Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 11: Primal-dual optimization I: Fundamentals of minimax problems Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2021)

License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
- Attribution
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
- The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes - unless they get the licensor's permission.
- Share Alike
- The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- Today

1. Min-max optimization (continued)

- Next week

1. Algorithms for solving min-max optimization

A minimax optimization template

Minimax formulation

Consider the following problem that captures adversarial training, GANs, and robust reinforcement learning:

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}), \tag{1}
\end{equation*}
$$

where Φ is differentiable and nonconvex in \mathbf{x} and nonconcave in \mathbf{y}.

- Key questions:

1. Where do the algorithms converge?
2. When do the algorithm converge?

A minimax optimization template

Minimax formulation

Consider the following problem that captures adversarial training, GANs, and robust reinforcement learning:

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}), \tag{1}
\end{equation*}
$$

where Φ is differentiable and nonconvex in \mathbf{x} and nonconcave in \mathbf{y}.

- Key questions:

1. Where do the algorithms converge?
2. When do the algorithm converge?

Recall: A buffet of negative results [5]

"Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient Descent/Ascent update dynamics."

The difficulty of the nonconvex-nonconcave setting

Minimax formulation

Consider the following problem that captures adversarial training, GANs, and robust reinforcement learning:

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}), \tag{2}
\end{equation*}
$$

where Φ is differentiable and nonconvex in \mathbf{x} and nonconcave in \mathbf{y}.

From minimax to minimization

Assume $\Phi(\mathbf{x}, \mathbf{y})=f(\mathbf{x})$ for all \mathbf{y}. The minimax optimization problem then seeks to find \mathbf{x}^{\star} such that

$$
f\left(\mathbf{x}^{\star}\right) \leq f(\mathbf{x}), \forall \mathbf{x} \in \mathbb{R}^{p},
$$

where \mathbf{x}^{\star} is a global minimum of the nonconvex function f.

- Finding \mathbf{x}^{\star} is NP-Hard even when f is smooth!
(see the complexity supplementary material)
- Finding solutions to a nonconvex-nonconvex min-max problem is harder in general.

Question 1 with a twist: Where do the algorithms want to converge?

Definition (Saddle points \& Local Nash equilibria)

The point $\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)$ is called a saddle-point or a local Nash equilibrium (LNE) if it holds that

$$
\Phi\left(\mathbf{x}^{\star}, \mathbf{y}\right) \leq \Phi\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right) \leq \Phi\left(\mathbf{x}, \mathbf{y}^{\star}\right)
$$

(Saddle Point / LNE)
for all \mathbf{x} and \mathbf{y} within some neighborhood of \mathbf{x}^{\star} and \mathbf{y}^{\star}, i.e., $\left\|\mathbf{x}-\mathbf{x}^{\star}\right\| \leq \delta$ and $\left\|\mathbf{y}-\mathbf{y}^{\star}\right\| \leq \delta$ for some $\delta>0$.

Necessary conditions

Through a Taylor expansion around \mathbf{x}^{\star} and \mathbf{y}^{\star} one can show that a LNE implies,

$$
\begin{aligned}
& \nabla_{\mathbf{x}} \Phi(\mathbf{x}, \mathbf{y}),-\nabla_{\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y})=0 \\
& \nabla_{\mathbf{x x}} \Phi(\mathbf{x}, \mathbf{y}),-\nabla_{\mathbf{y} \mathbf{y}} \Phi(\mathbf{x}, \mathbf{y}) \succeq 0
\end{aligned}
$$

Figure: $\Phi(x, y)=x^{2}-y^{2}$

Saddles of different shapes

Figure: The monkey saddle $\Phi(x, y)=x^{3}-3 x y^{2}$ (left). The weird saddle $\Phi(\mathbf{x}, \mathbf{y})=-\mathbf{x}^{2} \mathbf{y}^{2}+\mathbf{x y}$ (right) [17].

Question 2 with a twist: When do generalized Robbins-Monro schemes converge?

- Given $\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$, define $V(\mathbf{z})=\left[\nabla_{\mathbf{x}} \Phi(\mathbf{x}, \mathbf{y}),-\nabla_{\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y})\right]$ with $\mathbf{z}=[\mathbf{x}, \mathbf{y}]^{\top}$.
- Given $V(\mathbf{z})$, define stochastic estimates of $V(\mathbf{z}, \zeta)=V(\mathbf{z})+U(\mathbf{z}, \zeta)$, where
- $U(\mathbf{z}, \zeta)$ is a bias term
- We often have unbiasedness: $\boldsymbol{E} U(\mathbf{z}, \zeta)=0$
- The bias term can have bounded moments
- We often have bounded variance: $P(\|U(\mathbf{z}, \zeta)\| \geq t) \leq 2 \exp -\frac{t^{2}}{2 \sigma^{2}}$ for $\sigma>0$.
- An abstract template for generalized Robbins-Monro schemes, dubbed as \mathcal{A} :

$$
\mathbf{z}^{k+1}=\mathbf{z}^{k}-\alpha_{k} V\left(\mathbf{z}^{k}, \zeta^{k}\right)
$$

The dessert section in the buffet of negative results: [12]

1. Bounded trajectories of \mathcal{A} always converge to an internally chain-transitive (ICT) set.
2. Trajectories of \mathcal{A} may converge with arbitrarily high probability to spurious attractors that contain no critical point of Φ.

Basic algorithms for minimax

- Given $\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$, define $V(\mathbf{z})=\left[\nabla_{\mathbf{x}} \Phi(\mathbf{x}, \mathbf{y}),-\nabla_{\mathbf{y}} \Phi(\mathbf{x}, \mathbf{y})\right]$ with $\mathbf{z}=[\mathbf{x}, \mathbf{y}]$.

Figure: Trajectory of different algorithms for a simple bilinear game $\min _{x} \max _{y} x y$.

- (In)Famous algorithms
- Gradient Descent Ascent (GDA)
- Proximal point method (PPM)
- Extra-gradient (EG)
- Optimistic Gradient Descent Ascent (OGDA)
- Reflected-Forward-Backward-Splitting (RFBS)
- EG and OGDA are approximations of the PPM
- $\mathbf{z}^{k+1}=\mathbf{z}^{k}-\alpha V\left(\mathbf{z}^{k}\right)$.
- $\mathbf{z}^{k+1}=\mathbf{z}^{k}-\alpha V\left(\mathbf{z}^{k+1}\right)$.
- $\mathbf{z}^{k+1}=\mathbf{z}^{k}-\alpha V\left(\mathbf{z}^{k}-\alpha V\left(\mathbf{z}^{k-1}\right)\right)$
- $\mathbf{z}^{k+1}=\mathbf{z}^{k}-\alpha\left[2 V\left(\mathbf{z}^{k}\right)-V\left(\mathbf{z}^{k-1}\right)\right]$
- $\mathbf{z}^{k+1}=\mathbf{z}^{k}-\alpha V\left(2 \mathbf{z}^{k}-\mathbf{z}^{k-1}\right)$

Minimax is more difficult than just optimization [11]

- Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [4].
- For optimization, $\{$ attracting ICT $\} \equiv$ \{solutions $\}$
- For minimax, $\{$ attracting ICT $\} \equiv$ \{solutions $\} \cup\{$ spurious sets $\}$
- "Almost" bilinear $=$ bilinear:

$$
\Phi(x, y)=x y+\epsilon \phi(x), \phi(x)=\frac{1}{2} x^{2}-\frac{1}{4} x^{4}
$$

- The "forsaken" solutions:
$\Phi(y, x)=y(x-0.5)+\phi(y)-\phi(x), \phi(u)=\frac{1}{4} u^{2}-\frac{1}{2} u^{4}+\frac{1}{6} u^{6}$

A restricted minimax optimization template

A restricted minimax formulation

Consider the following problem

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}) \tag{3}
\end{equation*}
$$

where Φ is convex in \mathbf{x} and concave in \mathbf{y}.

- Key questions:

1. What problems does this template capture?
2. Where do the algorithms converge?
3. When do the algorithm converge?

General nonsmooth problems

- We will show that the restricted template captures the familiar composite minimization:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+g(\mathbf{A} \mathbf{x})
$$

- f, g are convex, nonsmooth functions; and \mathbf{A} is a linear operator.

Examples

- $g(\mathbf{A} \mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{1}$ or $g(\mathbf{A} \mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}$.
$g(\mathbf{A x})=\delta_{\{\mathbf{b}\}}(\mathbf{A x})$, where $\delta_{\{\mathbf{b}\}}(\mathbf{A x})= \begin{cases}0, & \text { if } \mathbf{A x}=\mathbf{b}, \\ +\infty, & \text { if } \mathbf{A x} \neq \mathbf{b} .\end{cases}$

Observations: \circ The indicator example covers constrained problems, such as $\min _{\mathbf{x} \in \mathcal{X}}\{f(\mathbf{x}): \mathbf{A x}=\mathbf{b}\}$.

- We need a tool, called Fenchel conjugation, to reveal the underlying minimax problem.

Conjugation of functions

- Idea: Represent a convex function in max-form:

Definition

Let \mathcal{Q} be a Euclidean space and Q^{*} be its dual space. Given a proper, closed and convex function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$, the function $f^{*}: Q^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ such that

$$
f^{*}(\mathbf{y})=\sup _{\mathbf{x} \in \operatorname{dom}(f)}\left\{\mathbf{y}^{T} \mathbf{x}-f(\mathbf{x})\right\}
$$

is called the Fenchel conjugate (or conjugate) of f.

Observations:

- y : slope of the hyperplane
$\circ-f^{*}(\mathbf{y})$: intercept of the hyperplane

Conjugation of functions

Definition

Given a proper, closed and convex function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$, the function $f^{*}: Q^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ such that

$$
f^{*}(\mathbf{y})=\sup _{\mathbf{x} \in \operatorname{dom}(f)}\left\{\mathbf{y}^{T} \mathbf{x}-f(\mathbf{x})\right\}
$$

is called the Fenchel conjugate (or conjugate) of f.

Conjugation of functions

Definition

Given a proper, closed and convex function $f: \mathcal{Q} \rightarrow \mathbb{R} \cup\{+\infty\}$, the function $f^{*}: Q^{*} \rightarrow \mathbb{R} \cup\{+\infty\}$ such that

$$
f^{*}(\mathbf{y})=\sup _{\mathbf{x} \in \operatorname{dom}(f)}\left\{\mathbf{y}^{T} \mathbf{x}-f(\mathbf{x})\right\}
$$

is called the Fenchel conjugate (or conjugate) of f.

Properties

- f^{*} is a convex and lower semicontinuous function by construction as the supremum of affine functions of \mathbf{y}.
- The conjugate of the conjugate of a convex function f is the same function f; i.e., $f^{* *}=f$ for $f \in \mathcal{F}(\mathcal{Q})$.
- The conjugate of the conjugate of a non-convex function f is its lower convex envelope when \mathcal{Q} is compact:
- $f^{* *}(\mathbf{x})=\sup \{g(\mathbf{x}): g$ is convex and $g \leq f, \forall \mathbf{x} \in \mathcal{Q}\}$.
- For closed convex f, μ-strong convexity w.r.t. $\|\cdot\|$ is equivalent to $\frac{1}{\mu}$ smoothness of f^{*} w.r.t. $\|\cdot\|_{*}$.
- Recall dual norm: $\|\mathbf{y}\|_{*}=\sup _{\mathbf{x}}\{\langle\mathbf{x}, \mathbf{y}\rangle:\|\mathbf{x}\| \leq 1\}$.
- See for example Theorem 3 in [16].

Examples

ℓ_{2}-norm-squared
$f(\mathbf{x})=\frac{\lambda}{2}\|\mathbf{x}\|^{2} \Rightarrow f^{*}(\mathbf{y})=\max _{\mathbf{x}}\langle\mathbf{y}, \mathbf{x}\rangle-\frac{\lambda}{2}\|\mathbf{x}\|^{2}$.

- Take the derivative and equate to $0: 0=\mathbf{y}-\lambda \mathbf{x} \Longleftrightarrow \mathbf{x}=\frac{1}{\lambda} \mathbf{y} \Longleftrightarrow f^{*}(\mathbf{y})=\frac{1}{\lambda}\|\mathbf{y}\|^{2}-\frac{1}{2 \lambda}\|\mathbf{y}\|^{2}=\frac{1}{2 \lambda}\|\mathbf{y}\|^{2}$.

ℓ_{1}-norm

$f(\mathbf{x})=\lambda\|\mathbf{x}\|_{1} \Rightarrow f^{*}(\mathbf{y})=\max _{\mathbf{x}}\langle\mathbf{y}, \mathbf{x}\rangle-\lambda\|\mathbf{x}\|_{1}$.

- By definition of the ℓ_{1}-norm: $f^{*}(\mathbf{y})=\max _{\mathbf{x}} \sum_{i=1}^{n} y_{i} x_{i}-\lambda\left|x_{i}\right|=\max _{\mathbf{x}} \sum_{i=1}^{n} y_{i} \operatorname{sign}\left(x_{i}\right)\left|x_{i}\right|-\lambda\left|x_{i}\right|$.
- By inspection:
- If all $\left|y_{i}\right| \leq \lambda$, then $\forall i,\left(y_{i} \operatorname{sign}\left(x_{i}\right)-\lambda\right)\left|x_{i}\right| \leq 0$. Taking $\mathbf{x}=0$ gives the maximum value: $f^{*}(\mathbf{y})=0$.
- If for at least one $i,\left|y_{i}\right|>\lambda,\left(y_{i} \operatorname{sign}\left(x_{i}\right)-\lambda\right)\left|x_{i}\right| \rightarrow+\infty$ as $\left|x_{i}\right| \rightarrow+\infty$.
$\circ f^{*}(\mathbf{y})=\delta_{\mathbf{y}:\|\cdot\|_{\infty} \leq \lambda}(\mathbf{y})=\left\{\begin{array}{l}0, \text { if }\|\mathbf{y}\|_{\infty} \leq \lambda \\ +\infty, \text { if }\|\mathbf{y}\|_{\infty}>\lambda\end{array}\right.$

Remark:
 - See advanced material at the end for non-convex examples, such as $f(\mathbf{x})=\|\mathbf{x}\|_{0}$.

General nonsmooth problems

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+g(\mathbf{A x})
$$

- By Fenchel-conjugation, we have $g(\mathbf{A x})=\max _{\mathbf{y}}\langle\mathbf{A x}, \mathbf{y}\rangle-g^{*}(\mathbf{y})$, where g^{*} is the conjugate of g.
- Min-max formulation:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+g(\mathbf{A} \mathbf{x})=\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\mathbf{y}}\left\{\Phi(\mathbf{x}, \mathbf{y}):=f(\mathbf{x})+\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-g^{*}(\mathbf{y})\right\}
$$

An example with linear constraints

- If $g(\mathbf{A x})=\delta_{\{\mathbf{b}\}}(\mathbf{A x})= \begin{cases}0, & \text { if } \mathbf{A x}=\mathbf{b}, \\ +\infty, & \text { if } \mathbf{A x} \neq \mathbf{b},\end{cases}$

$$
\Rightarrow g^{*}(\mathbf{y})=\max _{\mathbf{x}}\langle\mathbf{y}, \mathbf{x}\rangle-\delta_{\{\mathbf{b}\}}(\mathbf{x})=\max _{\mathbf{x}: \mathbf{x}=\mathbf{b}}\langle\mathbf{y}, \mathbf{x}\rangle=\langle\mathbf{y}, \mathbf{b}\rangle .
$$

- We reach the minimax formulation (or the so-called "Lagrangian") via conjugation:

$$
\min _{\mathbf{x}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}=\min _{\mathbf{x}} f(\mathbf{x})+g(\mathbf{A x})=\min _{\mathbf{x}} \max _{\mathbf{y}} f(\mathbf{x})+\langle\mathbf{A} \mathbf{x}-\mathbf{b}, \mathbf{y}\rangle .
$$

A special case in minimax optimization

Bilinear min-max template

$$
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} f(\mathbf{x})+\langle\mathbf{A x}, \mathbf{y}\rangle-h(\mathbf{y})
$$

where $\mathcal{X} \subseteq R^{p}$ and $\mathcal{Y} \subseteq \mathbb{R}^{n}$.

- $f: \mathcal{X} \rightarrow \mathbb{R}$ is convex.
- $h: \mathcal{Y} \rightarrow \mathbb{R}$ is convex.

Example: Sparse recovery

An example from sparseland $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$: constrained formulation

The basis pursuit denoising (BPDN) formulation is given by

$$
\begin{equation*}
\mathbf{x}^{\star} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{1}:\|\mathbf{A x}-\mathbf{b}\|_{2} \leq\|\mathbf{w}\|_{2},\|\mathbf{x}\|_{\infty} \leq 1\right\} . \tag{BPDN}
\end{equation*}
$$

A primal problem prototype

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}-\mathbf{b} \in \mathcal{K} \mathbf{x} \in \mathcal{X}\}
$$

The above template captures BPDN formulation with

- $f(\mathbf{x})=\|\mathbf{x}\|_{1}$.
- $\mathcal{K}=\left\{\|\mathbf{u}\| \in \mathbb{R}^{n}:\|\mathbf{u}\| \leq\|\mathbf{w}\|_{2}\right\}$.
- $\mathcal{X}=\left\{\mathbf{x} \in \mathbb{R}^{p}:\|\mathbf{x}\|_{\infty} \leq 1\right\}$.

An alternative formulation

A primal problem prototype

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\}, \tag{4}
\end{equation*}
$$

- f is a proper, closed and convex function
- \mathcal{X} and \mathcal{K} are nonempty, closed convex sets
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are known
- An optimal solution \mathbf{x}^{\star} to (4) satisfies $f\left(\mathbf{x}^{\star}\right)=f^{\star}, \mathbf{A} \mathbf{x}^{\star}-\mathbf{b} \in \mathcal{K}$ and $\mathbf{x}^{\star} \in \mathcal{X}$

A simplified template without loss of generality

$$
\begin{equation*}
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\} \tag{5}
\end{equation*}
$$

- f is a proper, closed and convex function
- $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are known
- An optimal solution \mathbf{x}^{\star} to (5) satisfies $f\left(\mathbf{x}^{\star}\right)=f^{\star}, \mathbf{A} \mathbf{x}^{\star}=\mathbf{b}$

Reformulation between templates

A primal problem template

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}-\mathbf{b} \in \mathcal{K}, \mathbf{x} \in \mathcal{X}\} .
$$

First step: Let $\mathbf{r}_{1}=\mathbf{A x}-\mathbf{b} \in \mathbb{R}^{n}$ and $\mathbf{r}_{2}=\mathbf{x} \in \mathbb{R}^{p}$.

$$
\min _{\mathbf{x}, \mathbf{r}_{1}, \mathbf{r}_{2}}\left\{f(\mathbf{x}): \mathbf{r}_{1} \in \mathcal{K}, \mathbf{r}_{2} \in \mathcal{X}, \mathbf{A} \mathbf{x}-\mathbf{b}=\mathbf{r}_{1}, \mathbf{x}=\mathbf{r}_{2}\right\} .
$$

\circ Define $\mathbf{z}=\left[\begin{array}{l}\mathbf{x} \\ \mathbf{r}_{1} \\ \mathbf{r}_{2}\end{array}\right] \in \mathbb{R}^{2 p+n}, \overline{\mathbf{A}}=\left[\begin{array}{ccc}\mathbf{A} & -\mathbf{I}_{n \times n} & \mathbf{0}_{n \times p} \\ \mathbf{I}_{p \times p} & \mathbf{0}_{p \times n} & -\mathbf{I}_{p \times p}\end{array}\right], \overline{\mathbf{b}}=\left[\begin{array}{l}\mathbf{b} \\ \mathbf{0}\end{array}\right], \bar{f}(\mathbf{z})=f(\mathbf{x})+\delta_{\mathcal{K}}\left(\mathbf{r}_{1}\right)+\delta_{\mathcal{X}}\left(\mathbf{r}_{2}\right)$, where $\delta_{\mathcal{X}}(\mathbf{x})=0$, if $\mathbf{x} \in \mathcal{X}$, and $\delta_{\mathcal{X}}(\mathbf{x})=+\infty, \mathrm{o} / \mathrm{w}$.
The simplified template

$$
\min _{\mathbf{z} \in \mathbb{R}^{2 p+n}}\{\bar{f}(\mathbf{z}): \overline{\mathbf{A}} \mathbf{z}=\overline{\mathbf{b}}\}
$$

From constrained formulation back to minimax

A general template

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}
$$

Other examples:

- Standard convex optimization formulations: linear programming, convex quadratic programming, second order cone programming, semidefinite programming and geometric programming.
- Reformulations of existing unconstrained problems via convex splitting: composite convex minimization, consensus optimization,...

Formulating as min-max

$$
\begin{gathered}
\max _{\mathbf{y} \in \mathbb{R}^{n}}\langle\mathbf{y}, \mathbf{A x}-\mathbf{b}\rangle= \begin{cases}0, & \text { if } \mathbf{A} \mathbf{x}=\mathbf{b}, \\
+\infty, & \text { if } \mathbf{A x} \neq \mathbf{b} .\end{cases} \\
\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A x}=\mathbf{b}\}=\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\mathbf{y} \in \mathbb{R}^{n}}\{\Phi(\mathbf{x}, \mathbf{y}):=f(\mathbf{x})+\langle\mathbf{y}, \mathbf{A x}-\mathbf{b}\rangle\}
\end{gathered}
$$

Dual problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A x}=\mathbf{b}\}=\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\mathbf{y} \in \mathbb{R}^{n}}\{\Phi(\mathbf{x}, \mathbf{y}):=f(\mathbf{x})+\langle\mathbf{y}, \mathbf{A x}-\mathbf{b}\rangle\}
$$

- We define the dual problem

$$
\max _{\mathbf{y} \in \mathbb{R}^{n}} d(\mathbf{y}):=\max _{\mathbf{y} \in \mathbb{R}^{n}}\{\underbrace{\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})+\langle\mathbf{y}, \mathbf{A x}-\mathbf{b}\rangle}_{d(\mathbf{y})}\} .
$$

Concavity of dual problem

Even if $f(\mathbf{x})$ is not convex, $d(\mathbf{y})$ is concave:

- For each $\mathbf{x}, d(\mathbf{y})$ is linear; i.e., it is both convex and concave.
- Pointwise minimum of concave functions is still concave.

Remark: o If we can exchange min and max, we obtain a concave maximization problem.

Example: Nonsmoothness of the dual function

- Consider a constrained convex problem:

$$
\begin{array}{ll}
\min _{\mathbf{x} \in \mathbb{R}^{3}} & \left\{f(\mathbf{x}):=x_{1}^{2}+2 x_{2}\right\} \\
\text { s.t. } & 2 x_{3}-x_{1}-x_{2}=1, \\
& \mathbf{x} \in \mathcal{X}:=[-2,2] \times[-2,2] \times[0,2] .
\end{array}
$$

- The dual function is concave and nonsmooth as written and then illustrated below.

$$
d(\lambda):=\min _{\mathbf{x} \in \mathcal{X}}\left\{x_{1}^{2}+2 x_{2}+\lambda\left(2 x_{3}-x_{1}-x_{2}-1\right)\right\}
$$

Exchanging min and max: A dangerous proposal

- Weak duality:

A proof of weak duality

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A x}=\mathbf{b}\}=\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\mathbf{y} \in \mathbb{R}^{n}}\{\Phi(\mathbf{x}, \mathbf{y}):=f(\mathbf{x})+\langle\mathbf{y}, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\}
$$

- Since $\mathbf{A x} \mathbf{x}^{\star}=\mathbf{b}$, it holds for any \mathbf{y}

$$
\begin{aligned}
\Phi\left(\mathbf{x}^{\star}, \mathbf{y}\right)=f^{\star} & =f\left(\mathbf{x}^{\star}\right)+\left\langle\mathbf{y}, \mathbf{A} \mathbf{x}^{\star}-\mathbf{b}\right\rangle \\
& \geq \min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x})+\langle\mathbf{y}, \mathbf{A} \mathbf{x}-\mathbf{b}\rangle\} \\
& =\min _{\mathbf{x} \in \mathbb{R}^{p}} \Phi(\mathbf{x}, \mathbf{y}) .
\end{aligned}
$$

- Take maximum of both sides in \mathbf{y} and note that f^{\star} is independent of \mathbf{y} :

$$
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\mathbf{y} \in \mathbb{R}^{n}} \Phi(\mathbf{x}, \mathbf{y}) \geq \max _{\mathbf{y} \in \mathbb{R}^{n}} \min _{\mathbf{x} \in \mathbb{R}^{p}} \Phi(\mathbf{x}, \mathbf{y})=: \max _{\mathbf{y} \in \mathbb{R}^{n}} d(\mathbf{y})=d^{\star}
$$

Strong duality and saddle points

Strong duality

$$
f^{\star}=f\left(\mathbf{x}^{\star}\right)=\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\mathbf{y} \in \mathbb{R}^{n}} \Phi(\mathbf{x}, \mathbf{y})=\max _{\mathbf{y} \in \mathbb{R}^{n}} \min _{\mathbf{x} \in \mathbb{R}^{p}} \Phi(\mathbf{x}, \mathbf{y})=: \max _{\mathbf{y} \in \mathbb{R}^{n}} d(\mathbf{y})=d^{\star}
$$

Under strong duality and assuming existence of $\mathbf{x}^{\star}, \Phi(\mathbf{x}, \mathbf{y})$ has a saddle point. We have primal and dual optimal values coincide, i.e., $f^{\star}=d^{\star}$.

Strong duality and saddle points

Strong duality

$$
f^{\star}=f\left(\mathbf{x}^{\star}\right)=\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\mathbf{y} \in \mathbb{R}^{n}} \Phi(\mathbf{x}, \mathbf{y})=\max _{\mathbf{y} \in \mathbb{R}^{n}} \min _{\mathbf{x} \in \mathbb{R}^{p}} \Phi(\mathbf{x}, \mathbf{y})=: \max _{\mathbf{y} \in \mathbb{R}^{n}} d(\mathbf{y})=d^{\star}
$$

Under strong duality and assuming existence of $\mathbf{x}^{\star}, \Phi(\mathbf{x}, \mathbf{y})$ has a saddle point. We have primal and dual optimal values coincide, i.e., $f^{\star}=d^{\star}$.

Recall saddle point / LNE

A point $\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right) \in \mathbb{R}^{p} \times \mathbb{R}^{n}$ is called a saddle point of Φ if

$$
\Phi\left(\mathbf{x}^{\star}, \mathbf{y}\right) \leq \Phi\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right) \leq \Phi\left(\mathbf{x}, \mathbf{y}^{\star}\right), \forall \mathbf{x} \in \mathbb{R}^{p}, \mathbf{y} \in \mathbb{R}^{n} .
$$

Toy example: Strong duality

Primal problem

- Consider the following primal minimization problem: $\min _{\mathbf{x}} P(\mathbf{x}):=f(\mathbf{x})+g(\mathbf{x}):=\frac{1}{2}\|\mathbf{x}\|^{2}+\|\mathbf{x}\|_{1}$
- Using conjugation and strong duality

$$
\begin{array}{rlrl}
P\left(\mathbf{x}^{\star}\right)=\min _{\mathbf{x}} P(\mathbf{x}) & =\min _{\mathbf{x}} \max _{\mathbf{y}} f(\mathbf{x})+\langle\mathbf{x}, \mathbf{y}\rangle-g^{*}(\mathbf{y}), & & \text { by conjugation } \\
& =\max _{\mathbf{y}}-g^{*}(\mathbf{y})+\min _{\mathbf{x}} f(\mathbf{x})+\langle\mathbf{x}, \mathbf{y}\rangle, & & \text { by changing min-max } \\
& =\max _{\mathbf{y}}-g^{*}(\mathbf{y})-\max _{\mathbf{x}}\langle\mathbf{x},-\mathbf{y}\rangle-f(\mathbf{x}), & \text { by } \min f=-\max -f \\
& =\max _{\mathbf{y}}-g^{*}(\mathbf{y})-f^{*}(-\mathbf{y}), & & \text { by conjugation. }
\end{array}
$$

Dual problem

- Dual problem: $d^{\star}=\max _{\mathbf{y}} d(\mathbf{y})=-g^{*}(\mathbf{y})-f^{*}(-\mathbf{y})$
- Recall $f^{*}(-\mathbf{y})=\frac{1}{2}\|\mathbf{y}\|^{2}$ and $g^{*}(\mathbf{y})=\delta_{\mathbf{y}:\|\mathbf{y}\|_{\infty} \leq 1}(\mathbf{y})$.

Toy example: Strong duality

$$
\text { Primal problem: } \min _{\mathbf{x}} P(\mathbf{x})=\frac{1}{2}\|\mathbf{x}\|^{2}+\|\mathbf{x}\|_{1}
$$

Dual problem: $\max _{\mathbf{y}}-\frac{1}{2}\|\mathbf{y}\|^{2}-\delta_{\mathbf{y}:\|\mathbf{y}\|_{\infty} \leq 1}(\mathbf{y})$

Back to convex-concave: Necessary and sufficient condition for strong duality

- Existence of a saddle point is not automatic even in convex-concave setting!
- Recall the minimax template:

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} \max _{\mathbf{y} \in \mathbb{R}^{n}}\{\Phi(\mathbf{x}, \mathbf{y}):=f(\mathbf{x})+\langle\mathbf{y}, \mathbf{A x}-\mathbf{b}\rangle\}
$$

Theorem (Necessary and sufficient optimality condition)

Under the Slater's condition: relint $(\operatorname{dom} f) \cap\{\mathbf{x}: \mathbf{A x}=\mathbf{b}\} \neq \emptyset$, strong duality holds, where the primal and dual problems are given by

$$
f^{\star}:=\left\{\begin{array}{ll}
\min _{\mathbf{x} \in \mathbb{R}^{p}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{A x}=\mathbf{b},
\end{array} \quad \text { and } \quad d^{\star}:=\max _{\mathbf{y} \in \mathbb{R}^{n}} d(\mathbf{y}) .\right.
$$

Remarks: \circ By definition of f^{\star} and d^{\star}, we always have $d^{\star} \leq f^{\star}$ (weak duality).

- If a primal solution exists and the Slater's condition holds, we have $d^{\star}=f^{\star}$ (strong duality).

Slater's qualification condition

- Denote relint $(\operatorname{dom} f)$ the relative interior of the domain.
- The Slater condition requires

$$
\begin{equation*}
\operatorname{relint}(\operatorname{dom} f) \cap\{\mathbf{x}: \quad \mathbf{A x}=\mathbf{b}\} \neq \emptyset \tag{6}
\end{equation*}
$$

Special cases

- If $\operatorname{dom} f=\mathbb{R}^{p}$, then $(6) \Leftrightarrow \exists \overline{\mathbf{x}}: \mathbf{A} \overline{\mathbf{x}}=\mathbf{b}$
- If $\operatorname{dom} f=\mathbb{R}^{p}$ and instead of $\mathbf{A x}=\mathbf{b}$, we have the feasible set $\{\mathbf{x}: h(\mathbf{x}) \leq 0\}$, where h is $\mathbb{R}^{p} \rightarrow R^{q}$ is convex, then

$$
(6) \Leftrightarrow \exists \overline{\mathbf{x}}: h(\overline{\mathbf{x}})<0
$$

Example: Slater's condition

Example

Let us consider solving $\min _{\mathbf{x} \in \mathcal{D}_{\alpha}} f(\mathbf{x})$ and so the feasible set is $\mathcal{D}_{\alpha}:=\mathcal{X} \cap \mathcal{A}_{\alpha}$, where

$$
\mathcal{X}:=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}, \mathcal{A}_{\alpha}:=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}+x_{2}=\alpha\right\}
$$

where $\alpha \in \mathbb{R}$.

Example: Slater's condition

Example

Let us consider solving $\min _{\mathbf{x} \in \mathcal{D}_{\alpha}} f(\mathbf{x})$ and so the feasible set is $\mathcal{D}_{\alpha}:=\mathcal{X} \cap \mathcal{A}_{\alpha}$, where

$$
\mathcal{X}:=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2} \leq 1\right\}, \mathcal{A}_{\alpha}:=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}+x_{2}=\alpha\right\},
$$

where $\alpha \in \mathbb{R}$.
Two cases where Slater's condition holds and does not hold

$$
\mathcal{D}_{1 / 2} \text { satisfies Slater's condition }-\mathcal{D}_{\sqrt{2}} \text {-does not satisfy Slater's condition }
$$

Performance of optimization algorithms

$$
f^{\star}:=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b},\}
$$

Exact vs. approximate solutions

- Computing an exact solution x^{\star} to (Affine-Constrained) is impracticable
- Algorithms seek $\mathbf{x}_{\epsilon}^{\star}$ that approximates x^{\star} up to ϵ in some sense

```
A performance metric: Time-to-reach \epsilon
time-to-reach \epsilon = number of iterations to reach \epsilon }\times\mathrm{ per iteration time
```


A key issue: Number of iterations to reach ϵ

The notion of ϵ-accuracy is elusive in constrained optimization!

Numerical ϵ-accuracy

- Unconstrained case: All iterates are feasible (no advantage from infeasibility)!

$$
f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} \leq \epsilon
$$

$$
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x})
$$

- Constrained case: We need to also measure the infeasibility of the iterates!

$$
\begin{gather*}
f^{\star}-f\left(\mathbf{x}_{\epsilon}^{\star}\right) \leq \epsilon!!! \\
f^{\star}=\min _{\mathbf{x} \in \mathbb{R}^{p}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\} \tag{7}
\end{gather*}
$$

Our definition of ϵ-accurate solutions [22]

Given a numerical tolerance $\epsilon \geq 0$, a point $\mathbf{x}_{\epsilon}^{\star} \in \mathbb{R}^{p}$ is called an ϵ-solution of (7) if

$$
\begin{cases}f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} & \leq \epsilon \text { (objective residual) } \\ \left\|\mathbf{A} \mathbf{x}_{\epsilon}^{\star}-\mathbf{b}\right\| & \leq \epsilon \text { (feasibility gap) }\end{cases}
$$

- When \mathbf{x}^{\star} is unique, we can also obtain $\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}^{\star}\right\| \leq \epsilon$ (iterate residual).

Numerical ϵ-accuracy

Constrained problems

Given a numerical tolerance $\epsilon \geq 0$, a point $\mathbf{x}_{\epsilon}^{\star} \in \mathbb{R}^{p}$ is called an ϵ-solution of (7) if

$$
\begin{cases}f\left(\mathbf{x}_{\epsilon}^{\star}\right)-f^{\star} & \leq \epsilon \text { (objective residual) } \\ \left\|\mathbf{A} \mathbf{x}_{\epsilon}^{\star}-\mathbf{b}\right\| & \leq \epsilon \text { (feasibility gap) }\end{cases}
$$

- When \mathbf{x}^{\star} is unique, we can also obtain $\left\|\mathbf{x}_{\epsilon}^{\star}-\mathbf{x}^{\star}\right\| \leq \epsilon$ (iterate residual).

General minimax problems

Since duality gap is 0 at the solution, we measure the primal-dual gap

$$
\begin{equation*}
\operatorname{Gap}(\overline{\mathbf{x}}, \overline{\mathbf{y}})=\max _{\mathbf{y} \in \mathcal{Y}} \Phi(\overline{\mathbf{x}}, \mathbf{y})-\min _{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \overline{\mathbf{y}}) \leq \epsilon \tag{8}
\end{equation*}
$$

Remarks: $\quad \circ \epsilon$ can be different for the objective, feasibility gap, or the iterate residual.

- It is easy to show $\operatorname{Gap}(\mathbf{x}, \mathbf{y}) \geq 0$ and $\operatorname{Gap}(\overline{\mathbf{x}}, \overline{\mathbf{y}})=0$ iff $(\overline{\mathbf{x}}, \overline{\mathbf{y}})$ is a saddle point.

Primal-dual gap function for nonsmooth minimization

$$
\min _{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})+g(\mathbf{A} \mathbf{x})=\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \underbrace{f(\mathbf{x})+\langle\mathbf{A} \mathbf{x}, \mathbf{y}\rangle-g^{*}(\mathbf{y})}_{\Phi(\mathbf{x}, \mathbf{y})}=\max _{\mathbf{y} \in \mathcal{Y}} \min _{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})+\langle\mathbf{A x}, \mathbf{y}\rangle-g^{*}(\mathbf{y})
$$

- Primal problem: $\min _{\mathbf{x} \in \mathcal{X}} P(\mathbf{x})$ where

$$
P(\mathbf{x})=\max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}) .
$$

- Dual problem: $\max _{\mathbf{y} \in \mathcal{Y}} d(\mathbf{y})$ where

$$
d(\mathbf{y})=\min _{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \mathbf{y}) .
$$

- The primal-dual gap, i.e., $\operatorname{Gap}(\overline{\mathbf{x}}, \overline{\mathbf{y}})$, is literally (primal value at $\overline{\mathbf{x}})-($ dual value at $\overline{\mathbf{y}})$:

$$
\operatorname{Gap}(\overline{\mathbf{x}}, \overline{\mathbf{y}})=P(\overline{\mathbf{x}})-d(\overline{\mathbf{y}})=\max _{\mathbf{y} \in \mathcal{Y}} \Phi(\overline{\mathbf{x}}, \mathbf{y})-\min _{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \overline{\mathbf{y}}) .
$$

Toy example for nonnegativity of gap

- $P(\mathbf{x})=\frac{1}{2}\|\mathbf{x}\|^{2}+\|\mathbf{x}\|_{1}$
- $d(\mathbf{y})=-\frac{1}{2}\|\mathbf{y}\|^{2}-\delta_{\mathbf{y}}:\|\mathbf{y}\|_{\infty} \leq 1(\mathbf{y})$

Recall the indicator function
$\delta_{\mathbf{y}}:\|\mathbf{y}\|_{\infty} \leq 1(\mathbf{y})=\left\{\begin{array}{l}0, \text { if }\|\mathbf{y}\|_{\infty} \leq 1 \\ +\infty, \text { if }\|\mathbf{y}\|_{\infty}>1\end{array}\right.$

Primal-dual gap function in the general case

$$
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})=\max _{\mathbf{y} \in \mathcal{Y}} \min _{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \mathbf{y})
$$

- Saddle point $\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)$ is such that $\forall \mathbf{x} \in \mathbb{R}^{p}, \forall \mathbf{y} \in \mathbb{R}^{n}$:

$$
\Phi\left(\mathbf{x}^{\star}, \mathbf{y}\right) \stackrel{(*)}{\leq} \Phi\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right) \stackrel{(* *)}{\leq} \Phi\left(\mathbf{x}, \mathbf{y}^{\star}\right)
$$

- Nonnegativity of Gap:

$$
\begin{array}{rlrl}
\operatorname{Gap}(\overline{\mathbf{x}}, \overline{\mathbf{y}}) & =\max _{\mathbf{y} \in \mathcal{X}} \Phi(\overline{\mathbf{x}}, \mathbf{y})-\min _{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \overline{\mathbf{y}}) \\
& \geq \Phi\left(\overline{\mathbf{x}}, \mathbf{y}^{\star}\right)-\min _{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \overline{\mathbf{y}}), & \quad \text { by the definition of maximization } \\
& \geq \Phi\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)-\min _{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \overline{\mathbf{y}}), & \text { by the inequality }(* *) \\
& \geq \Phi\left(\mathbf{x}^{\star}, \overline{\mathbf{y}}\right)-\min _{\mathbf{x} \in \mathcal{X}} \Phi(\mathbf{x}, \overline{\mathbf{y}}), & & \text { by the inequality }(*) \\
& \geq 0, & & \text { by the definition of minimization. }
\end{array}
$$

- If $(\overline{\mathbf{x}}, \overline{\mathbf{y}})=\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)$, then all the inequalities will be equalities and $\operatorname{Gap}(\overline{\mathbf{x}}, \overline{\mathbf{y}})=0$.

Optimality conditions for minimax

Saddle point

We say $\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)$ is a primal-dual solution corresponding to primal and dual problems

$$
f^{\star}:=\left\{\begin{array}{ll}
\min _{\mathbf{x} \in \mathbb{R}^{p}} & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{A x}=\mathbf{b},
\end{array} \quad \text { and } \quad d^{\star}:=\max _{\mathbf{y} \in \mathbb{R}^{n}} d(\mathbf{y})=\max _{\mathbf{y} \in \mathbb{R}^{n}} \min _{\mathbf{x}} \Phi(\mathbf{x}, \mathbf{y})\right.
$$

if it is a saddle point of $\Phi(\mathbf{x}, \mathbf{y})=f(\mathbf{x})+\langle\mathbf{y}, \mathbf{A x}-\mathbf{b}\rangle$:

$$
\Phi\left(\mathbf{x}^{\star}, \mathbf{y}\right) \leq \Phi\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right) \leq \Phi\left(\mathbf{x}, \mathbf{y}^{\star}\right), \forall \mathbf{x} \in \mathbb{R}^{p}, \mathbf{y} \in \mathbb{R}^{n}
$$

Karush-Khun-Tucker (KKT) conditions

Under our assumptions, an equivalent characterization of $\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)$ is via the KKT conditions of the problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{p}} f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}
$$

which reads

$$
\left\{\begin{array}{l}
0 \in \partial_{\mathbf{x}} \Phi\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)=\mathbf{A}^{T} \mathbf{y}^{\star}+\partial f\left(\mathbf{x}^{\star}\right), \\
0=\nabla_{\mathbf{y}} \Phi\left(\mathbf{x}^{\star}, \lambda^{\star}\right)=\mathbf{A} \mathbf{x}^{\star}-\mathbf{b}
\end{array}\right.
$$

A naive proposal: Gradient descent-ascent (GDA)

Towards algorithms for minimax optimization

$$
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})
$$

We assume that

- $\Phi(\cdot, \mathbf{y})$ is convex,
- $\Phi(\mathbf{x}, \cdot)$ is concave,
- Φ is smooth in the following sense:

$$
\left\|\left[\begin{array}{c}
\nabla_{\mathbf{x}} \Phi\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) \tag{9}\\
-\nabla_{\mathbf{y}} \Phi\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)
\end{array}\right]-\left[\begin{array}{c}
\nabla_{\mathbf{x}} \Phi\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \\
-\nabla_{\mathbf{y}} \Phi\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)
\end{array}\right]\right\| \leq L\left\|\left[\begin{array}{l}
\mathbf{x}_{1}-\mathbf{x}_{2} \\
\mathbf{y}_{1}-\mathbf{y}_{2}
\end{array}\right]\right\| .
$$

- Let us try to use gradient descent for \mathbf{x}, gradient ascent for \mathbf{y} to obtain a solution

GDA
1. Choose $\mathbf{x}^{0}, \mathbf{y}^{0}$ and τ.
2.
\quad For $k=0,1, \cdots$, perform:
$\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\tau \nabla_{\mathbf{x}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$.
$\quad \mathbf{y}^{k+1}:=\mathbf{y}^{k}+\tau \nabla_{\mathbf{y}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$.

GDA on a simple problem

Min-max problem

$$
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{v} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y}) .
$$

SimGDA

1. Choose $\mathbf{x}^{0}, \mathbf{y}^{0}$ and τ.
2. For $k=0,1, \cdots$, perform:
$\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\tau \nabla_{\mathbf{x}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$.
$\mathbf{y}^{k+1}:=\mathbf{y}^{k}+\tau \nabla_{\mathbf{y}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$.

AltGDA

1. Choose $\mathbf{x}^{0}, \mathbf{y}^{0}$ and τ.
2. For $k=0,1, \cdots$, perform:
$\mathbf{x}^{k+1}:=\mathbf{x}^{k}-\tau \nabla_{\mathbf{x}} \Phi\left(\mathbf{x}^{k}, \mathbf{y}^{k}\right)$.
$\mathbf{y}^{k+1}:=\mathbf{y}^{k}+\tau \nabla_{\mathbf{y}} \Phi\left(\mathbf{x}^{k+1}, \mathbf{y}^{k}\right)$.

Example [9]

Let $\Phi(x, y)=x y, \mathcal{X}=\mathcal{Y}=\mathbb{R}$, then,

- for the iterates of $\operatorname{SimGDA}: x_{k+1}^{2}+y_{k+1}^{2}=\left(1+\eta^{2}\right)\left(x_{k}^{2}+y_{k}^{2}\right)$,
- for the iterates of AltGDA: $x_{k+1}^{2}+y_{k+1}^{2}=C\left(x_{0}^{2}+y_{0}^{2}\right)$.
- SimGDA diverges and AltGDA does not converge!

Practical performance

$$
\min _{x \in \mathbb{R}} \max _{y \in \mathbb{R}} x y
$$

- Simultaneous GDA

- Alternating GDA

Between convex-concave and nonconvex-nonconcave

Nonconvex-concave problems

$$
\min _{\mathbf{x} \in \mathcal{X}} \max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})
$$

- $\Phi(\mathbf{x}, \mathbf{y})$ is nonconvex in \mathbf{x}, concave in \mathbf{y}, smooth in \mathbf{x} and \mathbf{y}.

Recall

Define $f(\mathbf{x})=\max _{\mathbf{y} \in \mathcal{Y}} \Phi(\mathbf{x}, \mathbf{y})$.

- Gradient descent applied to nonconvex f requires $\mathcal{O}\left(\epsilon^{-2}\right)$ iterations to give an ϵ-stationary point.
- (Sub)gradient of f can be computed using Danskin's theorem:

$$
\nabla_{\mathbf{x}} \Phi\left(\cdot, y^{\star}(\cdot)\right) \in \partial f(\cdot), \text { where } y^{\star}(\cdot) \in \underset{\mathbf{y} \in \mathcal{Y}}{\arg \max } \Phi(\cdot, \mathbf{y})
$$

which is tractable since Φ is concave in \mathbf{y} [19].
Remark: ○ "Conceptually" much easier than nonconvex-nonconcave case.

Epilogue

Gradient complexity

Optimality measure
Reference

convex-concave	$\mathcal{O}\left(\epsilon^{-1}\right)^{1}$	ϵ optimality w.r.t. duality gap	Nemirovski, 2004; Chambolle \& Pock, 2011;
nonconvex-concave	$\tilde{\mathcal{O}}\left(\epsilon^{-2.5}\right)^{3}$	ϵ-stationarity w.r.t. gradient mapping norm	Tran-Dinh \& Cevher, 2014. ${ }^{2}$
nonconvex-nonconcave	HARD	HARD	Lin, Jin, \& Jordan, 2020. ${ }^{4}$
		Daskalakis, Stratis, \& Zampetakis, 2020;	
Hsieh, Mertikopoulos, \& Cevher, 2020.5 ${ }^{5}$			

[^0]
A new hope

$$
\min _{x \in \mathbb{R}} \max _{y \in \mathbb{R}} x y
$$

- Next lecture: Some algorithms that actually converge!
- Convergence of the sequence:

There exists $\mathbf{z}^{\star}=\left(\mathbf{x}^{\star}, \mathbf{y}^{\star}\right)$, such that $\mathbf{z}_{k} \rightarrow \mathbf{z}^{\star}$.

- Convergence rate:

$$
\operatorname{Gap}\left(\frac{1}{K} \sum_{k=1}^{K} \mathbf{x}^{k}, \frac{1}{K} \sum_{k=1}^{K} \mathbf{y}^{k}\right) \leq \mathcal{O}\left(\frac{1}{K}\right)
$$

Wrap up!

- Try to finish Homework \#2...

A convex proto-problem for structured sparsity

A combinatorial approach for estimating \mathbf{x}^{\natural} from $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$

We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

$$
\begin{equation*}
\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{s}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa,\|\mathbf{x}\|_{\infty} \leq 1\right\} \tag{s}
\end{equation*}
$$

with some $\kappa \geq 0$. If $\kappa=\|\mathbf{w}\|_{2}$, then the structured sparse \mathbf{x}^{\natural} is a feasible solution.

Sparsity and structure together [7]

Given some weights $d \in \mathbb{R}^{d}, e \in \mathbb{R}^{p}$ and an integer input $c \in \mathbb{Z}^{l}$, we define

$$
\|\mathbf{x}\|_{s}:=\min _{\omega}\left\{\boldsymbol{d}^{T} \omega+e^{T} s: M\left[\begin{array}{c}
\omega \\
s
\end{array}\right] \leq \boldsymbol{c}, \mathbb{1}_{\operatorname{supp}(\mathbf{x})}=s, \boldsymbol{\omega} \in\{0,1\}^{d}\right\}
$$

for all feasible \mathbf{x}, ∞ otherwise. The parameter $\boldsymbol{\omega}$ is useful for latent modeling.

A convex proto-problem for structured sparsity

A combinatorial approach for estimating \mathbf{x}^{\natural} from $\mathbf{b}=\mathbf{A} \mathbf{x}^{\natural}+\mathbf{w}$

We may consider the sparsest estimator or its surrogate with a valid sparsity pattern:

$$
\begin{equation*}
\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \mathbb{R}^{p}}\left\{\|\mathbf{x}\|_{s}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa,\|\mathbf{x}\|_{\infty} \leq 1\right\} \tag{s}
\end{equation*}
$$

with some $\kappa \geq 0$. If $\kappa=\|\mathbf{w}\|_{2}$, then the structured sparse \mathbf{x}^{\natural} is a feasible solution.

Sparsity and structure together [7]

Given some weights $d \in \mathbb{R}^{d}, e \in \mathbb{R}^{p}$ and an integer input $c \in \mathbb{Z}^{l}$, we define

$$
\|\mathbf{x}\|_{s}:=\min _{\boldsymbol{\omega}}\left\{\boldsymbol{d}^{T} \boldsymbol{\omega}+\boldsymbol{e}^{T} s: M\left[\begin{array}{c}
\boldsymbol{\omega} \\
s
\end{array}\right] \leq \boldsymbol{c}, \mathbb{1}_{\operatorname{supp}(\mathbf{x})}=\boldsymbol{s}, \boldsymbol{\omega} \in\{0,1\}^{d}\right\}
$$

for all feasible \mathbf{x}, ∞ otherwise. The parameter ω is useful for latent modeling.

A convex candidate solution for $\mathbf{b}=\mathbf{A x}{ }^{\natural}+\mathbf{w}$

We use the convex estimator based on the tightest convex relaxation of $\|\mathrm{x}\|_{s}$: $\hat{\mathbf{x}} \in \arg \min _{\mathbf{x} \in \operatorname{dom}\left(\|\cdot\|_{s}\right)}\left\{\|\mathbf{x}\|_{s}^{* *}:\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2} \leq \kappa\right\}$ with some $\kappa \geq 0, \operatorname{dom}\left(\|\cdot\|_{s}\right):=\left\{\mathbf{x}:\|\mathbf{x}\|_{s}<\infty\right\}$.

Tractability \& tightness of biconjugation

Proposition (Hardness of conjugation)

Let $F(s): 2^{\mathfrak{F}} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a set function defined on the support $s=\operatorname{supp}(\mathbf{x})$. Conjugate of F over the unit infinity ball $\|\mathbf{x}\|_{\infty} \leq 1$ is given by

$$
g^{*}(\mathbf{y})=\sup _{\boldsymbol{s} \in\{0,1\}^{p}}|\mathbf{y}|^{T} \boldsymbol{s}-F(\boldsymbol{s})
$$

Observations:

- $F(s)$ is general set function

Computation: NP-Hard

- $F(s)=\|\mathbf{x}\|_{s}$

Computation: Integer Linear Program (ILP) in general. However, if

- M is Totally Unimodular TU
- $(\boldsymbol{M}, \boldsymbol{c})$ is Total Dual Integral TDI
then tight convex relaxations with a linear program (LP, which is "usually" tractable)
Otherwise, relax to LP anyway!
- $F(s)$ is submodular

Computation: Polynomial-time

Tree sparsity [15, 6, 3, 23]

Wavelet coefficients

Wavelet tree

Valid selection of nodes

nvalid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.
Linear description: A valid support satisfy $s_{\text {parent }} \geq s_{\text {child }}$ over tree \mathcal{T}

$$
\boldsymbol{T} \mathbb{1}_{\operatorname{supp}(\mathbf{x})}:=\boldsymbol{T} s \geq 0
$$

where T is the directed edge-node incidence matrix, which is TU.

Tree sparsity [15, 6, 3, 23]

Wavelet coefficients

Wavelet tree

Valid selection of nodes

Invalid selection of nodes

Structure: We seek the sparsest signal with a rooted connected subtree support.
Linear description: A valid support satisfy $s_{\text {parent }} \geq s_{\text {child }}$ over tree \mathcal{T}

$$
\boldsymbol{T} \mathbb{1}_{\operatorname{supp}(\mathbf{x})}:=\boldsymbol{T} s \geq 0
$$

where \boldsymbol{T} is the directed edge-node incidence matrix, which is TU .
Biconjugate: $\|\mathbf{x}\|_{s}^{* *}=\min _{s \in[0,1]^{p}}\left\{\mathbb{1}^{T} s: T \boldsymbol{s} \geq 0,|\mathbf{x}| \leq s\right\}$ for $\mathbf{x} \in[-1,1]^{p}, \infty$ otherwise.

Tree sparsity [15, 6, 3, 23]

Structure: We seek the sparsest signal with a rooted connected subtree support.
Linear description: A valid support satisfy $s_{\text {parent }} \geq s_{\text {child }}$ over tree \mathcal{T}

$$
T \mathbb{1}_{\operatorname{supp}(\mathbf{x})}:=\boldsymbol{T} s \geq 0
$$

where \boldsymbol{T} is the directed edge-node incidence matrix, which is TU .
Biconjugate: $\|\mathbf{x}\|_{s}^{* *}=\min _{\boldsymbol{s} \in[0,1]^{p}}\left\{\mathbb{1}^{T} \boldsymbol{s}: \boldsymbol{T} \boldsymbol{s} \geq 0,|\mathbf{x}| \leq s\right\} \stackrel{\star}{=} \sum_{\mathcal{G} \in \mathfrak{G}_{H}}\left\|x_{\mathcal{G}}\right\|_{\infty}$ for $\mathbf{x} \in[-1,1]^{p}, \infty$ otherwise.

The set $\mathcal{G} \in \mathfrak{W}_{H}$ are defined as each node and all its descendants.

Group knapsack sparsity [25, 10, 8]

Structure: We seek the sparsest signal with group allocation constraints.
Linear description: A valid support obeys budget constraints over ${ }^{(5)}$

$$
\mathfrak{B}^{T} \boldsymbol{s} \leq \boldsymbol{c}_{u}
$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G}, i.e., $\mathfrak{B}_{i j}=1$ iff i-th coefficient is in \mathcal{G}_{j}.
When \mathfrak{B} is an interval matrix or \mathfrak{G} has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound $c_{\ell} \leq \mathfrak{B}^{T} s \leq \boldsymbol{c}_{u}$.

Group knapsack sparsity [25, 10, 8]

$$
\mathfrak{B}^{T}=\left[\begin{array}{ccccccccc}
1 & 1 & \cdots & 1 & 1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 1 & \cdots & 1 & 1 & 0 & \cdots & 0 \\
& & & & \ddots & & & & \\
& & & & & & & & \\
0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1
\end{array}\right]_{(p-\Delta+1) \times p}
$$

Structure: We seek the sparsest signal with group allocation constraints.
Linear description: A valid support obeys budget constraints over \mathfrak{F}_{5}

$$
\mathfrak{B}^{T} \boldsymbol{s} \leq \boldsymbol{c}_{u}
$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G}, i.e., $\mathfrak{B}_{i j}=1$ iff i-th coefficient is in \mathcal{G}_{j}.
When \mathfrak{B} is an interval matrix or $(\mathfrak{5}$ has a loopless group intersection graph, it is TU. Remark: We can also budget a lowerbound $c_{\ell} \leq \mathfrak{B}^{T} s \leq \boldsymbol{c}_{u}$.
Biconjugate: $\|\mathbf{x}\|_{s}^{* *}= \begin{cases}\|\mathbf{x}\|_{1} & \text { if } \mathbf{x} \in[-1,1]^{p}, \mathfrak{B}^{T}|\mathbf{x}| \leq \boldsymbol{c}_{u} \\ \infty & \text { otherwise }\end{cases}$
For the neuronal spike example, we have $c_{u}=\mathbb{1}$.

Group knapsack sparsity $[25,10,8]$

Figure: *

$$
\text { (left) }\|\mathbf{x}\|_{s}^{* *} \leq 1 \text { (middle) }\|\mathbf{x}\|_{s}^{* *} \leq 1.5 \text { (right) }\|\mathbf{x}\|_{s}^{* *} \leq 2 \text { for }(\mathfrak{5}=\{\{1,2\},\{2,3\}\}
$$

Structure: We seek the sparsest signal with group allocation constraints.
Linear description: A valid support obeys budget constraints over \mathfrak{W}

$$
\mathfrak{B}^{T} \boldsymbol{s} \leq \boldsymbol{c}_{u}
$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{b}, i.e., $\mathfrak{B}_{i j}=1$ iff i-th coefficient is in \mathcal{G}_{j}.
When \mathfrak{B} is an interval matrix or \mathfrak{F} has a loopless group intersection graph, it is TU.
Remark: We can also budget a lowerbound $c_{\ell} \leq \mathfrak{B}^{T} s \leq \boldsymbol{c}_{u}$.
Biconjugate: $\|\mathbf{x}\|_{s}^{* *}= \begin{cases}\|\mathbf{x}\|_{1} & \text { if } \mathbf{x} \in[-1,1]^{p}, \mathfrak{B}^{T}|\mathbf{x}| \leq \boldsymbol{c}_{u}, \\ \infty & \text { otherwise }\end{cases}$

Group knapsack sparsity example: A stylized spike train

- Basis pursuit (BP): $\|\mathbf{x}\|_{1}$
- TU-relax (TU):

$$
\|\mathbf{x}\|_{s}^{* *}= \begin{cases}\|\mathbf{x}\|_{1} & \text { if } \mathbf{x} \in[-1,1]^{p}, \mathfrak{B}^{T}|\mathbf{x}| \leq \boldsymbol{c}_{u} \\ \infty & \text { otherwise }\end{cases}
$$

Figure: Recovery for $n=0.18 p$.

Group knapsack sparsity: A simple variation

Structure: We seek the signal with the minimal overall group allocation.

$$
\text { Objective: } \mathbb{1}^{T} s \rightarrow\|\mathbf{x}\|_{\boldsymbol{\omega}}= \begin{cases}\min _{\omega \in \mathbb{Z}_{++}} \omega & \text { if } \mathbf{x} \in[-1,1]^{p}, \mathfrak{B}^{T} s \leq \omega \mathbb{1} \\ \infty & \text { otherwise }\end{cases}
$$

Linear description: A valid support obeys budget constraints over ${ }^{5}$

$$
\mathfrak{B}^{T} s \leq \omega \mathbb{1}
$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G}, i.e., $\mathfrak{B}_{i j}=1$ iff i-th coefficient is in \mathcal{G}_{j}.
When \mathfrak{B} is an interval matrix or $\mathfrak{5}$ has a loopless group intersection graph, it is TU.
Biconjugate: $\|\mathbf{x}\|_{s}^{* *}= \begin{cases}\max _{\mathcal{G} \in \mathfrak{G}}\left\|\mathbf{x}^{\mathcal{G}}\right\|_{1} & \text { if } \mathbf{x} \in[-1,1]^{p}, \\ \infty & \text { otherwise }\end{cases}$

Group cover sparsity: Minimal group cover [2, 20, 13]

Structure: We seek the signal covered by a minimal number of groups.
Objective: $\mathbb{1}^{T} \boldsymbol{s} \rightarrow \boldsymbol{d}^{T} \boldsymbol{\omega}$
Linear description: At least one group containing a sparse coefficient is selected
\square
$\mathfrak{B} \omega \geq s$
where \mathfrak{B} is the biadjacency matrix of \mathfrak{G}, i.e., $\mathfrak{B}_{i j}=1$ iff i-th coefficient is in \mathcal{G}_{j}. When \mathfrak{B} is an interval matrix, or \mathfrak{G} has a loopless group intersection graph it is TU.

Group cover sparsity: Minimal group cover [2, 20, 13]

Figure: $\mathfrak{G}=\{\{1,2\},\{2,3\}\}$, unit group weights $\boldsymbol{d}=\mathbb{1}$.

Structure: We seek the signal covered by a minimal number of groups.

$$
\text { Objective: } \mathbb{1}^{T} \boldsymbol{s} \rightarrow \boldsymbol{d}^{T} \boldsymbol{\omega}
$$

Linear description: At least one group containing a sparse coefficient is selected

$$
\mathfrak{B} \omega \geq s
$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{b}, i.e., $\mathfrak{B}_{i j}=1$ iff i-th coefficient is in \mathcal{G}_{j}.
When \mathfrak{B} is an interval matrix, or \mathfrak{F} has a loopless group intersection graph it is TU.
Biconjugate: $\|\mathbf{x}\|_{\boldsymbol{\omega}}^{* *}=\min _{\boldsymbol{\omega} \in[0,1]^{M}}\left\{\boldsymbol{d}^{T} \boldsymbol{\omega}: \mathfrak{B} \boldsymbol{\omega} \geq|\mathbf{x}|\right\}$ for $\mathbf{x} \in[-1,1]^{p}, \infty$ otherwise

Group cover sparsity: Minimal group cover [2, 20, 13]

Figure: $\mathfrak{G}=\{\{1,2\},\{2,3\}\}$, unit group weights $\boldsymbol{d}=\mathbb{1}$.

Structure: We seek the signal covered by a minimal number of groups.

$$
\text { Objective: } \mathbb{1}^{T} \boldsymbol{s} \rightarrow \boldsymbol{d}^{T} \boldsymbol{\omega}
$$

Linear description: At least one group containing a sparse coefficient is selected

$$
\mathfrak{B} \omega \geq s
$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G}, i.e., $\mathfrak{B}_{i j}=1$ iff i-th coefficient is in \mathcal{G}_{j}.
When \mathfrak{B} is an interval matrix, or \mathfrak{F} has a loopless group intersection graph it is TU.

Group cover sparsity: Minimal group cover [2, 20, 13]

Figure: $\mathfrak{G}=\{\{1,2\},\{2,3\}\}$, unit group weights $\boldsymbol{d}=\mathbb{1}$.

Structure: We seek the signal covered by a minimal number of groups.

$$
\text { Objective: } \mathbb{1}^{T} \boldsymbol{s} \rightarrow \boldsymbol{d}^{T} \boldsymbol{\omega}
$$

Linear description: At least one group containing a sparse coefficient is selected

$$
\mathfrak{B} \omega \geq s
$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{b}, i.e., $\mathfrak{B}_{i j}=1$ iff i-th coefficient is in \mathcal{G}_{j}.
When \mathfrak{B} is an interval matrix, or \mathfrak{F} has a loopless group intersection graph it is TU.
Biconjugate: $\|\mathbf{x}\|_{\boldsymbol{\omega}}^{* *}=\min _{\boldsymbol{\omega} \in[0,1]^{M}}\left\{\boldsymbol{d}^{T} \boldsymbol{\omega}: \mathfrak{B} \boldsymbol{\omega} \geq|\mathbf{x}|\right\}$ for $\mathbf{x} \in[-1,1]^{p}, \infty$ otherwise

$$
\stackrel{\star}{=} \min _{\mathbf{v}_{i} \in \mathbb{R}^{p}}\left\{\sum_{i=1}^{M} d_{i}\left\|\mathbf{v}_{i}\right\|_{\infty}: \mathbf{x}=\sum_{i=1}^{M} \mathbf{v}_{i}, \forall \operatorname{supp}\left(\mathbf{v}_{i}\right) \subseteq \mathcal{G}_{i}\right\}
$$

Budgeted group cover sparsity

Structure: We seek the sparsest signal covered by G groups.

$$
\text { Objective: } \boldsymbol{d}^{T} \boldsymbol{\omega} \rightarrow \mathbb{1}^{T} \boldsymbol{s}
$$

Linear description: At least one of the G selected groups cover each sparse coefficient.

$$
\mathfrak{B} \boldsymbol{\omega} \geq s, \mathbb{1}^{T} \boldsymbol{\omega} \leq G
$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G}, i.e., $\mathfrak{B}_{i j}=1$ iff i-th coefficient is in \mathcal{G}_{j}.
When $\left[\begin{array}{l}\mathfrak{B} \\ \mathbb{1}\end{array}\right]$ is an interval matrix, it is TU.

Budgeted group cover sparsity

sparse
group sparse

Structure: We seek the sparsest signal covered by G groups.

$$
\text { Objective: } \boldsymbol{d}^{T} \boldsymbol{\omega} \rightarrow \mathbb{1}^{T} \boldsymbol{s}
$$

Linear description: At least one of the G selected groups cover each sparse coefficient.

$$
\mathfrak{B} \boldsymbol{\omega} \geq \boldsymbol{s}, \mathbb{1}^{T} \boldsymbol{\omega} \leq G
$$

where \mathfrak{B} is the biadjacency matrix of \mathfrak{G}, i.e., $\mathfrak{B}_{i j}=1$ iff i-th coefficient is in \mathcal{G}_{j}.
When $\left[\begin{array}{l}\mathfrak{B} \\ \mathbb{1}\end{array}\right]$ is an interval matrix, it is $T U$.
Biconjugate: $\|\mathbf{x}\|_{\boldsymbol{\omega}}^{* *}=\min _{\boldsymbol{\omega} \in[0,1]^{M}}\left\{\|\mathbf{x}\|_{1}: \mathfrak{B} \boldsymbol{\omega} \geq|\mathbf{x}|, \mathbb{1}^{T} \boldsymbol{\omega} \leq G\right\}$ for $\mathbf{x} \in[-1,1]^{p}, \infty$ otherwise.

Budgeted group cover example: Interval overlapping groups

- Basis pursuit (BP): $\|\mathbf{x}\|_{1}$
- Sparse group Lasso $\left(\mathrm{SGL}_{q}\right)$:

$$
(1-\alpha) \sum_{\mathcal{G} \in \mathfrak{G}} \sqrt{|\mathcal{G}|}\left\|\mathbf{x}^{\mathcal{G}}\right\|_{q}+\alpha\left\|\mathbf{x}^{\mathcal{G}}\right\|_{1}
$$

- TU-relax (TU):

$$
\|\mathbf{x}\|_{\boldsymbol{\omega}}^{* *}=\min _{\boldsymbol{\omega} \in[0,1]^{M}}\left\{\|\mathbf{x}\|_{1}: \mathfrak{B} \boldsymbol{\omega} \geq|\mathbf{x}|, \mathbb{1}^{T} \boldsymbol{\omega} \leq G\right\}
$$

for $\mathbf{x} \in[-1,1]^{p}, \infty$ otherwise.

Figure: Recovery for $n=0.25 p, s=15, p=200, G=5$ out of $M=29$ groups.

relative errors:

$\frac{\left\|x^{\natural}-x^{B P}\right\|_{2}}{\left\|x^{\natural}\right\|_{2}}=.128$
$\frac{\left\|x^{\natural}-x^{\text {SGL }}\right\|_{2}}{\left\|x^{\natural}\right\|_{2}}=.181$

$$
\frac{\left\|x^{\natural}-x^{\mathrm{SGL}} \infty\right\|_{2}}{\left\|x^{\natural}\right\|_{2}}=.085 \frac{\left\|x^{\natural}-x^{T U}\right\|_{2}}{\left\|x^{\natural}\right\|_{2}}=.058
$$

Group intersection sparsity [14, 24, 1]

Structure: We seek the signal intersecting with minimal number of groups.
Objective: $\mathbb{1}^{T} \boldsymbol{s} \rightarrow \boldsymbol{d}^{T} \boldsymbol{\omega}$
Linear description: All groups containing a sparse coefficient are selected

$$
\boldsymbol{H}_{k} \boldsymbol{s} \leq \boldsymbol{\omega}, \forall k \in \mathfrak{P}
$$

where $\boldsymbol{H}_{k}(i, j)=\left\{\begin{array}{ll}1 & \text { if } j=k, j \in \mathcal{G}_{i} \\ 0 & \text { otherwise }\end{array}\right.$, which is TU.

Group intersection sparsity [14, 24, 1]

$$
\begin{aligned}
& \mathfrak{F}=\{\{1,2\},\{2,3\}\} \text {, unit group weights } \boldsymbol{d}=\mathbb{1} \\
& \text { (left) intersection (right) cover. }
\end{aligned}
$$

Structure: We seek the signal intersecting with minimal number of groups.

$$
\text { Objective: } \mathbb{1}^{T} \boldsymbol{s} \rightarrow \boldsymbol{d}^{T} \boldsymbol{\omega}
$$

Linear description: All groups containing a sparse coefficient are selected

$$
\boldsymbol{H}_{k} \boldsymbol{s} \leq \boldsymbol{\omega}, \forall k \in \mathfrak{P}
$$

where $\boldsymbol{H}_{k}(i, j)=\left\{\begin{array}{ll}1 & \text { if } j=k, j \in \mathcal{G}_{i} \\ 0 & \text { otherwise }\end{array}\right.$, which is TU.
Biconjugate: $\|\mathbf{x}\|_{\omega}^{* *}=\min _{\boldsymbol{\omega} \in[0,1]^{M}}\left\{\boldsymbol{d}^{T} \boldsymbol{\omega}: \boldsymbol{H}_{k}|\mathbf{x}| \leq \boldsymbol{\omega}, \forall k \in \mathfrak{P}\right\}$ for $\mathbf{x} \in[-1,1]^{p}, \infty$ otherwise.

Group intersection sparsity [14, 24, 1]

$$
\begin{aligned}
& \mathfrak{F}=\{\{1,2\},\{2,3\}\} \text {, unit group weights } \boldsymbol{d}=\mathbb{1} \\
& \text { (left) intersection (right) cover. }
\end{aligned}
$$

Structure: We seek the signal intersecting with minimal number of groups.

$$
\text { Objective: } \mathbb{1}^{T} \boldsymbol{s} \rightarrow \boldsymbol{d}^{T} \boldsymbol{\omega} \quad \text { (submodular) }
$$

Linear description: All groups containing a sparse coefficient are selected

$$
\boldsymbol{H}_{k} \boldsymbol{s} \leq \boldsymbol{\omega}, \forall k \in \mathfrak{P}
$$

where $\boldsymbol{H}_{k}(i, j)=\left\{\begin{array}{ll}1 & \text { if } j=k, j \in \mathcal{G}_{i} \\ 0 & \text { otherwise }\end{array}\right.$, which is TU.
Biconjugate: $\|\mathbf{x}\|_{\boldsymbol{\omega}}^{* *}=\min _{\boldsymbol{\omega} \in[0,1]^{M}}\left\{\boldsymbol{d}^{T} \boldsymbol{\omega}: \boldsymbol{H}_{k}|\mathbf{x}| \leq \boldsymbol{\omega}, \forall k \in \mathfrak{P}\right\} \stackrel{\star}{=} \sum_{\mathcal{G} \in \mathfrak{G}}\left\|x_{\mathcal{G}}\right\|_{\infty}$ for $\mathbf{x} \in[-1,1]^{p}, \infty$ otherwise.

Group intersection sparsity $[14,24,1]$

$$
\mathfrak{G}=\{\{1,2,3\},\{2\},\{3\}\}, \text { unit group weights } \boldsymbol{d}=\mathbb{1} .
$$

Structure: We seek the signal intersecting with minimal number of groups.

$$
\text { Objective: } \mathbb{1}^{T} \boldsymbol{s} \rightarrow \boldsymbol{d}^{T} \boldsymbol{\omega} \quad \text { (submodular) }
$$

Linear description: All groups containing a sparse coefficient are selected

$$
\boldsymbol{H}_{k} \boldsymbol{s} \leq \boldsymbol{\omega}, \forall k \in \mathfrak{P}
$$

where $\boldsymbol{H}_{k}(i, j)=\left\{\begin{array}{ll}1 & \text { if } j=k, j \in \mathcal{G}_{i} \\ 0 & \text { otherwise }\end{array}\right.$, which is TU.
Biconjugate: $\|\mathbf{x}\|_{\boldsymbol{\omega}}^{* *}=\min _{\boldsymbol{\omega} \in[0,1]^{M}}\left\{\boldsymbol{d}^{T} \boldsymbol{\omega}: \boldsymbol{H}_{k}|\mathbf{x}| \leq \boldsymbol{\omega}, \forall k \in \mathfrak{P}\right\}{ }^{\star} \sum_{\mathcal{G} \in \mathfrak{G}}\left\|x_{\mathcal{G}}\right\|_{\infty}$ for $\mathbf{x} \in[-1,1]^{p}, \infty$ otherwise.

Remark: For hierarchical $\mathfrak{6}_{H}$, group intersection and tree sparsity models coincide.

Beyond linear costs: Graph dispersiveness

Figure: (left) $\|\mathbf{x}\|_{s}^{* *}=0$ (right) $\|\mathbf{x}\|_{s}^{* *} \leq 1$ for $\mathcal{E}=\{\{1,2\},\{2,3\}\}$ (chain graph)

Structure: We seek a signal dispersive over a given graph $\mathcal{G}(\mathfrak{B}, \mathcal{E})$
Objective: $\mathbb{1}^{T} s \rightarrow \sum_{(i, j) \in \mathcal{E}} s_{i} s_{j}$ (non-linear, supermodular function)
Linearization:

$$
\|\mathbf{x}\|_{s}=\min _{\mathbf{z} \in\{0,1\}}|\mathcal{E}|\left\{\sum_{(i, j) \in \mathcal{E}} z_{i j}: z_{i j} \geq s_{i}+s_{j}-1\right\}
$$

When edge-node incidence matrix of $\mathcal{G}(\mathfrak{P}, \mathcal{E})$ is TU (e.g., bipartite graphs), it is TU.

Beyond linear costs: Graph dispersiveness

Figure: (left) $\|\mathbf{x}\|_{s}^{* *}=0$ (right) $\|\mathbf{x}\|_{s}^{* *} \leq 1$ for $\mathcal{E}=\{\{1,2\},\{2,3\}\}$ (chain graph)

Structure: We seek a signal dispersive over a given graph $\mathcal{G}(\mathfrak{B}, \mathcal{E})$

$$
\text { Objective: } \mathbb{1}^{T} s \rightarrow \sum_{(i, j) \in \mathcal{E}} s_{i} s_{j} \text { (non-linear, supermodular function) }
$$

Linearization:

$$
\|\mathbf{x}\|_{s}=\min _{\mathbf{z} \in\{0,1\}|\mathcal{E}|}\left\{\sum_{(i, j) \in \mathcal{E}} z_{i j}: z_{i j} \geq s_{i}+s_{j}-1\right\}
$$

When edge-node incidence matrix of $\mathcal{G}(\mathfrak{P}, \mathcal{E})$ is TU (e.g., bipartite graphs), it is TU. Biconjugate: $\|\mathbf{x}\|_{s}^{* *}=\sum_{(i, j) \in \mathcal{E}}\left(\left|x_{i}\right|+\left|x_{j}\right|-1\right)_{+}$for $\mathbf{x} \in[-1,1]^{p}, \infty$ otherwise.

The difficulty of the nonconvex-nonconcave setting

Definition (Local Nash Equilibrium)

A pair of vectors $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)$ with $\mathbf{x}^{*} \in \mathcal{A}_{x}$ and $\mathbf{y}^{*} \in \mathcal{A}_{y}$ is called (ϵ, δ)-Local Nash Equilibrium if it holds that,

- $\Phi\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right) \leq \Phi\left(\mathbf{x}, \mathbf{y}^{*}\right)+\epsilon, \quad$ for all $\mathbf{x} \in \mathcal{A}_{x}$ with $\left\|\mathbf{x}-\mathbf{x}^{*}\right\| \leq \delta$
- $\Phi\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right) \geq \Phi\left(\mathbf{x}^{*}, \mathbf{y}\right)-\epsilon, \quad$ for all $\mathbf{y} \in \mathcal{A}_{x}$ with $\left\|\mathbf{y}-\mathbf{y}^{*}\right\| \leq \delta$.

Theorem [5]

Deciding whether a function $\Phi(\mathbf{x}, \mathbf{y})$ admits an (ϵ, δ)-Local Nash Equilibrium is NP-hard even for $(\epsilon, \delta):=(1 / 384,1)$ and $\left(\mathcal{A}_{x}, \mathcal{A}_{y}\right):=\left([0,1]^{d_{1}},[0,1]^{d_{2}}\right)$.

Reduction to 3-SAT(3)

Definition (3-SAT(3))

Input: A boolean CNF-formula $\phi:=\left(\phi_{1}, \ldots, \phi_{m}\right)$ with boolean variables x_{1}, \ldots, x_{n} such that every clause of ϕ_{j} has at most 3 boolean variables and every boolean variable appears to at most 3 clauses.
Output: Return Yes if there exists an assignment of the boolean variables $\left(x_{1}, \ldots, x_{n}\right)$ satisfying all clauses $\left\{\phi_{1}, \ldots, \phi_{m}\right\}$ and No otherwise.

Theorem [18]
$3-\mathrm{SAT}(3)$ is NP - complete.

Reducing (ϵ, δ)-LNE to 3-SAT(3)

Constructing the Function

Given an instance of $3-\operatorname{SAT}(3) \phi:=\left(\phi_{1}, \ldots, \phi_{m}\right)$, we construct a function $\Phi(\cdot)$ as follows,

- For each boolean variable x_{i} (there are n boolean variables x_{i}) we correspond a respective real-valued variable x_{i}
- For each clause ϕ_{j}, we construct a polynomial $P_{j}(\mathbf{x})$ as follows,
- let $\ell_{i}, \ell_{k}, \ell_{m}$ denote the literals participating in ϕ_{j}.
- Consider the polynomial $P_{j}(\mathbf{x})=P_{j i}(\mathbf{x}) \cdot P_{j k}(\mathbf{x}) \cdot P_{j m}(\mathbf{x})$ where

$$
P_{j i}(\mathbf{x})= \begin{cases}1-x_{i} & \text { if } \ell_{i}=x_{i} \\ x_{i} & \text { if } \ell_{i}=\neg x_{i}\end{cases}
$$

Example

For the clause $\phi_{j}=x_{1} \vee \neg x_{2} \vee x_{3} \rightarrow P(\mathbf{x}):=\left(1-x_{1}\right) \cdot x_{2} \cdot x_{3}$.

Reducing (ϵ, δ)-LNE to 3-SAT(3)

Constructing the Function

Given an instance of $3-\operatorname{SAT}(3) \phi:=\left(\phi_{1}, \ldots, \phi_{m}\right)$, we construct a function $\Phi(\cdot)$ as follows,

- For each boolean variable x_{i} (there are n boolean variables x_{i}) we correspond a respective real-valued variable x_{i}
- For each clause ϕ_{j}, we construct a polynomial $P_{j}(x)$ as follows,
- let $\ell_{i}, \ell_{k}, \ell_{m}$ denote the literals participating in ϕ_{j}.
- $P_{j}(\mathbf{x})=P_{j i}(\mathbf{x}) \cdot P_{j k}(\mathbf{x}) \cdot P_{j m}(\mathbf{x})$ where

$$
P_{i j}(\mathbf{x})= \begin{cases}1-x_{i} & \text { if } \ell_{i}=x_{i} \\ x_{i} & \text { if } \ell_{i}=\neg x_{i}\end{cases}
$$

The overall constructed function is

$$
\Phi(\mathbf{x}, \boldsymbol{w}, \mathbf{y})=\sum_{j=1}^{m} P_{j}(\mathbf{x}) \cdot\left(w_{j}-y_{j}\right)^{2}
$$

where each w_{j}, y_{j} are additional variables associated with clause ϕ_{j}.

Reducing (ϵ, δ)-LNE to 3-SAT(3)

Lemma [5]

Let the minimizing player control $(\mathbf{x}, \boldsymbol{w})$ and the maximizing player control \mathbf{y}. A (1/384, 1)-Local Nash Equilibrium with $(\mathbf{x}, \boldsymbol{w}) \in[0,1]^{n+m}$ and $\mathbf{y} \in[0,1]^{m}$ exists if and only if ϕ admits a satisfying assignment.

Proof of Lemma (\longrightarrow)

Analysis

Let $\left(\left(\mathbf{x}^{*}, \boldsymbol{w}^{*}\right), \mathbf{y}^{*}\right)$ an (ϵ, δ)-Local NE for $\epsilon=1 / 384$ and $\delta=1$.

- $P_{j}\left(\mathbf{x}^{*}\right) \leq 16 \cdot \epsilon \quad$ for all $j=1, \ldots, m$.

Let $P_{j}\left(\mathrm{x}^{*}\right)>16 \cdot \epsilon$ for some $j=1, \ldots, m$

- If $\left|w_{j}^{*}-y_{j}^{*}\right| \geq 1 / 4$ then the \min player can decrease $\Phi(\mathbf{x}, \boldsymbol{w}, \mathbf{y})$ by at least ϵ by setting $w_{j}:=y_{j}^{*}$.
- If $\left|w_{j}^{*}-y_{j}^{*}\right| \leq 1 / 4$ then the max player can increase $\Phi(\mathbf{x}, \boldsymbol{w}, \mathbf{y})$ by at least ϵ by moving y_{j} to either 0 or 1 .
- Randomly assign each boolean variable x_{i} to True or False with

$$
\operatorname{Pr}\left[x_{i} \text { is set to True }\right]=x_{i}^{*}
$$

- By the definition of $P_{j}(\mathbf{x})$,

$$
\operatorname{Pr}\left[\phi_{j} \text { is not satisfied }\right]=P_{j}\left(\mathbf{x}^{*}\right) \leq 16 \cdot \epsilon=1 / 24
$$

- Since each boolean variable participates in at most 3 clauses. Each clause ϕ_{j} shares boolean variables with at most other 6 clauses. Since $\operatorname{Pr}\left[\phi_{j}\right.$ is not satisfied $] \leq 1 / 24$ by the Lovász Local Lemma,

$$
\operatorname{Pr}\left[\text { there exists an unsatisfied clause } \phi_{j}\right]<1
$$

Thus, there exists a satisfying assignment.

Proof of Lemma (\longleftarrow)

Analysis

Let $x^{*}:=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ be a satisfying boolean assignment for $\phi:=\left(\phi_{1}, \ldots, \phi_{m}\right)$.

- If $x_{i}^{*}=$ True then we set the real-valued variable x_{i}^{*} to 1 .
- If $x_{i}^{*}=$ False then we set the real-valued variable x_{i}^{*} to 0 .
- Since each clause ϕ_{j} is satisfied then (by the definition of $P_{j}(x)$),

$$
P_{j}\left(x^{*}\right)=0 \quad \text { for all } j=1, \ldots, m
$$

Thus, all vectors $\left(\left(\mathbf{x}^{*}, \boldsymbol{w}\right), \mathbf{y}\right)$ are $(0,1)$-Local Nash Equilibrium.

References I

[1] Francis Bach.
Structured sparsity-inducing norms through submodular functions.
Adv. Neur. Inf. Proc. Sys. (NIPS), pages 118-126, 2010.
[2] L. Baldassarre, N. Bhan, V. Cevher, and A. Kyrillidis. Group-sparse model selection: Hardness and relaxations. arXiv preprint arXiv:1303.3207, 2013.
[3] R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based compressive sensing. IEEE Trans. Inf. Theory, 56(4):1982-2001, April 2010.
[4] Michel Benaïm and Morris W. Hirsch. Asymptotic pseudotrajectories and chain recurrent flows, with applications. Journal of Dynamics and Differential Equations, 8(1):141-176, 1996.
[5] Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained min-max optimization. arXiv preprint arXiv:2009.09623, 2020.

References II

[6] Marco F. Duarte, Dharmpal Davenport, Mark A. adn Takhar, Jason N. Laska, Ting Sun, Kevin F. Kelly, and Richard G. Baraniuk.
Single-pixel imaging via compressive sampling.
IEEE Sig. Proc. Mag., 25(2):83-91, March 2008.
[7] Marwa El Halabi and Volkan Cevher.
A totally unimodular view of structured sparsity.
preprint, 2014.
arXiv:1411.1990v1 [cs.LG].
[8] W Gerstner and W. Kistler.
Spiking neuron models: Single neurons, populations, plasticity.
Cambridge university press, 2002.
[9] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien. A variational inequality perspective on generative adversarial networks.
In International Conference on Learning Representations, 2018.
[10] C. Hegde, M. Duarte, and V. Cevher.
Compressive sensing recovery of spike trains using a structured sparsity model.
In Sig. Proc. with Adapative Sparse Struct. Rep. (SPARS), 2009.

References III

[11] Ya-Ping Hsieh.
Convergence without convexity: Sampling, optimization, and games.
Technical report, EPFL, 2020.
[12] Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher.
The limits of min-max optimization algorithms: convergence to spurious non-critical sets. arXiv preprint arXiv:2006.09065, 2020.
[13] J. Huang, T. Zhang, and D. Metaxas.
Learning with structured sparsity.
J. Mach. Learn. Res., 12:3371-3412, 2011.
[14] R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, F. Bach, and B. Thirion. Multi-scale mining of fmri data with hierarchical structured sparsity.
In Pattern Recognition in Neurolmaging (PRNI), 2011.
[15] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach.
Proximal methods for hierarchical sparse coding.
J. Mach. Learn. Res., 12:2297-2334, 2011.

References IV

[16] Sham M Kakade, Shai Shalev-Shwartz, and Ambuj Tewari.
Regularization techniques for learning with matrices.
The Journal of Machine Learning Research, 13(1):1865-1890, 2012.
[17] Parameswaran Kamalaruban, Yu-Ting Huang, Ya-Ping Hsieh, Paul Rolland, Cheng Shi, and Volkan Cevher.
Robust reinforcement learning via adversarial training with langevin dynamics. arXiv preprint arXiv:2002.06063, 2020.
[18] Richard M. Karp.
Reducibility among combinatorial problems.
In Complexity of Computer Computations, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972.
[19] Tianyi Lin, Chi Jin, Michael Jordan, et al.
Near-optimal algorithms for minimax optimization.
arXiv preprint arXiv:2002.02417, 2020.
[20] G. Obozinski, L. Jacob, and J.P. Vert.
Group lasso with overlaps: The latent group lasso approach.
arXiv preprint arXiv:1110.0413, 2011.

References V

[21] G. Obozinski, B. Taskar, and M.I. Jordan.
Joint covariate selection and joint subspace selection for multiple classification problems.
Statistics and Computing, 20(2):231-252, 2010.
[22] Q. Tran-Dinh and V. Cevher.
Constrained convex minimization via model-based excessive gap.
In Proc. the Neural Information Processing Systems Foundation conference (NIPS2014), pages 1-9, Montreal, Canada, December 2014.
[23] Peng Zhao, Guilherme Rocha, and Bin Yu.
Grouped and hierarchical model selection through composite absolute penalties.
Department of Statistics, UC Berkeley, Tech. Rep, 703, 2006.
[24] Peng Zhao and Bin Yu.
On model selection consistency of Lasso.
J. Mach. Learn. Res., 7:2541-2563, 2006.
[25] H. Zhou, M.E. Sehl, J.S. Sinsheimer, and K. Lange.
Association screening of common and rare genetic variants by penalized regression.
Bioinformatics, 26(19):2375, 2010.

[^0]: ${ }^{1}$ Rates are not directly comparable as duality gap and gradient mapping norm are not necessarily of the same order!
 ${ }^{2}$ Arkadi Nemirovski,"Prox-method with rate of convergence $\mathcal{O} 1 / t$) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems." SIAM Journal on Optimization 15.1 (2004): 229-251.

 Antonin Chambolle, and Thomas Pock, "A first-order primal-dual algorithm for convex problems with applications to imaging." Journal of mathematical imaging and vision 40.1 (2011): 120-145.

 Quoc Tran-Dinh, and Volkan Cevher, "Constrained convex minimization via model-based excessive gap." Advances in Neural Information Processing Systems. 2014.
 ${ }^{3}$ The rate is $\tilde{\mathcal{O}}\left(\epsilon^{-2}\right)$ for strongly concave problems.
 ${ }^{4}$ Tianyi Lin, Chi Jin, and Michael Jordan, "Near-optimal algorithms for minimax optimization." arXiv preprint arXiv:2002.02417 (2020).
 ${ }^{5}$ Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis, "The complexity of constrained min-max optimization." arXiv preprint arXiv:2009.09623 (2020).

 Ya-Ping Hsieh, Panayotis Mertikopoulos, and Volkan Cevher, "The limits of min-max optimization algorithms: convergence to spurious non-critical sets." arXiv preprint arXiv:2006.09065 (2020).

