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Outline

I Today
1. Min-max optimization (continued)

I Next week

1. Algorithms for solving min-max optimization
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A minimax optimization template

Minimax formulation
Consider the following problem that captures adversarial training, GANs, and robust reinforcement learning:

min
x∈X

max
y∈Y

Φ(x,y), (1)

where Φ is differentiable and nonconvex in x and nonconcave in y.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?

Recall: A buffet of negative results [5]
“Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point
exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an
approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such
point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient
Descent/Ascent update dynamics.”
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The difficulty of the nonconvex-nonconcave setting

Minimax formulation
Consider the following problem that captures adversarial training, GANs, and robust reinforcement learning:

min
x∈X

max
y∈Y

Φ(x,y), (2)

where Φ is differentiable and nonconvex in x and nonconcave in y.

From minimax to minimization
Assume Φ(x,y) = f(x) for all y. The minimax optimization problem then seeks to find x? such that

f(x?) ≤ f(x), ∀x ∈ Rp,

where x? is a global minimum of the nonconvex function f .

I Finding x? is NP-Hard even when f is smooth! (see the complexity supplementary material)

I Finding solutions to a nonconvex-nonconvex min-max problem is harder in general.
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Question 1 with a twist: Where do the algorithms want to converge?

Definition (Saddle points & Local Nash equilibria)
The point (x?,y?) is called a saddle-point or a local Nash equilibrium (LNE) if it holds that

Φ (x?,y) ≤ Φ (x?,y?) ≤ Φ (x,y?) (Saddle Point / LNE)

for all x and y within some neighborhood of x? and y?, i.e., ‖x− x?‖ ≤ δ and ‖y− y?‖ ≤ δ for some δ > 0.

Necessary conditions
Through a Taylor expansion around x? and
y? one can show that a LNE implies,

∇xΦ(x,y),−∇yΦ(x,y) = 0
∇xxΦ(x,y),−∇yyΦ(x,y) � 0

Figure: Φ(x, y) = x2 − y2
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Saddles of different shapes

Figure: The monkey saddle Φ(x, y) = x3 − 3xy2 (left). The weird saddle Φ(x,y) = −x2y2 + xy (right) [17].
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Question 2 with a twist: When do generalized Robbins-Monro schemes converge?

◦ Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y]>.

◦ Given V (z), define stochastic estimates of V (z, ζ) = V (z) + U(z, ζ), where

I U(z, ζ) is a bias term

I We often have unbiasedness: EU(z, ζ) = 0

I The bias term can have bounded moments

I We often have bounded variance: P (‖U(z, ζ)‖ ≥ t) ≤ 2 exp− t2

2σ2 for σ > 0.

◦ An abstract template for generalized Robbins-Monro schemes, dubbed as A:

zk+1 = zk − αkV (zk, ζk)

The dessert section in the buffet of negative results: [12]
1. Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.
2. Trajectories of A may converge with arbitrarily high probability to spurious attractors that contain no

critical point of Φ.
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Basic algorithms for minimax
◦ Given minx∈X maxy∈Y Φ(x,y), define V (z) = [∇xΦ(x,y),−∇yΦ(x,y)] with z = [x,y].
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0.0
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2.0

GDA
OGDA
EG
PP
Critical point

Figure: Trajectory of different algorithms for a simple bilinear game minx maxy xy.

◦ (In)Famous algorithms
I Gradient Descent Ascent (GDA)
I Proximal point method (PPM)
I Extra-gradient (EG)
I Optimistic Gradient Descent Ascent (OGDA)
I Reflected-Forward-Backward-Splitting (RFBS)

◦ EG and OGDA are approximations of the PPM
I zk+1 = zk − αV (zk).
I zk+1 = zk − αV (zk+1).
I zk+1 = zk − αV (zk − αV (zk−1))
I zk+1 = zk − α[2V (zk)− V (zk−1)]
I zk+1 = zk − αV (2zk − zk−1)
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Minimax is more difficult than just optimization [11]
◦ Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [4].

I For optimization, {attracting ICT} ≡ {solutions}

I For minimax, {attracting ICT} ≡ {solutions} ∪ {spurious sets}

◦ “Almost” bilinear , bilinear:

Φ(x, y) = xy + εφ(x), φ(x) =
1
2
x2 −

1
4
x4

◦ The “forsaken” solutions:

Φ(y, x) = y(x−0.5)+φ(y)−φ(x), φ(u) =
1
4
u2−

1
2
u4+

1
6
u6
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A restricted minimax optimization template

A restricted minimax formulation
Consider the following problem

min
x∈X

max
y∈Y

Φ(x,y), (3)

where Φ is convex in x and concave in y.

◦ Key questions:

1. What problems does this template capture?

2. Where do the algorithms converge?

3. When do the algorithm converge?
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General nonsmooth problems

◦ We will show that the restricted template captures the familiar composite minimization:

min
x∈Rp

f(x) + g(Ax).

I f , g are convex, nonsmooth functions; and A is a linear operator.

Examples

I g(Ax) = ‖Ax− b‖1 or g(Ax) = ‖Ax− b‖22.

I g(Ax) = δ{b}(Ax), where δ{b}(Ax) =
{

0, if Ax = b,
+∞, if Ax , b.

Observations: ◦ The indicator example covers constrained problems, such as minx∈X {f(x) : Ax = b}.

◦ We need a tool, called Fenchel conjugation, to reveal the underlying minimax problem.
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Conjugation of functions

◦ Idea: Represent a convex function in max-form:

Definition
Let Q be a Euclidean space and Q∗ be its dual space. Given a
proper, closed and convex function f : Q → R ∪ {+∞}, the
function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx− f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

f(x)

y

T
x

x

0

(0,�f⇤(y))

x̂

y

T
x̂

f(x̂)

Friday, July 11, 14

Figure: The conjugate function f∗(y) is the
maximum gap between the linear function
xTy (red line) and f(x).

Observations: ◦ y : slope of the hyperplane
◦ −f∗(y) : intercept of the hyperplane
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Conjugation of functions

Definition
Given a proper, closed and convex function f : Q → R ∪ {+∞}, the function f∗ : Q∗ → R ∪ {+∞} such that

f∗(y) = sup
x∈dom(f)

{
yTx− f(x)

}
is called the Fenchel conjugate (or conjugate) of f .

Properties
◦ f∗ is a convex and lower semicontinuous function by construction as the supremum of affine functions of y.

◦ The conjugate of the conjugate of a convex function f is the same function f ; i.e., f∗∗ = f for f ∈ F(Q).

◦ The conjugate of the conjugate of a non-convex function f is its lower convex envelope when Q is compact:

I f∗∗(x) = sup{g(x) : g is convex and g ≤ f , ∀x ∈ Q }.

◦ For closed convex f , µ-strong convexity w.r.t. ‖ · ‖ is equivalent to 1
µ

smoothness of f∗ w.r.t. ‖ · ‖∗.

I Recall dual norm: ‖y‖∗ = supx{〈x,y〉 : ‖x‖ ≤ 1}.

I See for example Theorem 3 in [16].
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Examples

`2-norm-squared
f(x) = λ

2 ‖x‖
2 ⇒ f∗(y) = maxx〈y,x〉 − λ

2 ‖x‖
2.

◦ Take the derivative and equate to 0: 0 = y− λx ⇐⇒ x = 1
λ

y ⇐⇒ f∗(y) = 1
λ
‖y‖2 − 1

2λ‖y‖
2 = 1

2λ‖y‖
2.

`1-norm
f(x) = λ‖x‖1 ⇒ f∗(y) = maxx〈y,x〉 − λ‖x‖1.

◦ By definition of the `1-norm: f∗(y) = maxx
∑n

i=1 yixi − λ|xi| = maxx
∑n

i=1 yisign(xi)|xi| − λ|xi|.

◦ By inspection:

I If all |yi| ≤ λ, then ∀i, (yisign(xi)− λ)|xi| ≤ 0. Taking x = 0 gives the maximum value: f∗(y) = 0.

I If for at least one i, |yi| > λ, (yisign(xi)− λ)|xi| → +∞ as |xi| → +∞.

◦ f∗(y) = δy:‖·‖∞≤λ(y) =
{

0, if ‖y‖∞ ≤ λ
+∞, if ‖y‖∞ > λ

Remark: ◦ See advanced material at the end for non-convex examples, such as f(x) = ‖x‖0.
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General nonsmooth problems

min
x∈Rp

f(x) + g(Ax)

◦ By Fenchel-conjugation, we have g(Ax) = maxy〈Ax,y〉 − g∗(y), where g∗ is the conjugate of g.

◦ Min-max formulation:

min
x∈Rp

f(x) + g(Ax) = min
x∈Rp

max
y
{Φ(x,y) := f(x) + 〈Ax,y〉 − g∗(y)}

An example with linear constraints

◦ If g(Ax) = δ{b}(Ax) =
{

0, if Ax = b,
+∞, if Ax , b,

⇒ g∗(y) = max
x
〈y,x〉 − δ{b}(x) = max

x:x=b
〈y,x〉 = 〈y,b〉.

◦ We reach the minimax formulation (or the so-called “Lagrangian”) via conjugation:

min
x
{f(x) : Ax = b} = min

x
f(x) + g(Ax) = min

x
max

y
f(x) + 〈Ax− b,y〉.
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A special case in minimax optimization

Bilinear min-max template

min
x∈X

max
y∈Y

f(x) + 〈Ax,y〉 − h(y),

where X ⊆ Rp and Y ⊆ Rn.
I f : X → R is convex.
I h : Y → R is convex.
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Example: Sparse recovery

An example from sparseland b = Ax\ + w: constrained formulation
The basis pursuit denoising (BPDN) formulation is given by

x? ∈ arg min
x∈Rp

{
‖x‖1 : ‖Ax− b‖2 ≤ ‖w‖2, ‖x‖∞ ≤ 1

}
. (BPDN)

A primal problem prototype

f? := min
x∈Rp

{
f(x) : Ax− b ∈ K x ∈ X

}
,

The above template captures BPDN formulation with
I f(x) = ‖x‖1.
I K = {‖u‖ ∈ Rn : ‖u‖ ≤ ‖w‖2}.
I X = {x ∈ Rp : ‖x‖∞ ≤ 1}.
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An alternative formulation

A primal problem prototype

f? := min
x∈Rp

{
f(x) : Ax− b ∈ K, x ∈ X

}
, (4)

I f is a proper, closed and convex function
I X and K are nonempty, closed convex sets
I A ∈ Rn×p and b ∈ Rn are known
I An optimal solution x? to (4) satisfies f(x?) = f?, Ax? − b ∈ K and x? ∈ X

A simplified template without loss of generality

f? := min
x∈Rp

{
f(x) : Ax = b

}
, (5)

I f is a proper, closed and convex function
I A ∈ Rn×p and b ∈ Rn are known
I An optimal solution x? to (5) satisfies f(x?) = f?, Ax? = b
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Reformulation between templates

A primal problem template

min
x∈Rp

{
f(x) : Ax− b ∈ K,x ∈ X

}
.

First step: Let r1 = Ax− b ∈ Rn and r2 = x ∈ Rp.

min
x,r1,r2

{
f(x) : r1 ∈ K, r2 ∈ X ,Ax− b = r1,x = r2

}
.

◦ Define z =

[
x
r1
r2

]
∈ R2p+n, Ā =

[
A −In×n 0n×p

Ip×p 0p×n −Ip×p

]
, b̄ =

[
b
0

]
, f̄(z) = f(x) + δK(r1) + δX (r2),

where δX (x) = 0, if x ∈ X , and δX (x) = +∞, o/w.

The simplified template

min
z∈R2p+n

{
f̄(z) : Āz = b̄

}
.
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From constrained formulation back to minimax

A general template

min
x∈Rp

{f(x) : Ax = b}.

Other examples:
I Standard convex optimization formulations: linear programming, convex quadratic programming, second

order cone programming, semidefinite programming and geometric programming.
I Reformulations of existing unconstrained problems via convex splitting: composite convex minimization,

consensus optimization, . . .

Formulating as min-max

max
y∈Rn

〈y,Ax− b〉 =
{

0, if Ax = b,
+∞, if Ax , b.

min
x∈Rp

{
f(x) : Ax = b

}
= min

x∈Rp
max
y∈Rn

{
Φ(x,y) := f(x) + 〈y,Ax− b〉

}
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Dual problem

min
x∈Rp

{
f(x) : Ax = b

}
= min

x∈Rp
max
y∈Rn

{
Φ(x,y) := f(x) + 〈y,Ax− b〉

}
◦ We define the dual problem

max
y∈Rn

d(y) := max
y∈Rn

{min
x∈Rp

f(x) + 〈y,Ax− b〉︸                                ︷︷                                ︸
d(y)

}.

Concavity of dual problem
Even if f(x) is not convex, d(y) is concave:

I For each x, d(y) is linear; i.e., it is both convex and concave.

I Pointwise minimum of concave functions is still concave.

Remark: ◦ If we can exchange min and max, we obtain a concave maximization problem.
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Example: Nonsmoothness of the dual function
◦ Consider a constrained convex problem:

min
x∈R3

{
f(x) := x2

1 + 2x2
}
,

s.t. 2x3 − x1 − x2 = 1,
x ∈ X := [−2, 2]× [−2, 2]× [0, 2].

◦ The dual function is concave and nonsmooth as written and then illustrated below.

d(λ) := min
x∈X

{
x2

1 + 2x2 + λ(2x3 − x1 − x2 − 1)
}
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(λ

)

d(�) = min
x2X

�
x

2
1 + 2x2 + �(2x3 � x1 � x2 + 1)

 

nonsmooth peak

Tuesday, July 29, 14
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Exchanging min and max: A dangerous proposal
◦ Weak duality:

max
y∈Rn

d(y)︸        ︷︷        ︸
Dual problem

=: max
y∈Rn

min
x∈Rp

Φ(x,y) ≤ min
x∈Rp

max
y∈Rn

Φ(x,y) = min
x∈Rp

{
f(x) : Ax = b

}
︸                             ︷︷                             ︸

Primal problem

=
{
f?, if Ax = b
+∞, if Ax , b

f3(x)

f2(x)
f1(x)

x

min
x�0

max
i

fi(x)

max
x�0

min
i

fi(x)
max

i
min
x�0

fi(x)
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A proof of weak duality

f? := min
x∈Rp

{
f(x) : Ax = b

}
= min

x∈Rp
max
y∈Rn

{
Φ(x,y) := f(x) + 〈y,Ax− b〉

}
◦ Since Ax? = b, it holds for any y

Φ(x?,y) = f? = f(x?) + 〈y,Ax? − b〉

≥ min
x∈Rp

{
f(x) + 〈y,Ax− b〉

}
= min

x∈Rp
Φ(x,y).

◦ Take maximum of both sides in y and note that f? is independent of y:

f? = min
x∈Rp

max
y∈Rn

Φ(x,y) ≥ max
y∈Rn

min
x∈Rp

Φ(x,y) =: max
y∈Rn

d(y) = d?.
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Strong duality and saddle points

Strong duality

f? = f(x?) = min
x∈Rp

max
y∈Rn

Φ(x,y) = max
y∈Rn

min
x∈Rp

Φ(x,y) =: max
y∈Rn

d(y) = d?.

Under strong duality and assuming existence of x?, Φ(x,y) has a saddle point. We have primal and dual
optimal values coincide, i.e., f? = d?.

Recall saddle point / LNE
A point (x?,y?) ∈ Rp × Rn is called a saddle point of Φ if

Φ(x?,y) ≤ Φ(x?,y?) ≤ Φ(x,y?), ∀x ∈ Rp, y ∈ Rn.

saddle point x̄
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Toy example: Strong duality

Primal problem
◦ Consider the following primal minimization problem: minx P (x) := f(x) + g(x) := 1

2‖x‖
2 + ‖x‖1

◦ Using conjugation and strong duality

P (x?) = min
x
P (x) = min

x
max

y
f(x) + 〈x,y〉 − g∗(y), by conjugation

= max
y
−g∗(y) + min

x
f(x) + 〈x,y〉, by changing min-max

= max
y
−g∗(y)−max

x
〈x,−y〉 − f(x), by min f = −max−f

= max
y
−g∗(y)− f∗(−y), by conjugation.

Dual problem
◦ Dual problem: d? = maxy d(y) = −g∗(y)− f∗(−y)

◦ Recall f∗(−y) = 1
2‖y‖

2 and g∗(y) = δy:‖y‖∞≤1(y).
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Toy example: Strong duality

Primal problem: min
x
P (x) =

1
2
‖x‖2 + ‖x‖1

Dual problem: max
y
−

1
2
‖y‖2 − δy:‖y‖∞≤1(y)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
P(x)
D(y)d

d(y) =

(
� 1

2kyk2, if kyk1  1

�1, if kyk1 > 1

<latexit sha1_base64="fH/zgow5ddDoUhJ5FnhzR51zwPM="></latexit>
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Back to convex-concave: Necessary and sufficient condition for strong duality

◦ Existence of a saddle point is not automatic even in convex-concave setting!

◦ Recall the minimax template:

min
x∈Rp

max
y∈Rn

{Φ(x,y) := f(x) + 〈y,Ax− b〉}

Theorem (Necessary and sufficient optimality condition)
Under the Slater’s condition: relint(dom f) ∩ {x : Ax = b} , ∅, strong duality holds, where the primal and
dual problems are given by

f? :=
{

min
x∈Rp

f(x)

s.t. Ax = b,
and d? := max

y∈Rn
d(y).

Remarks: ◦ By definition of f? and d?, we always have d? ≤ f? (weak duality).

◦ If a primal solution exists and the Slater’s condition holds, we have d? = f? (strong duality).
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Slater’s qualification condition

◦ Denote relint(dom f) the relative interior of the domain.

◦ The Slater condition requires
relint(dom f) ∩ {x : Ax = b} , ∅. (6)

Special cases

I If dom f = Rp , then (6) ⇔ ∃x̄ : Ax̄ = b .
I If dom f = Rp and instead of Ax = b, we have the feasible set {x : h(x) ≤ 0}, where h is Rp → Rq is

convex, then
(6)⇔ ∃x̄ : h(x̄) < 0.
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Example: Slater’s condition

Example
Let us consider solving minx∈Dα f(x) and so the feasible set is Dα := X ∩Aα, where

X := {x ∈ R2 : x2
1 + x2

2 ≤ 1}, Aα := {x ∈ R2 : x1 + x2 = α},

where α ∈ R.

Two cases where Slater’s condition holds and does not hold

x1

x2

0 1

1

1

2

1

2

x
1 +

x
2 = 1

2

x2
1 + x2

2  1

relative interior of D

x1

x2

0 1

1

x2
1 + x2

2  1

relative interior of D = ;

x
1 +

x
2 = p

2

Tuesday, July 1, 14

D1/2 satisfies Slater’s condition – D√2-does not satisfy Slater’s condition
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Performance of optimization algorithms

f? := min
x∈Rp

{
f(x) : Ax = b,

}
, (Affine-Constrained)

Exact vs. approximate solutions

I Computing an exact solution x? to (Affine-Constrained) is impracticable
I Algorithms seek x?ε that approximates x? up to ε in some sense

A performance metric: Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

A key issue: Number of iterations to reach ε

The notion of ε-accuracy is elusive in constrained optimization!
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Numerical ε-accuracy

◦ Unconstrained case: All iterates are feasible (no advantage from infeasibility)!
f(x?ε )− f? ≤ ε

f? = min
x∈Rp

f(x)

◦ Constrained case: We need to also measure the infeasibility of the iterates!
f? − f(x?ε ) ≤ ε !!!

f? = min
x∈Rp

{
f(x) : Ax = b

}
(7)

Our definition of ε-accurate solutions [22]
Given a numerical tolerance ε ≥ 0, a point x?ε ∈ Rp is called an ε-solution of (7) if{

f(x?ε )− f? ≤ ε (objective residual),
‖Ax?ε − b‖ ≤ ε (feasibility gap),

I When x? is unique, we can also obtain ‖x?ε − x?‖ ≤ ε (iterate residual).
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Numerical ε-accuracy

Constrained problems
Given a numerical tolerance ε ≥ 0, a point x?ε ∈ Rp is called an ε-solution of (7) if{

f(x?ε )− f? ≤ ε (objective residual),
‖Ax?ε − b‖ ≤ ε (feasibility gap),

I When x? is unique, we can also obtain ‖x?ε − x?‖ ≤ ε (iterate residual).

General minimax problems
Since duality gap is 0 at the solution, we measure the primal-dual gap

Gap(x̄, ȳ) = max
y∈Y

Φ(x̄,y)− min
x∈X

Φ(x, ȳ) ≤ ε. (8)

Remarks: ◦ ε can be different for the objective, feasibility gap, or the iterate residual.

◦ It is easy to show Gap(x,y) ≥ 0 and Gap(x̄, ȳ) = 0 iff (x̄, ȳ) is a saddle point.
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Primal-dual gap function for nonsmooth minimization

min
x∈X

f(x) + g(Ax) = min
x∈X

max
y∈Y

f(x) + 〈Ax,y〉 − g∗(y)︸                               ︷︷                               ︸
Φ(x,y)

= max
y∈Y

min
x∈X

f(x) + 〈Ax,y〉 − g∗(y)

◦ Primal problem: minx∈X P (x) where

P (x) = max
y∈Y

Φ(x,y).

◦ Dual problem: maxy∈Y d(y) where

d(y) = min
x∈X

Φ(x,y).

◦ The primal-dual gap, i.e., Gap(x̄, ȳ), is literally (primal value at x̄)− (dual value at ȳ):

Gap(x̄, ȳ) = P (x̄)− d(ȳ) = max
y∈Y

Φ(x̄,y)− min
x∈X

Φ(x, ȳ).
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Toy example for nonnegativity of gap

◦ P (x) = 1
2‖x‖

2 + ‖x‖1

◦ d(y) = − 1
2‖y‖

2 − δy:‖y‖∞≤1(y)

Recall the indicator function

δy:‖y‖∞≤1(y) =
{

0, if ‖y‖∞ ≤ 1
+∞, if ‖y‖∞ > 1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
P(x)
D(y)d

d(y) =

(
� 1

2kyk2, if kyk1  1

�1, if kyk1 > 1

<latexit sha1_base64="fH/zgow5ddDoUhJ5FnhzR51zwPM="></latexit>
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Primal-dual gap function in the general case

min
x∈X

max
y∈Y

Φ(x,y) = max
y∈Y

min
x∈X

Φ(x,y)

◦ Saddle point (x?,y?) is such that ∀x ∈ Rp, ∀y ∈ Rn:

Φ(x?,y)
(∗)
≤ Φ(x?,y?)

(∗∗)
≤ Φ(x,y?).

◦ Nonnegativity of Gap:

Gap(x̄, ȳ) = max
y∈X

Φ(x̄,y)− min
x∈X

Φ(x, ȳ)

≥ Φ(x̄,y?)− min
x∈X

Φ(x, ȳ), by the definition of maximization

≥ Φ(x?,y?)− min
x∈X

Φ(x, ȳ), by the inequality (∗∗)

≥ Φ(x?, ȳ)− min
x∈X

Φ(x, ȳ), by the inequality (∗)

≥ 0, by the definition of minimization.

◦ If (x̄, ȳ) = (x?,y?), then all the inequalities will be equalities and Gap(x̄, ȳ) = 0.
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Optimality conditions for minimax

Saddle point
We say (x?,y?) is a primal-dual solution corresponding to primal and dual problems

f? :=
{

min
x∈Rp

f(x)

s.t. Ax = b,
and d? := max

y∈Rn
d(y) = max

y∈Rn
min

x
Φ(x,y).

if it is a saddle point of Φ(x,y) = f(x) + 〈y,Ax− b〉:

Φ(x?,y) ≤ Φ(x?,y?) ≤ Φ(x,y?), ∀x ∈ Rp, y ∈ Rn.

Karush-Khun-Tucker (KKT) conditions
Under our assumptions, an equivalent characterization of (x?,y?) is via the KKT conditions of the problem

min
x∈Rp

f(x) : Ax = b,

which reads {
0 ∈ ∂xΦ(x?,y?) = ATy? + ∂f(x?),
0 = ∇yΦ(x?, λ?) = Ax? − b.
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A naive proposal: Gradient descent-ascent (GDA)

Towards algorithms for minimax optimization

min
x∈X

max
y∈Y

Φ(x,y).

We assume that

I Φ(·,y) is convex,

I Φ(x, ·) is concave,

I Φ is smooth in the following sense:∥∥∥[ ∇xΦ(x1,y1)
−∇yΦ(x1,y1)

]
−
[
∇xΦ(x2,y2)
−∇yΦ(x2,y2)

]∥∥∥ ≤ L∥∥∥[x1 − x2
y1 − y2

]∥∥∥ . (9)

◦ Let us try to use gradient descent for x, gradient ascent for y to obtain a solution
GDA
1. Choose x0,y0 and τ .
2. For k = 0, 1, · · · , perform:

xk+1 := xk − τ∇xΦ(xk,yk).
yk+1 := yk + τ∇yΦ(xk,yk).
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GDA on a simple problem

Min-max problem

min
x∈X

max
y∈Y

Φ(x,y).

SimGDA
1. Choose x0,y0 and τ .
2. For k = 0, 1, · · · , perform:

xk+1 := xk − τ∇xΦ(xk,yk).
yk+1 := yk + τ∇yΦ(xk,yk).

AltGDA
1. Choose x0,y0 and τ .
2. For k = 0, 1, · · · , perform:

xk+1 := xk − τ∇xΦ(xk,yk).
yk+1 := yk + τ∇yΦ(xk+1,yk).

Example [9]
Let Φ(x, y) = xy, X = Y = R, then,
I for the iterates of SimGDA: x2

k+1 + y2
k+1 = (1 + η2)(x2

k + y2
k),

I for the iterates of AltGDA: x2
k+1 + y2

k+1 = C(x2
0 + y2

0).

◦ SimGDA diverges and AltGDA does not converge!
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Practical performance

min
x∈R

max
y∈R

xy

◦ Simultaneous GDA ◦ Alternating GDA
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Between convex-concave and nonconvex-nonconcave

Nonconvex-concave problems

min
x∈X

max
y∈Y

Φ(x,y)

◦ Φ(x,y) is nonconvex in x, concave in y, smooth in x and y.

Recall
Define f(x) = maxy∈Y Φ(x,y).

◦ Gradient descent applied to nonconvex f requires O(ε−2) iterations to give an ε-stationary point.

◦ (Sub)gradient of f can be computed using Danskin’s theorem:

∇xΦ(·, y?(·)) ∈ ∂f(·), where y?(·) ∈ arg max
y∈Y

Φ(·,y),

which is tractable since Φ is concave in y [19].

Remark: ◦ “Conceptually” much easier than nonconvex-nonconcave case.
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Epilogue

Gradient complexity Optimality measure Reference
convex-concave O

(
ε−1
)
1 ε optimality w.r.t. duality gap Nemirovski, 2004; Chambolle & Pock, 2011;

Tran-Dinh & Cevher, 2014.2

nonconvex-concave Õ
(
ε−2.5

)
3 ε-stationarity w.r.t. gradient mapping norm Lin, Jin, & Jordan, 2020.4

nonconvex-nonconcave HARD HARD Daskalakis, Stratis, & Zampetakis, 2020;
Hsieh, Mertikopoulos, & Cevher, 2020.5

1Rates are not directly comparable as duality gap and gradient mapping norm are not necessarily of the same order!
2Arkadi Nemirovski,“Prox-method with rate of convergence O1/t) for variational inequalities with Lipschitz continuous monotone operators and

smooth convex-concave saddle point problems.” SIAM Journal on Optimization 15.1 (2004): 229-251.
Antonin Chambolle, and Thomas Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging.” Journal of

mathematical imaging and vision 40.1 (2011): 120-145.
Quoc Tran-Dinh, and Volkan Cevher, “Constrained convex minimization via model-based excessive gap." Advances in Neural Information

Processing Systems. 2014.
3The rate is Õ

(
ε−2
)

for strongly concave problems.
4Tianyi Lin, Chi Jin, and Michael Jordan, “Near-optimal algorithms for minimax optimization." arXiv preprint arXiv:2002.02417 (2020).
5Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis, “The complexity of constrained min-max optimization." arXiv preprint

arXiv:2009.09623 (2020).
Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher, “The limits of min-max optimization algorithms: convergence to spurious

non-critical sets." arXiv preprint arXiv:2006.09065 (2020).

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 68



A new hope

min
x∈R

max
y∈R

xy

◦ Next lecture: Some algorithms that actually converge!

◦ Convergence of the sequence:

There exists z? = (x?,y?), such that zk → z?.

◦ Convergence rate:

Gap

(
1
K

K∑
k=1

xk,
1
K

K∑
k=1

yk
)
≤ O

( 1
K

)
.
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Wrap up!

◦ Try to finish Homework #2...
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A convex proto-problem for structured sparsity

A combinatorial approach for estimating x\ from b = Ax\ + w
We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

x̂ ∈ arg min
x∈Rp

{
‖x‖s : ‖b−Ax‖2 ≤ κ, ‖x‖∞ ≤ 1

}
(Ps)

with some κ ≥ 0. If κ = ‖w‖2, then the structured sparse x\ is a feasible solution.

Sparsity and structure together [7]
Given some weights d ∈ Rd, e ∈ Rp and an integer input c ∈ Zl, we define

‖x‖s := min
ω
{dTω + eT s : M

[
ω
s

]
≤ c,1supp(x) = s,ω ∈ {0, 1}d}

for all feasible x, ∞ otherwise. The parameter ω is useful for latent modeling.

A convex candidate solution for b = Ax\ + w
We use the convex estimator based on the tightest convex relaxation of ‖x‖s:
x̂ ∈ arg minx∈dom(‖·‖s)

{
‖x‖∗∗s : ‖b−Ax‖2 ≤ κ

}
with some κ ≥ 0, dom(‖·‖s) := {x : ‖x‖s <∞}.
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Tractability & tightness of biconjugation

Proposition (Hardness of conjugation)
Let F (s) : 2P → R ∪ {+∞} be a set function defined on the support s = supp(x). Conjugate of F over the
unit infinity ball ‖x‖∞ ≤ 1 is given by

g∗(y) = sup
s∈{0,1}p

|y|T s− F (s).

Observations:
I F (s) is general set function

Computation: NP-Hard

I F (s) = ‖x‖s

Computation: Integer Linear Program (ILP) in general. However, if
I M is Totally Unimodular TU
I (M , c) is Total Dual Integral TDI

then tight convex relaxations with a linear program (LP, which is “usually” tractable)

Otherwise, relax to LP anyway!

I F (s) is submodular
Computation: Polynomial-time

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 47/ 68



Tree sparsity [15, 6, 3, 23]

Wavelet coefficients Wavelet tree Valid selection of nodes Invalid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy sparent ≥ schild over tree T

T1supp(x) := T s ≥ 0

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: ‖x‖∗∗s = mins∈[0,1]p{1T s : T s ≥ 0, |x| ≤ s}

?=
∑
G∈GH

‖xG‖∞

for x ∈ [−1, 1]p, ∞ otherwise.

The set G ∈ GH are defined as each node and all its descendants.
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Tree sparsity [15, 6, 3, 23]

GH = {{1, 2, 3}, {2}, {3}} valid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.

Linear description: A valid support satisfy sparent ≥ schild over tree T

T1supp(x) := T s ≥ 0

where T is the directed edge-node incidence matrix, which is TU.

Biconjugate: ‖x‖∗∗s = mins∈[0,1]p{1T s : T s ≥ 0, |x| ≤ s} ?=
∑
G∈GH

‖xG‖∞
for x ∈ [−1, 1]p, ∞ otherwise.

The set G ∈ GH are defined as each node and all its descendants.
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Group knapsack sparsity [25, 10, 8]

G2 = {1, 2, 3, 4, 5}

x1

x2

x3

x4

x5

x6

x7

x8

0

1

0

0

1

0

1

0

1supp(x)

support
indicator vector

sparse

1

2

2

3

1

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

knapsack
constraints vector

cu

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound c` ≤ BT s ≤ cu.
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Group knapsack sparsity [25, 10, 8]

�

B
T =


1 1 · · · 1 1 0 0 · · · 0

0 1 1 · · · 1 1 0 · · · 0

.
.
.

0 · · · 0 0 1 1 · · · 1 1


(p−∆+1)×p

Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound c` ≤ BT s ≤ cu.

Biconjugate: ‖x‖∗∗s =
{
‖x‖1 if x ∈ [−1, 1]p,BT |x| ≤ cu,
∞ otherwise

For the neuronal spike example, we have cu = 1.
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Group knapsack sparsity [25, 10, 8]

Figure: *

(left) ‖x‖∗∗s ≤ 1 (middle) ‖x‖∗∗s ≤ 1.5 (right) ‖x‖∗∗s ≤ 2 for G = {{1, 2}, {2, 3}}
Structure: We seek the sparsest signal with group allocation constraints.

Linear description: A valid support obeys budget constraints over G

BT s ≤ cu

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound c` ≤ BT s ≤ cu.

Biconjugate: ‖x‖∗∗s =
{
‖x‖1 if x ∈ [−1, 1]p,BT |x| ≤ cu,
∞ otherwise

For the neuronal spike example, we have cu = 1.
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Group knapsack sparsity example: A stylized spike train

I Basis pursuit (BP): ‖x‖1
I TU-relax (TU):

‖x‖∗∗s =
{
‖x‖1 if x ∈ [−1, 1]p,BT |x| ≤ cu,
∞ otherwise
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Figure: Recovery for n = 0.18p.
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Group knapsack sparsity: A simple variation

G2 = {1, 2, 3, 4, 5}

x1

x2

x3

x4

x5

x6

x7

x8

0

1

0

0

1

0

1

0

1supp(x)

support
indicator vector

sparse

1

2

2

3

1

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

knapsack
constraints vector

cu

Structure: We seek the signal with the minimal overall group allocation.

Objective: 1T s→ ‖x‖ω =
{

minω∈Z++ ω if x ∈ [−1, 1]p,BT s ≤ ω1,
∞ otherwise

Linear description: A valid support obeys budget constraints over G

BT s ≤ ω1

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix or G has a loopless group intersection graph, it is TU.

Biconjugate: ‖x‖∗∗s =
{

maxG∈G ‖xG‖1 if x ∈ [−1, 1]p,
∞ otherwise

Remark: The regularizer is known as exclusive Lasso [25, 21].Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 51/ 68



Group cover sparsity: Minimal group cover [2, 20, 13]

G2 = {1, 2, 3, 4, 5}
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Structure: We seek the signal covered by a minimal number of groups.

Objective: 1T s→ dTω

Linear description: At least one group containing a sparse coefficient is selected

Bω ≥ s

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix, or G has a loopless group intersection graph it is TU.

Remark: Weights d can depend on the sparsity within each groups (not TU) [7].
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Figure: G = {{1, 2}, {2, 3}}, unit group weights d = 1.

Structure: We seek the signal covered by a minimal number of groups.
Objective: 1T s→ dTω

Linear description: At least one group containing a sparse coefficient is selected

Bω ≥ s

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .
When B is an interval matrix, or G has a loopless group intersection graph it is TU.

Biconjugate: ‖x‖∗∗ω = minω∈[0,1]M {d
Tω : Bω ≥ |x|} for x ∈ [−1, 1]p,∞ otherwise

?= minvi∈Rp{
∑M

i=1 di‖vi‖∞ : x =
∑M

i=1 vi, ∀supp(vi) ⊆ Gi},
Remark: Weights d can depend on the sparsity within each groups (not TU) [7].
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Structure: We seek the signal covered by a minimal number of groups.
Objective: 1T s→ dTω

Linear description: At least one group containing a sparse coefficient is selected

Bω ≥ s
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Budgeted group cover sparsity

G2 = {1, 2, 3, 4, 5}
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Structure: We seek the sparsest signal covered by G groups.

Objective: dTω → 1T s

Linear description: At least one of the G selected groups cover each sparse coefficient.

Bω ≥ s,1Tω ≤ G

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .

When
[
B

1

]
is an interval matrix, it is TU.
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Budgeted group cover sparsity

G2 = {1, 2, 3, 4, 5}
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G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

G5 = {6, 8}

G1 = {1}

Structure: We seek the sparsest signal covered by G groups.
Objective: dTω → 1T s

Linear description: At least one of the G selected groups cover each sparse coefficient.

Bω ≥ s,1Tω ≤ G

where B is the biadjacency matrix of G, i.e., Bij = 1 iff i-th coefficient is in Gj .

When
[
B

1

]
is an interval matrix, it is TU.

Biconjugate: ‖x‖∗∗ω = minω∈[0,1]M {‖x‖1 : Bω ≥ |x|,1Tω ≤ G}
for x ∈ [−1, 1]p,∞ otherwise.
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Budgeted group cover example: Interval overlapping groups

I Basis pursuit (BP): ‖x‖1
I Sparse group Lasso (SGLq):

(1− α)
∑
G∈G

√
|G|‖xG‖q + α‖xG‖1

I TU-relax (TU):

‖x‖∗∗ω = min
ω∈[0,1]M

{‖x‖1 : Bω ≥ |x|, 1Tω ≤ G}

for x ∈ [−1, 1]p,∞ otherwise.
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Figure: Recovery for n = 0.25p, s = 15, p = 200, G = 5 out of M = 29 groups.
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Group intersection sparsity [14, 24, 1]

G2 = {1, 2, 3, 4, 5}

x1

x2

x3

x4

x5

x6

x7

x8

1supp(x)

support
indicator vector

sparse

0

1

1

1

0

group “support”
indicator vector

Ê

group sparse

G3 = {5, 6, 7, 8}

G4 = {2, 5, 7}

x1

x2

x3

x4

x5

x6

x7

x8

0

1

0

0

1

0

1

0

G1 = {1}

G5 = {6, 8}

Structure: We seek the signal intersecting with minimal number of groups.

Objective: 1T s→ dTω

Linear description: All groups containing a sparse coefficient are selected

Hks ≤ ω,∀k ∈ P

where Hk(i, j) =
{

1 if j = k, j ∈ Gi
0 otherwise

, which is TU.

Remark: For hierarchical GH , group intersection and tree sparsity models coincide.
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Group intersection sparsity [14, 24, 1]

G = {{1, 2}, {2, 3}}, unit group weights d = 1

(left) intersection (right) cover.
Structure: We seek the signal intersecting with minimal number of groups.

Objective: 1T s→ dTω

Linear description: All groups containing a sparse coefficient are selected

Hks ≤ ω,∀k ∈ P

where Hk(i, j) =
{

1 if j = k, j ∈ Gi
0 otherwise

, which is TU.

Biconjugate: ‖x‖∗∗ω = minω∈[0,1]M {d
Tω : Hk|x| ≤ ω, ∀k ∈ P}

?=
∑
G∈G ‖xG‖∞

for x ∈ [−1, 1]p,∞ otherwise.

Remark: For hierarchical GH , group intersection and tree sparsity models coincide.
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G = {{1, 2}, {2, 3}}, unit group weights d = 1

(left) intersection (right) cover.
Structure: We seek the signal intersecting with minimal number of groups.

Objective: 1T s→ dTω (submodular)
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Structure: We seek the signal intersecting with minimal number of groups.

Objective: 1T s→ dTω (submodular)
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Beyond linear costs: Graph dispersiveness

Figure: (left) ‖x‖∗∗s = 0 (right) ‖x‖∗∗s ≤ 1 for E = {{1, 2}, {2, 3}} (chain graph)

Structure: We seek a signal dispersive over a given graph G(P, E)

Objective: 1T s→
∑

(i,j)∈E sisj (non-linear, supermodular function)

Linearization:

‖x‖s = minz∈{0,1}|E|{
∑

(i,j)∈E zij : zij ≥ si + sj − 1}

When edge-node incidence matrix of G(P, E) is TU (e.g., bipartite graphs), it is TU.
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Beyond linear costs: Graph dispersiveness

Figure: (left) ‖x‖∗∗s = 0 (right) ‖x‖∗∗s ≤ 1 for E = {{1, 2}, {2, 3}} (chain graph)

Structure: We seek a signal dispersive over a given graph G(P, E)

Objective: 1T s→
∑

(i,j)∈E sisj (non-linear, supermodular function)

Linearization:

‖x‖s = minz∈{0,1}|E|{
∑

(i,j)∈E zij : zij ≥ si + sj − 1}

When edge-node incidence matrix of G(P, E) is TU (e.g., bipartite graphs), it is TU.
Biconjugate: ‖x‖∗∗s =

∑
(i,j)∈E(|xi|+ |xj | − 1)+ for x ∈ [−1, 1]p,∞ otherwise.
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The difficulty of the nonconvex-nonconcave setting

Definition (Local Nash Equilibrium)
A pair of vectors (x∗,y∗) with x∗ ∈ Ax and y∗ ∈ Ay is called (ε, δ)-Local Nash Equilibrium if it holds that,
I Φ(x∗,y∗) ≤ Φ(x,y∗) + ε, for all x ∈ Ax with ‖x− x∗‖ ≤ δ
I Φ(x∗,y∗) ≥ Φ(x∗,y)− ε, for all y ∈ Ax with ‖y− y∗‖ ≤ δ.

Theorem [5]
Deciding whether a function Φ(x,y) admits an (ε, δ)-Local Nash Equilibrium is NP-hard even for
(ε, δ) := (1/384, 1) and (Ax,Ay) := ([0, 1]d1 , [0, 1]d2 ).
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Reduction to 3-SAT(3)

Definition (3-SAT(3))

Input: A boolean CNF-formula φ := (φ1, . . . , φm) with boolean variables x1, . . . , xn such that every clause of
φj has at most 3 boolean variables and every boolean variable appears to at most 3 clauses.
Output: Return Yes if there exists an assignment of the boolean variables (x1, . . . , xn) satisfying all clauses
{φ1, . . . , φm} and No otherwise.

Theorem [18]
3− SAT(3) is NP− complete.
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Reducing (ε, δ)-LNE to 3-SAT(3)

Constructing the Function
Given an instance of 3-SAT(3) φ := (φ1, . . . , φm), we construct a function Φ(·) as follows,
I For each boolean variable xi (there are n boolean variables xi) we correspond a respective real-valued

variable xi
I For each clause φj , we construct a polynomial Pj(x) as follows,

I let `i, `k, `m denote the literals participating in φj .
I Consider the polynomial Pj(x) = Pji(x) · Pjk(x) · Pjm(x) where

Pji(x) =
{

1− xi if `i = xi
xi if `i = ¬xi

Example
For the clause φj = x1 ∨ ¬x2 ∨ x3 → P (x) := (1− x1) · x2 · x3.
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Reducing (ε, δ)-LNE to 3-SAT(3)

Constructing the Function
Given an instance of 3-SAT(3) φ := (φ1, . . . , φm), we construct a function Φ(·) as follows,
I For each boolean variable xi (there are n boolean variables xi) we correspond a respective real-valued

variable xi
I For each clause φj , we construct a polynomial Pj(x) as follows,

I let `i, `k, `m denote the literals participating in φj .
I Pj(x) = Pji(x) · Pjk(x) · Pjm(x) where

Pij(x) =
{

1− xi if `i = xi
xi if `i = ¬xi

The overall constructed function is

Φ(x,w,y) =
m∑
j=1

Pj(x) · (wj − yj)2

where each wj , yj are additional variables associated with clause φj .
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Reducing (ε, δ)-LNE to 3-SAT(3)

Lemma [5]
Let the minimizing player control (x,w) and the maximizing player control y. A (1/384, 1)-Local Nash
Equilibrium with (x,w) ∈ [0, 1]n+m and y ∈ [0, 1]m exists if and only if φ admits a satisfying assignment.
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Proof of Lemma (−→)

Analysis
Let ((x∗,w∗),y∗) an (ε, δ)-Local NE for ε = 1/384 and δ = 1.
I Pj(x∗) ≤ 16 · ε for all j = 1, . . . ,m.

Let Pj(x∗) > 16 · ε for some j = 1, . . . ,m
I If |w∗j − y

∗
j | ≥ 1/4 then the min player can decrease Φ(x,w,y) by at least ε by setting wj := y∗j .

I If |w∗j − y
∗
j | ≤ 1/4 then the max player can increase Φ(x,w,y) by at least ε by moving yj to either 0 or 1.

I Randomly assign each boolean variable xi to True or False with

Pr [xi is set to True] = x∗i

I By the definition of Pj(x),

Pr [φj is not satisfied] = Pj(x∗) ≤ 16 · ε = 1/24

I Since each boolean variable participates in at most 3 clauses. Each clause φj shares boolean variables with
at most other 6 clauses. Since Pr [φj is not satisfied] ≤ 1/24 by the Lovász Local Lemma,

Pr [there exists an unsatisfied clause φj ] < 1

Thus, there exists a satisfying assignment.
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Proof of Lemma (←−)

Analysis
Let x∗ := (x∗1, . . . , x∗n) be a satisfying boolean assignment for φ := (φ1, . . . , φm).
I If x∗i = True then we set the real-valued variable x∗i to 1.
I If x∗i = False then we set the real-valued variable x∗i to 0.
I Since each clause φj is satisfied then (by the definition of Pj(x)),

Pj(x∗) = 0 for all j = 1, . . . ,m

Thus, all vectors ((x∗,w),y) are (0, 1)-Local Nash Equilibrium.
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