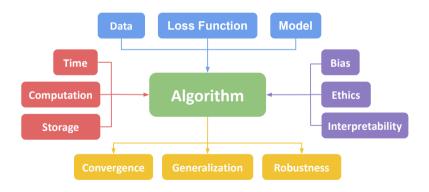
Recommended preliminary material for this lecture

- o Supplementary lectures
 - 1. Basic Probability
 - 2. Complexity

Overview of Mathematics of Data

Towards Learning Machines

The course presents data models, optimization formulations, numerical algorithms, and the associated analysis techniques with the goal of extracting information &knowledge from data while understanding the trade-offs.



A taxonomy of machine learning

- Machine learning in three paradigms:
 - 1. Supervised learning: Learn to predict the label of an unseen sample from a set a labelled examples.
 - CS-433 (Machine Learning), CS-431/EE-608 (Natural Language Processing)
 - 2. Unsupervised learning: Identify structure within a dataset without having access to solved examples.
 - CS-503 (Visual Intelligence: Machines and Minds)
 - 3. Reinforcement learning: Learn how to optimally control an agent interacting with an environment.
 - ► EE-618 (Theory and Methods for Reinforcement Learning), CS-430 (Intelligent Agents)
- o More information on ML courses can be found here:

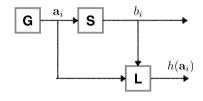
https://www.epfl.ch/research/domains/ml/courses/

An overview of statistical learning by Vapnik

A basic statistical learning framework [7]

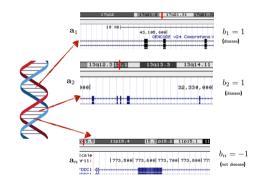
A statistical learning problem usually consists of three elements.

- 1. A generator that produces samples $\mathbf{a}_i \in \mathbb{R}^p$ of a random variable \mathbf{a} with an unknown probability distribution $\mathbb{P}_{\mathbf{a}}$.
- 2. A <u>supervisor</u> that for each $\mathbf{a}_i \in \mathbb{R}^p$, generates a sample b_i of a random variable B with an unknown conditional probability distribution $\mathbb{P}_{B|\mathbf{a}}$.
- 3. A *learning machine* that can respond as any function $h(\mathbf{a}_i) \in \mathcal{H}^{\circ}$ of \mathbf{a}_i in some fixed function space \mathcal{H}° .

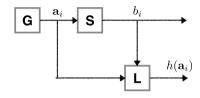


o Via this framework, we will study classification, regression, and density estimation problems

A classification example: Cancer prediction



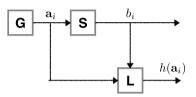
o Goal: Assist doctors in diagnosis



- \circ Generator $\mathbb{P}_{\mathbf{a}}$
 - ► Genome data a_i: http://genome.ucsc.edu
- \circ Supervisor $\mathbb{P}_{B|\mathbf{a}}$
 - ▶ Health $b_i = 1$ or -1: Cancer or not
- \circ Learning Machine $h(\mathbf{a}_i)$
 - Data scientist: Mathematics of Data

A classification example: Google Photos

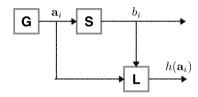
o Goal: Search a photo album



- $\circ \ \text{Generator} \ \mathbb{P}_{\mathbf{a}}$
 - ightharpoonup You taking photos \mathbf{a}_i .
- \circ Supervisor $\mathbb{P}_{B|\mathbf{a}}$
 - ▶ Labels for the *i*-th photo $b_i \in \{\text{person, action,...}\}$
- \circ Learning Machine $h(\mathbf{a}_i)$
 - ▶ Data scientist: Mathematics of Data

A regression example: Travel time prediction

o Goal: Estimate travel time



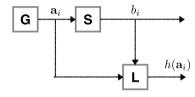
- \circ Generator $\mathbb{P}_{\mathbf{a}}$
 - Pairs of waypoints a_i .
- \circ Supervisor $\mathbb{P}_{B|\mathbf{a}}$
 - ightharpoonup Trip duration b_i .
- \circ Learning Machine $h(\mathbf{a}_i)$
 - Data scientist: Mathematics of Data

A regression example: House pricing

(source: https://www.homegate.ch)

$$\mathbf{a}_i = [$$
 location, size, orientation, view, distance to public transport, ... $]$ $b_i = [$ price $]$

o Goal: Assist pricing decisions

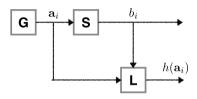


- \circ Generator $\mathbb{P}_{\mathbf{a}}$
 - Owners, architects, municipality, constructors
- \circ Supervisor $\mathbb{P}_{B|\mathbf{a}}$
 - ► House data (homegate, comparis, immobilier...)
- \circ Learning Machine $h(\mathbf{a}_i)$
 - Data scientist: Mathematics of Data

A density estimation example: Image generation from text prompts

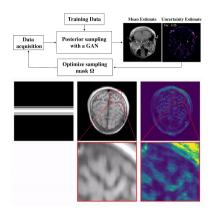
$$\mathbf{a}_i = [\text{ ...images...}]$$
 $b_i = [\text{ ...probability... }]$

o Goal: Generate images via text prompts



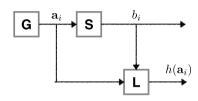
- \circ Generator $\mathbb{P}_{\mathbf{a}}$
 - Nature
- \circ Supervisor $\mathbb{P}_{B|\mathbf{a}}$
 - ► Frequency data
- \circ Learning Machine $h(\mathbf{a}_i)$
 - Data scientist: Mathematics of Data

A density estimation example: Uncertainty estimation for MRI



$$\mathbf{a}_i = [$$
 ... noise & mask ...] $b_i = [$... images ... $]$

o Goal: Optimize sampling mask

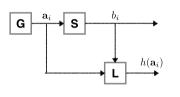


- \circ Generator $\mathbb{P}_{\mathbf{a}}$
 - Magnetic resonance imaging (MRI) machines
- \circ Supervisor $\mathbb{P}_{B|\mathbf{a}}$
 - Frequency data
- \circ Learning Machine $h(\mathbf{a}_i)$
 - ▶ Data scientist: Mathematics of Data

Loss function

Definition (Loss function)

A loss function $L: \mathcal{B} \times \mathcal{B} \to \mathbb{R}$ on a set is a function that satisfies some or all properties of a metric. We use loss functions in statistical learning to measure the data fidelity $L(h(\mathbf{a}), b)$.



Definition (Metric)

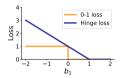
Let \mathcal{B} be a set. A function $d(\cdot,\cdot):\mathcal{B}\times\mathcal{B}\to\mathbb{R}$ is a metric if $\forall b_{1,2,3}\in\mathcal{B}:$

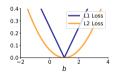
- (a) $d(b_1, b_2) > 0$ for all b_1 and b_2 (nonnegativity)
- (b) $d(b_1, b_2) = 0$ if and only if $b_1 = b_2$ (definiteness)
- (c) $d(b_1, b_2) = d(b_2, b_1)$ (symmetry)
- (d) $d(b_1, b_2) < d(b_1, b_3) + d(b_3, b_2)$ (triangle inequality)

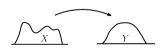
Remarks:

- o A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b).
- o Norms induce metrics while pseudo-norms induce pseudo-metrics.
- o A divergence satisfies (a) and (b) but not necessarily (c) or (d)

Loss function examples







Definition (Hinge loss)

For a binary classification problem, the hinge loss for a score value $b_1 \in \mathbb{R}$ and class label $b_2 \in \pm 1$ is given by $L(b_1,b_2) = \max(0,1-b_1 \times b_2)$.

Definition (ℓ_q -losses)

For all $\mathbf{b}_1, \mathbf{b}_2 \in \mathbb{R}^n \times \mathbb{R}^n$, we can use $L_q(\mathbf{b}_1, \mathbf{b}_2) = \|\mathbf{b}_1 - \mathbf{b}_2\|_q^q$, where

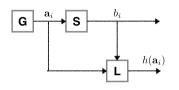
$$\ell_q\text{-norm:}\quad \|\mathbf{b}\|_q^q := \sum\nolimits_{i=1}^n |b_i|^q \ \text{ for } \mathbf{b} \in \mathbb{R}^n \text{ and } q \in [1,\infty)$$

Definition (1-Wasserstein distance)

Let μ and ν be two probability measures on \mathbb{R}^d an define their couplings as $\Gamma(\mu,\nu):=\{\pi \text{ probability measure on } \mathbb{R}^d \times \mathbb{R}^d \text{ with marginals } \mu,\nu\}.$

$$W_1(\mu,\nu) := \inf_{\pi \in \Gamma(\mu,\nu)} \boldsymbol{E}_{(x,y) \sim \pi} \| x - y \|$$

A risky, non-parametric reformulation of basic statistical learning



Statistical Learning Model [7]

A statistical learning model consists of the following three elements.

- 1. A sample of i.i.d. random variables $(\mathbf{a}_i, b_i) \in \mathcal{A} \times \mathcal{B}$, $i = 1, \dots, n$, following an *unknown* probability distribution \mathbb{P} .
- 2. A class (set) \mathcal{H}° of functions $h: \mathcal{A} \to \mathcal{B}$.
- 3. A loss function $L: \mathcal{B} \times \mathcal{B} \to \mathbb{R}$, measuring data fidelity.

Definition (Risk)

Let (\mathbf{a},b) follow the probability distribution $\mathbb P$ and be independent of $(\mathbf{a}_1,b_1),\ldots,(\mathbf{a}_n,b_n)$. Then, the (population) risk corresponding to any $h\in\mathcal H^\circ$ is its expected loss for a chosen loss function L:

$$R(h) := \mathbb{E}_{(\mathbf{a},b)} [L(h(\mathbf{a}),b)].$$

Statistical learning seeks to find a $h^{\circ} \in \mathcal{H}^{\circ}$ that minimizes the population risk, i.e., it solves

$$h^{\circ} \in \arg\min_{h} \{R(h) : h \in \mathcal{H}^{\circ}\}.$$

- **Observations:** \circ Since \mathbb{P} is unknown, the optimization problem above is intractable.
 - \circ Since \mathcal{H}° is often unknown, we might have a mismatched function class in constraints.

Empirical risk minimization (ERM)

Empirical risk minimization (ERM) [7]

We approximate h° by minimizing the *empirical average of the loss* instead of the risk. That is, we consider

$$h^* \in \arg\min_{h} \left\{ \frac{1}{n} \sum_{i=1}^{n} L(h(\mathbf{a}_i), b_i) : h \in \mathcal{H} \right\},$$

where \mathcal{H} is our best estimate of the function class \mathcal{H}° . Ideally, $\mathcal{H} \equiv \mathcal{H}^{\circ}$.

Rationale: By the law of large numbers, we can expect that for each $h \in \mathcal{H}$,

$$R(h) := \mathbb{E}_{(\mathbf{a},b)} \left[L(h(\mathbf{a}),b) \right] \approx \frac{1}{n} \sum_{i=1}^{n} L(h(\mathbf{a}_i),b_i)$$

when n is large enough, with high probability.

Theorem (Strong Law of Large Numbers)

Let X be a real-valued random variable with the finite first moment $\mathbb{E}[X]$, and let $X_1, X_2, ..., X_n$ be an infinite sequence of independent and identically distributed copies of X. Then, the empirical average of this sequence $\bar{X}_n := \frac{1}{-}(X_1 + ... + X_n)$ converges almost surely to $\mathbb{E}[X]$: i.e., $P\Big(\lim_{n \to \infty} \bar{X}_n = \mathbb{E}[X]\Big) = 1$.

An ERM example

Statistical learning with empirical risk minimization (ERM) [7]

We approximate h° by minimizing the *empirical average of the loss* instead of the risk. That is, we consider

$$h^* \in \underset{h \in \mathcal{H}}{\operatorname{arg \, min}} \left\{ R_n(h) := \frac{1}{n} \sum_{i=1}^n L(h(\mathbf{a}_i), b_i) \right\}.$$

Observations:

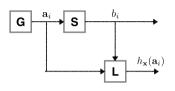
- \circ The search space ${\cal H}$ is possibly infinite dimensional. It is still not solvable!
- \circ Sometimes, ${\cal H}$ is a non-empty set with a corresponding reproducing kernel Hilbert space.
 - ▶ Then, we can find solutions as if the problem was finitely parameterized.
 - ► See supplementary lecture on Kernel Methods.

Statistical learning with empirical risk minimization (ERM) [7]

In contrast, when the function h has a parametric form $h_{\mathbf{x}}(\cdot)$, we can instead solve

$$\mathbf{x}^* \in \arg\min_{\mathbf{x} \in \mathcal{X}} \left\{ R_n(h_{\mathbf{x}}) = \frac{1}{n} \sum_{i=1}^n L(h_{\mathbf{x}}(\mathbf{a}_i), b_i) \right\}.$$

Basic statistics: Model



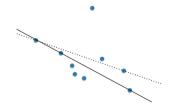
Parametric estimation model

A parametric estimation model consists of the following four elements:

- 1. A parameter space, which is a subset \mathcal{X} of \mathbb{R}^p
- 2. A parameter \mathbf{x}^{\natural} , which is an element of the parameter space
- 3. A class of probability distributions $\mathcal{P}_{\mathcal{X}}:=\{\mathbb{P}_{\mathbf{x}}:\mathbf{x}\in\mathcal{X}\}$
- 4. A sample (\mathbf{a}_i,b_i) , which follows the distribution $b_i \sim \mathbb{P}_{\mathbf{x}^{\natural},\mathbf{a}_i} \in \mathcal{P}_{\mathcal{X}}$

Example: Gaussian linear model

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$. Let $b_i = \left\langle \mathbf{a}_i, \mathbf{x}^{\natural} \right\rangle + w_i$ for $i = 1, \ldots, n$, where $w_i \in \mathbb{R}$ is a Gaussian random variable with zero mean and variance σ^2 (i.e., $w_i \sim \mathcal{N}(0, \sigma^2)$).



- o Linear model is super general (see Lecture 2).
- Models are often wrong! Robustness vs Performance.
- o Statistical estimation seeks to approximate \mathbf{x}^{\natural} , given \mathcal{X} , $\mathcal{P}_{\mathcal{X}}$, and \mathbf{b} .

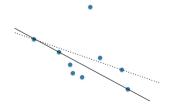
Basic statistics: Estimator

Definition (Estimator)

An estimator is a mapping that takes \mathcal{X} , $\mathcal{P}_{\mathcal{X}}$, $(\mathbf{a}_i, b_i)_{i=1,\dots,n}$ as inputs, and outputs a value $(\to \mathbf{x}^*)$ in \mathcal{X} .

Observations:

- o The output of an estimator depends on the sample, and hence, is random.
- \circ The output of an estimator is not necessarily equal to $\mathbf{x}^{\natural}.$



Example: The least-squares estimator (LS)

The least-squares estimator is given by

$$\mathbf{x}_{\mathsf{LS}}^{\star} \in \arg\min\left\{\frac{1}{n}\sum_{i=1}^{n}\left(b_{i} - \langle \mathbf{a}_{i}, \mathbf{x} \rangle\right)^{2} : \mathbf{x} \in \mathbb{R}^{p}\right\}.$$

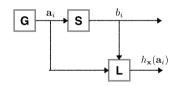
Basic statistics: Loss function

Example: The least-squares estimator (LS)

The least-squares estimator is given by

$$\mathbf{x}_{\mathsf{LS}}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \frac{1}{n} \| \mathbf{b} - \mathbf{A}\mathbf{x} \|_2^2 : \mathbf{x} \in \mathbb{R}^p \right\} = \arg\min \left\{ \frac{1}{n} \sum_{i=1}^n \left(b_i - \langle \mathbf{a}_i, \mathbf{x} \rangle \right)^2 : \mathbf{x} \in \mathbb{R}^p \right\},$$

where we define $\mathbf{b} := (b_1, \dots, b_n)$ and \mathbf{a}_i to be the *i*-th row of \mathbf{A} .



A statistical learning view of least squares

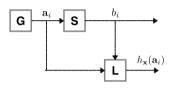
The LS estimator corresponds to a statistical learning model, for which

- the *sample* is given by $(\mathbf{a}_i, b_i) \in \mathbb{R}^p \times \mathbb{R}, i = 1, \dots, n$,
- ▶ the function class \mathcal{H} is given by $\mathcal{H} := \{h_{\mathbf{x}}(\cdot) := \langle \cdot, \mathbf{x} \rangle : \mathbf{x} \in \mathbb{R}^p \}$, and
- ▶ the *loss function* is given by $L(h_{\mathbf{x}}(\mathbf{a}), b) := (b h_{\mathbf{x}}(\mathbf{a}))^2$.

 $\textbf{Observation:} \quad \circ \text{ Given the estimator } \mathbf{x}_{\text{LS}}^{\star}, \text{ the learning machine outputs } h_{\mathbf{x}_{\text{LS}}^{\star}}(\mathbf{a}) := \langle \mathbf{a}, \mathbf{x}_{\text{LS}}^{\star} \rangle.$

One way to choose the loss function

Recall the general setting.



Parametric estimation model

A parametric estimation model consists of the following four elements:

- 1. A parameter space, which is a subset \mathcal{X} of \mathbb{R}^p
- 2. A parameter \mathbf{x}^{\natural} , which is an element of the parameter space
- 3. A class of probability distributions $\mathcal{P}_{\mathcal{X}} := \{ \mathbb{P}_{\mathbf{x}} : \mathbf{x} \in \mathcal{X} \}$
- 4. A sample (\mathbf{a}_i, b_i) , which follows the distribution $b_i \sim \mathbb{P}_{\mathbf{x}^{\natural}, \mathbf{a}_i} \in \mathcal{P}_{\mathcal{X}}$

Definition (Maximum-likelihood estimator)

The maximum-likelihood (ML) estimator is given by

$$\mathbf{x}_{\mathsf{ML}}^{\star} \in \arg\min_{\mathbf{x} \in \mathcal{X}} \left\{ L(h_{\mathbf{x}}(\mathbf{a}), \mathbf{b}) := -\log \mathsf{p}_{\mathbf{x}}(\mathbf{b}) \right\},$$

where $p_{\mathbf{x}}(\cdot)$ denotes the probability density function or probability mass function of $\mathbb{P}_{\mathbf{x}}$, for $\mathbf{x} \in \mathcal{X}$.

The least squares estimator: An intuitive derivation

Gaussian linear model

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$. Let $\mathbf{b} := \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w} \in \mathbb{R}^n$ for some matrix $\mathbf{A} \in \mathbb{R}^{n \times p}$, where \mathbf{w} is a Gaussian vector with zero mean and covariance matrix $\sigma^2 I$.

The derivation: The probability density function $p_{\mathbf{x}}(\cdot)$ is given by

$$\mathbf{p}_{\mathbf{x}}(\mathbf{b}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left(-\frac{1}{2\sigma^2} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2\right).$$

Therefore, the maximum likelihood (ML) estimator is defined as

$$\mathbf{x}_{\mathsf{ML}}^{\star} \in \arg\min_{\mathbf{x}} \left\{ -\log \mathsf{p}_{\mathbf{x}}(\mathbf{b}) = -\frac{n}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 : \mathbf{x} \in \mathbb{R}^p \right\},\,$$

which is equivalent to

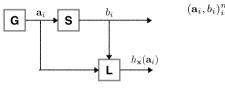
$$\mathbf{x}_{\mathsf{ML}}^{\star} \in \arg\min_{\mathbf{x}} \left\{ \frac{1}{n} \| \mathbf{b} - \mathbf{A}\mathbf{x} \|_{2}^{2} : \mathbf{x} \in \mathbb{R}^{p} \right\}.$$

Observations: o The LS estimator is the ML estimator for the Gaussian linear model.

o The loss function is the quadratic loss.

Statistical learning with ML estimators

o A visual summary: From parametric models to learning machines

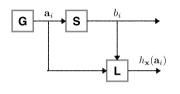


$$\begin{split} (\mathbf{a}_i,b_i)_{i=1}^n & \xrightarrow{\mathsf{modeling}} P(b_i|\mathbf{a}_i,\mathbf{x}) \xrightarrow{\mathsf{independency}} \mathbf{p}_{\mathbf{x}}(\mathbf{b}) := \prod_{i=1}^n P(b_i|\mathbf{a}_i,\mathbf{x}) \\ & \downarrow \mathsf{maximizing} \; \mathsf{w.r.t} \; \mathbf{x} \\ & \mathbf{a} \longrightarrow \mathsf{Learning} \; \mathsf{Machine} \longleftarrow & \mathbf{x}_\mathsf{ML}^\star \\ & \mathsf{prediction} \downarrow \\ & h_{\mathbf{x}_\mathsf{MI}^\star} \left(\mathbf{a} \right) \end{split}$$

 $\textbf{Observations:} \quad \circ \; \mathsf{Recall} \; \mathbf{x}^{\star}_{\mathsf{ML}} \in \arg\min_{\mathbf{x} \in \mathcal{X}} \; \{L(h_{\mathbf{x}}(\mathbf{a}), \mathbf{b}) := -\log \mathsf{p}_{\mathbf{x}}(\mathbf{b})\}.$

- \circ Maximizing $p_{\mathbf{x}}(\mathbf{b})$ gives the ML estimator.
- \circ Maximizing $p_{\mathbf{x}}(\mathbf{b})$ and minimizing $-\log p_{\mathbf{x}}(\mathbf{b})$ result in the same solution set.
- o See Lecture 2 for more examples in classification, imaging, and quantum tomography

Learning machines result in optimization problems



Definition (M-Estimator)

The learning machine typically has to solve an optimization problem of the following form:

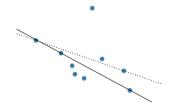
$$\mathbf{x}_{M}^{\star} \in \arg\min_{\mathbf{x} \in \mathcal{X}} \left\{ F(\mathbf{x}) \right\}$$

for some function F depending on the sample space \mathcal{X} , class of probability distributions $\mathcal{P}_{\mathcal{X}}$, and sample b. The term "M-estimator" denotes "maximum-likelihood-type estimator" [2].

Example: The least-absolute deviation estimator (LAD)

The least-absolute deviation estimator is given by

$$\mathbf{x}_{\mathsf{LAD}}^{\star} \in \arg\min \left\{ \frac{1}{n} \sum_{i=1}^{n} |b_i - \langle \mathbf{a}_i, \mathbf{x} \rangle| : \mathbf{x} \in \mathbb{R}^p \right\}.$$



Remark:

The LAD estimator is more robust to outliers than the LS estimator.

Practical Issues

Given an estimator $\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathcal{X}} \{F(\mathbf{x})\}$ of \mathbf{x}^{\natural} , we have two questions:

- 1. Is the formulation reasonable?
- 2. What is the role of the data size?

Standard approach to checking the fidelity

Standard approach

- 1. Specify a performance criterion or a (pseudo-) metric $d(\mathbf{x}^{\star}, \mathbf{x}^{\natural})$ that should be small if $\mathbf{x}^{\star} = \mathbf{x}^{\natural}$.
- 2. Show that d is actually *small in some sense* when *some condition* is satisfied.

Example

Take the ℓ_2 -error $d(\mathbf{x}^\star, \mathbf{x}^\natural) := \|\mathbf{x}^\star - \mathbf{x}^\natural\|_2^2$ as an example. Then we may verify the fidelity via one of the following ways, where ε denotes a small enough number:

- 1. $\mathbb{E}\left[d(\mathbf{x}^\star,\mathbf{x}^\natural)\right] \leq \varepsilon$ (expected error),
- 2. $\mathbb{P}\left(d(\mathbf{x}^\star,\mathbf{x}^\natural)>t\right)\leq \varepsilon$ for any t>0 (consistency),
- 3. $\sqrt{n}(\mathbf{x}^{\star} \mathbf{x}^{\natural})$ converges in distribution to $\mathcal{N}(0, \mathbf{I})$ (asymptotic normality),
- 4. $\sqrt{n}(\mathbf{x}^{\star} \mathbf{x}^{\natural})$ converges in distribution to $\mathcal{N}(0, \mathbf{I})$ in a local neighborhood (local asymptotic normality).

if some condition is satisfied. Such conditions typically revolve around the data size.

Remark: • Lecture 2 explains these concepts in detail.

Expected error

Gaussian linear model

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. The samples are given by $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$, where \mathbf{w} is a sample of a Gaussian random vector $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$.

Question: • What is the performance of the ML estimator?

$$\mathbf{x}_{\mathsf{ML}}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \frac{1}{n} \| \mathbf{b} - \mathbf{A}\mathbf{x} \|_2^2 \right\}.$$

Theorem (Performance of the LS estimator [5])

If ${\bf A}$ is a matrix of independent and identically distributed (i.i.d.) standard Gaussian distributed entries, and if n>p+1, then

$$\mathbb{E}\left[\parallel\mathbf{x}_{\mathit{ML}}^{\star}-\mathbf{x}^{\natural}\parallel_{2}^{2}\right]=\frac{p}{n-p-1}\sigma^{2}\rightarrow0\text{ as }\frac{n}{p}\rightarrow\infty.$$

Performance of the ML estimator

Problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ be unknown and $b_1, ..., b_n$ be i.i.d. samples of a random variable B with p.d.f. $p_{\mathbf{x}^{\natural}}(b) \in \mathcal{P} := \{p_{\mathbf{x}}(b) : \mathbf{x} \in \mathbb{R}^p\}$. Estimate \mathbf{x}^{\natural} from b_1, \ldots, b_n .

Optimization formulation (ML estimator)

$$\mathbf{x}_{\mathsf{ML}}^{\star} := \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log \left[\mathsf{p}_{\mathbf{x}}(b_{i}) \right] \right\} = \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})$$

Performance of the ML estimator

Problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ be unknown and $b_1, ..., b_n$ be i.i.d. samples of a random variable B with p.d.f. $p_{\mathbf{x}^{\natural}}(b) \in \mathcal{P} := \{p_{\mathbf{x}}(b) : \mathbf{x} \in \mathbb{R}^p\}$. Estimate \mathbf{x}^{\natural} from $b_1, ..., b_n$.

Optimization formulation (ML estimator)

$$\mathbf{x}_{\mathsf{ML}}^{\star} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log \left[\mathsf{p}_{\mathbf{x}}(b_i) \right] \right\} = \arg\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$

Theorem (Performance of the ML estimator [4, 6])

Under some technical conditions, the random variable \mathbf{x}_{Ml}^{\star} satisfies

$$\lim_{n \to \infty} \sqrt{n} \, \mathbf{J}^{-1/2} \left(\mathbf{x}_{\mathsf{ML}}^{\star} - \mathbf{x}^{\natural} \right) \overset{d}{=} Z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \ \textit{where } \mathbf{J} := \left. - \mathbb{E} \left[\nabla_{\mathbf{x}}^2 \log \left[p_{\mathbf{x}}(B) \right] \right] \right|_{\mathbf{x} = \mathbf{x}^{\natural}}$$

is the Fisher information matrix associated with one sample.

Performance of the ML estimator

Problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ be unknown and $b_1, ..., b_n$ be i.i.d. samples of a random variable B with p.d.f. $p_{\mathbf{x}^{\natural}}(b) \in \mathcal{P} := \{p_{\mathbf{x}}(b) : \mathbf{x} \in \mathbb{R}^p\}$. Estimate \mathbf{x}^{\natural} from $b_1, ..., b_n$.

Optimization formulation (ML estimator)

$$\mathbf{x}_{\mathsf{ML}}^{\star} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \log \left[\mathsf{p}_{\mathbf{x}}(b_i) \right] \right\} = \arg\min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$

Theorem (Performance of the ML estimator [4, 6])

Under some technical conditions, the random variable \mathbf{x}_{Ml}^{\star} satisfies

$$\lim_{n \to \infty} \sqrt{n} \, \mathbf{J}^{-1/2} \left(\mathbf{x}_{\mathit{ML}}^{\star} - \mathbf{x}^{\natural} \right) \overset{d}{=} Z \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \ \textit{where} \ \mathbf{J} := \left. - \mathbb{E} \left[\nabla_{\mathbf{x}}^2 \log \left[\rho_{\mathbf{x}}(B) \right] \right] \right|_{\mathbf{x} = \mathbf{x}^{\natural}}$$

is the Fisher information matrix associated with one sample. Roughly speaking,

$$\|\sqrt{n}\,\mathbf{J}^{-1/2}\left(\mathbf{x}_{\mathit{ML}}^{\star}-\mathbf{x}^{\natural}\right)\|_{2}^{2}\sim\mathrm{Tr}\left(\mathbf{I}\right)=p\quad\Rightarrow\qquad \|\mathbf{x}_{\mathit{ML}}^{\star}-\mathbf{x}^{\natural}\|_{2}^{2}=\mathcal{O}(p/n).$$

Example: ML estimation for quantum tomography

Problem (Quantum tomography)

A quantum system of q qubits can be characterized by a density operator, i.e., a Hermitian positive semidefinite $\mathbf{X}^{\natural} \in \mathbb{C}^{p \times p}$ with $p = 2^q$.

Let b_1, \ldots, b_n be samples of independent random variables B_1, \ldots, B_n , with probability distribution

$$\mathbb{P}(\{b_i = k\}) = \operatorname{Tr}(\mathbf{A}_k \mathbf{X}^{\natural}), \quad k = 1, \dots, m,$$

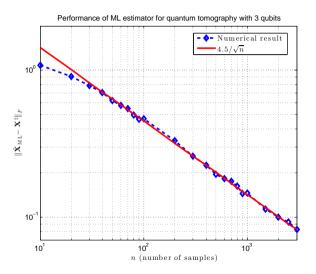
where $\{A_1, \dots, A_m\} \subseteq \mathbb{C}^{p \times p}$ is a positive operator-valued measure, i.e., a set of Hermitian positive semidefinite matrices summing to I.

How do we estimate \mathbf{X}^{\natural} given $\{\mathbf{A}_1, \dots, \mathbf{A}_m\}$ and b_1, \dots, b_n ?

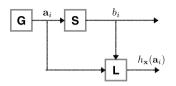
The ML estimator

$$\mathbf{X}_{\mathsf{ML}}^{\star} \in \arg\min_{\mathbf{X} \in \mathbb{C}^{p \times p}} \left\{ -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{m} \mathbb{I}_{\left\{b_{i}=k\right\}} \ln\left[\operatorname{Tr}\left(\mathbf{A}_{k}\mathbf{X}\right)\right] : \mathbf{X} = \mathbf{X}^{H}, \mathbf{X} \succeq \mathbf{0} \right\}.$$

Example: ML estimation for quantum tomography



Caveat Emptor: The ML estimator does not always yield the optimal performance!



Problem

Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$. Let $b_i = \left\langle \mathbf{a}_i, \mathbf{x}^{\natural} \right\rangle + w_i$ for $i = 1, \dots, n$, where $w_i \sim \mathcal{N}(0, 1)$. Let $\mathbf{a}_i = [\underbrace{0}_{i-1} \underbrace{0}_{i-1} \underbrace{1}_{i-1} \underbrace{0}_{i+1} \underbrace{0}_{j-1} \underbrace{0}_$

The ML solution

Since $\mathbf{b} \sim \mathcal{N}(\mathbf{x}^{\natural}, \mathbf{I})$, the ML estimator is given by $\mathbf{x}_{\mathsf{MI}}^{\star} := \mathbf{b}$.

James-Stein estimator [3]

For all $p \geq 3$, the James-Stein estimator is given by

$$\mathbf{x}_{\mathsf{JS}}^{\star} := \left(1 - \frac{p-2}{\|\mathbf{b}\|_{2}^{2}}\right)_{+} \mathbf{b},$$

where $(a)_+ = \max(a, 0)$.

Theorem (Performance comparison: ML vs. James-Stein [3])

For all $\mathbf{x}^{\natural} \in \mathbb{R}^p$ with $p \geq 3$, we have

$$\mathbb{E}\left[\parallel\mathbf{x}_{JS}^{\star}-\mathbf{x}^{\natural}\parallel_{2}^{2}\right]<\mathbb{E}\left[\parallel\mathbf{x}_{\mathit{ML}}^{\star}-\mathbf{x}^{\natural}\parallel_{2}^{2}\right].$$

In expectation, the performance of the ML estimator is uniformly dominated by the performance of the James-Stein estimator!

Elephant in the room: What happens when n < p?

The linear model and the LS estimator when n < p

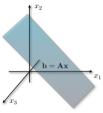
Let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ and $\mathbf{A} \in \mathbb{R}^{n \times p}$. The samples are given by $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$, where \mathbf{w} denotes the unknown noise.

The LS estimator for \mathbf{x}^{\natural} given \mathbf{A} and \mathbf{b} is defined as

$$\mathbf{x}_{\mathsf{LS}}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \| \mathbf{b} - \mathbf{A}\mathbf{x} \|_2^2 \right\}.$$

The estimation error $\|\mathbf{x}_{1S}^{\star} - \mathbf{x}^{\dagger}\|_{2}$ can be arbitrarily large!

$$\mathbf{x}_{\mathrm{candidate}}^{\star} = \mathbf{A}^{\dagger}\mathbf{b}$$



Proposition (The amount of overfitting [1])

Suppose that $A \in \mathbb{R}^{n \times p}$ is a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have

$$(1-\epsilon)\left(1-\frac{n}{p}\right) \|\mathbf{x}^{\natural}\|_{2}^{2} \leq \|\mathbf{x}^{\star}_{\mathrm{candidate}} - \mathbf{x}^{\natural}\|_{2}^{2} \leq (1-\epsilon)^{-1}\left(1-\frac{n}{p}\right) \|\mathbf{x}^{\natural}\|_{2}^{2}$$

with probability at least $1-2\exp\left[-(1/4)(p-n)\epsilon^2\right]-2\exp\left[-(1/4)p\epsilon^2\right]$, for all $\epsilon>0$ and $\mathbf{x}^{\natural}\in\mathbb{R}^p$.

Wrap up!

- ► Lecture on Monday 9:00 11:00
- Questions/Self study on Monday 11:00 12:00
- Lectures on Friday 16:00 18:00 for the first 3 weeks, then exercise sessions.
- ► Unsupervised work on Friday 18:00 19:00

References |

[1] Rémi Gribonval, Volkan Cevher, and Mike E. Davies. Compressible distributions for high-dimensional statistics. IEEE Trans. Inf. Theory, 58(8):5016-5034, 2012. (Cited on page 37.)

[2] Peter J. Huber and Elvezio M. Ronchetti. Robust Statistics John Wiley & Sons, Hoboken, NJ, 2009. (Cited on page 27.)

[3] W. James and Charles Stein. Estimation with quadratic loss.

In Proc. Berkeley Symp. Math. Stats. Prob., volume 1, pages 361–379. Univ. Calif. Press, 1961. (Cited on page 36.)

[4] Lucien Le Cam.

Asymptotic methods in Statistical Decision Theory.

Springer-Verl., New York, NY, 1986.

(Cited on pages 31, 32, and 33.)

References II

[5] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi.
 The squared-error of generalized lasso: A precise analysis.
 In 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 1002–1009. IEEE, 2013.
 (Cited on page 30.)

[6] A. W. van der Vaart.

Asymptotic Statistics.

Cambridge Univ. Press, Cambridge, UK, 1998.

(Cited on pages 31, 32, and 33.)

[7] Vladimir N. Vapnik.

An overview of statistical learning theory.

IEEE Trans. Inf. Theory, 10(5):988-999, September 1999.

(Cited on pages 9, 18, 19, and 20.)