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Outline

I Scalable non-convex optimization with emphasis on deep learning
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Recall: The general setting...

Definition (Optimization formulation)
The deep-learning training problem is given by

x?DL ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints on the parameters.

◦ A single hidden layer neural network with params x := [X1,X2, µ1, µ2]

hx(a) :=

[
X2

] activationy
σ


weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[
µ2

]
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Towards training with neural networks

◦ What do we have at hand?
1. The optimization objective f(x) from multi-layer, multi-class, convolutions, transformers, etc.
2. First-order gradient via backpropagation ∇f(x)

◦ Barriers to training of neural networks:
1. Curse-of-dimensionality

→ first-order methods, see lecture 3

2. Non-convexity

→ stochasticity + momentum, this lecture

3. Ill-conditioning

→ adaptive gradient methods, this lecture

Figure: A non-convex function. (a) and (c) are plateaus, (b) and (d) are global minima, (f) and (h) are local minima, (e) and
(g) are local maxima. [20]
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Stochastic Gradient Descent (SGD) and some key variants

Vanilla (Minibatch) SGD
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

obtain the (minibatch) stochastic gradient gk
update xk+1 ← xk − γkgk

Perturbed Stochastic Gradient Descent [16]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

sample noise ξ uniformly from unit sphere
update xk+1 ← xk − αk(gk + ξ)

?Stochastic Gradient Langevin Dynamics [44]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .

sample noise ξ standard Gaussian
update xk+1 ← xl − αkgk +

√
2αkξ
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Basic questions:

1. Does SGD converge with probability 1?

2. Does SGD avoid non-minimum points with probability 1?

3. How fast does SGD converge to local minimizers?

4. Can SGD converge to global minimizers?
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Critical points

Recall (Classification of critical points)
Let f : Rd → R be twice differentiable and let x̄ be a critical point. Let {λi}di=1 be the eigenvalues of the
hessian ∇2f(x̄), then
I λi > 0 for all i ⇒ x̄ is a local minimum
I λi < 0 for all i ⇒ x̄ is a local maximum
I λi > 0, λj < 0 for some i, j and λi , 0 for all i ⇒ x̄ is a saddle point
I Other cases ⇒ inconclusive

(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

Figure: Minmax saddle (λi , 0 for all i)

(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

Figure: Monkey saddle (λi = 0 for some i)
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The strict saddle property

Definition (Strict saddle)
A twice differentiable function f : Rd → R is (α, β, ε, δ)-strict saddle if for any point x at least one of the
following is true
1. ‖∇f(x)‖ ≥ ε.
2. λmin (∇2f(x)) ≤ −β.
3. There is a local minimum x∗ such that ‖x− x∗‖ ≤ δ and the function f restricted to a 2δ neighborhood

of x∗ is α strongly convex.

(Informal)
For any point whose gradient is small, it is either close to a local minimum, or is a saddle point (or local
maximum) with a significant negative eigenvalue.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 53



Q1: Does SGD converge?

◦ SGD converges to the critical points of f as k →∞.

1. GD converges from any intialization with constant step-size and full gradients

2. With probability 1, (P)SGD does not converge with constant step-size γ [5, 38]

3. With probability 1, SGD converges with vanishing step-size if xk is bounded with probability 1 [33, 5]

Boundedness is not required (Theorem 1 of [35])
Assume Lipschitzness, sublevel regularity, E‖g‖q ≤ σq and

∑
k
γ

1+q/2
k

<∞ (q ≥ 2). Then, xk converges with
probability 1.
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Q2: Does SGD avoid saddle points?

◦ SGD avoids strict saddles (λmin(∇2f(x∗)) < 0)

1. GD avoids strict saddles from almost all initializations [27]

2. With probability 1− ζ, PSGD with constant γ escapes strict saddles after Ω
(
log(1/ζ)/γ2

)
iterations [17]

I However, SGD does not converge with constant γ

I We cannot take ζ = 0

SGD avoids traps almost surely (Theorem 3 of [35])
Assume bounded uniformly exciting noise and γk = O

(
1
kκ

)
for κ ∈ (0, 1]. Then, SGD avoids strict saddles

from any initial condition with probability 1.
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Q3: How fast does SGD converge to local minimizers?

◦ SGD remains close to Hurwicz minimizers (i.e., x∗ : λmin(∇2f(x∗)) > 0 )

1. SGD with constant γ can obtain objective value ε-close to a Hurwicz minimizer in O(1/ε2)-iterations [17, 18]

I However, SGD does not converge with constant γ

I Need averaging which is problematic in non-convex optimization

Using a vanishing step-size helps! (Theorem 4 of [35])
Using γk = O

(
1
k

)
, SGD enjoys a O

(
1
k

)
convergence rate in objective value.
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Using 1/k step-size decrease helps in practice

◦ ResNet training at different cool-down cut-offs
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Q4: Can SGD converge to global minimizers?

◦ A few phenomena about neural networks [48]:
I Deep neural networks can fit random labels
I First-order methods can find global minimizers

Figure: DNN Training curves on CIFAR10, from [48]

◦ Overparametrization can explain these mysteries!

Overparametrization
Number of parameters � number of training data.
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GD finds global minimizers of overparametrized networks

hx(a) :=

[
X2

] activationy
σ


weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[
µ2

]

Theorem (Linear convergence of Gradient Descent [12])
I f(a; X1,X2): 1-hidden-layer network with width m,hidden layer weights X1, output layer weights X2 and
ReLu activation.

I m = Ω(n
6

δ3 ) where n =number of samples.
I X0

1 is initialized with a normal distribution, X0
2 ∼ Unif[−1, 1]m.

I Stepsize η = O(n−2).

With probability at least 1− δ, for the empirical risk Rn we have

Rn(βt,Wt, bt) ≤ (1− η)tRn(β0,W0, b0) (1)
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Optimization landscape of overparametrized neural networks

Figure: Intuitive comparison, loss landscape with few parameters (left) vs overparametrized regime (right). From [31], originally
skip connections vs. no skip connections
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Overparametrization is an active area of research

Reference Number of parameters Depth d Result

[22, 23, 19] Ω̃(n) 1, 2 Existence of zero error

[46, 21, 36] Ω̃(n) Any d Existence of zero error

[32] Ω̃(poly(n)) 1 (S)GD global convergence

[12] Ω̃(n6) 1 (S)GD global convergence

[40] Ω̃(n2) 1 (S)GD global convergence

[2, 50] Ω̃(poly(n, d)) Any d (S)GD global convergence

[11] Ω̃(n82O(d)) Any d (S)GD global convergence

[51] Ω̃(n8d12) Any d (S)GD global convergence

[24] Ω̃(n) (Training last layer) Any d (S)GD global convergence

[39] Ω̃(n
3
2 ) (Training all layers) 1 (S)GD global convergence

Table: Summary of results on overparametrization. Minimum number of parameters required as a function of data size n and
depth d. The result is classified either as Existence i.e., there exists a neural network achieving zero error on the data, or (S)GD
global convergence i.e., (S)GD converges to zero training error, a much stronger condition.
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Stochastic adaptive first-order methods

Adaptive methods
Stochastic adaptive methods converge without knowing the smoothness constant.

They do so by making use of the information from stochastic gradients and their norms.
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Variable metric stochastic gradient descent algorithm

Variable metric stochastic gradient descent algorithm
1. Choose x0 ∈ Rp as a starting point and H0 � 0.
2. For k = 0, 1, · · · , perform:{

dk := −H−1
k

gk,
xk+1 := xk + αkdk,

where αk ∈ (0, 1] is a given step size.
3. Update Hk+1 � 0 if necessary.

Common choices of the variable metric Hk

I Hk := λkI =⇒ stochastic gradient descent method.
I Hk := Dk (a positive diagonal matrix) =⇒ stochastic adaptive gradient methods.
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Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting Hk as a function of past stochastic gradient information.

◦ Roughly speaking, Hk = function(g1,g2, · · · ,gk)

◦ Some well-known examples:

AdaGrad [13]
Hk =

√∑k

t=1 gkgk>

RmsProp [41]
Hk =

√
βHk−1 + (1− β)diag(gk)2

ADAM [26]
Ĥk = βĤk−1 + (1− β)diag(gk)2

Hk =
√

Ĥk/(1− βk)
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AdaGrad - Adaptive gradient method with Hk = λkI
◦ If Hk = λkI, it becomes stochastic gradient descent method with adaptive step-size αk

λk
.

How step-size adapts?
If the stochastic gradient ‖gk‖ is large/small → AdaGrad adjusts step-size αk/λk smaller/larger

Adaptive gradient descent (AdaGrad with Hk = λkI) [28]
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{

Qk = Qk−1 + ‖gk‖2

Hk =
√
QkI

xk+1 = xk − αkH−1
k

gk

Adaptation through first-order information

I When Hk = λkI, AdaGrad estimates local geometry through stochastic gradient norms.
I Akin to estimating a local quadratic upper bound (majorization / minimization) using gradient history.
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AdaGrad - Adaptive gradient method with Hk = Dk

Adaptation strategy with a positive diagonal matrix Dk

Adaptive step-size + coordinate-wise extension = adaptive step-size for each coordinate

�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

D�1
k

<latexit sha1_base64="RcBFv+9WMTiD8KYpeDUFT84TVOE="></latexit>
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AdaGrad - Adaptive gradient method with Hk = Dk

◦ Suppose Hk is diagonal,

Hk :=

λk,1 0
. . .

0 λk,d

 ,
◦ For each coordinate i, we have different step-size αk

λk,i
is the step-size.

Adaptive gradient descent(AdaGrad with Hk = Dk)
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(gk)2

Hk =
√

Qk

xk+1 = xk − αkH−1
k

gk

Adaptation across each coordinate

I When Hk = Dk, we adapt across each coordinate individually.
I Essentially, we have a finer treatment of the function we want to optimize.
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RMSProp - Adaptive gradient method with Hk = Dk

What could be improved over AdaGrad?
1. Stochastic gradients have equal weights in step size.

2. Consider a steep function, flat around minimum → slow convergence at flat region.

AdaGrad with Hk = Dk

1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(gk)2

Hk =
√

Qk

xk+1 = xk − αkH−1
k

gk

RMSProp
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = βQk−1 + (1− β)diag(gk)2

Hk =
√

Qk

xk+1 = xk − αkH−1
k

gk

◦ RMSProp uses weighted averaging with constant β

◦ Recent gradients have greater importance
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AcceleGrad - Adaptive gradient + Accelerated gradient [29]

Motivation behind AcceleGrad
Is it possible to achieve acceleration when f is L-smooth, without knowing the Lipschitz constant?

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : x0 ∈ K, diameter D, weights {αk}k∈N, learning
rate {ηk}k∈N
1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk
xk+1 = τkzk + (1− τk)yk, define gk := ∇f(xk+1)
zk+1 = ΠK(zk − αkηkgk)
yk+1 = xk+1 − ηkgk

Output : yk ∝
∑k−1

i=0 αiy
i+1

where ΠK(y) = arg minx∈K 〈x− y,x− y〉 (projection onto K).

?Remark: ◦ This is essentially the MD + GD scheme [3], with an adaptive step size!
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AcceleGrad - Properties and convergence

Learning rate and weight computation
Assume that function f has uniformly bounded gradient norms ‖gk‖2 ≤ G2, i.e., f is G-Lipschitz continuous.
AcceleGrad uses the following weights and learning rate:

αk =
k + 1

4
, ηk =

2D√
G2 +

∑k

τ=0 α
2
τ‖gτ+1‖2

◦ Similar to RmsProp, AcceleGrad assignes greater weights to recent gradients.

Convergence rate of AcceleGrad
Assume that f is convex and L-smooth. Let K be a convex set with bounded diameter D, and assume x? ∈ K.
Define ȳk = (

∑k−1
i=0 αiy

i+1)/(
∑k−1

i=0 αi). Then,

f(yk)− f? ≤ O
(
DG+ LD2 log(LD/G)

k2

)
If f is only convex and G-Lipschitz, then

f(yk)− f? ≤ O
(
GD
√

log k/
√
k

)
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ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM
Input. Step size α, exponential decay rates β1, β2 ∈ [0, 1)
1. Set m0,v0 = 0
2. For k = 0, 1, . . ., iterate

gk = ∇f(xk−1)
mk = β1mk−1 + (1− β1)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g·2k ← 2nd order estimate
m̂k = mk/(1− βk1 ) ← Bias correction
v̂k = vk/(1− βk2 ) ← Bias correction
Hk =

√
v̂k + ε

xk+1 = xk − αm̂k./Hk

Output : xk

(Every vector operation is an element-wise operation)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 53



ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM
Input. Step size α, exponential decay rates β1, β2 ∈ [0, 1)
1. Set m0,v0 = 0
2. For k = 0, 1, . . ., iterate

gk = ∇f(xk−1)
mk = β1mk−1 + (1− β1)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g·2k ← 2nd order estimate
m̂k = mk/(1− βk1 ) ← Bias correction
v̂k = vk/(1− βk2 ) ← Bias correction
Hk =

√
v̂k + ε

xk+1 = xk − αm̂k./Hk

Output : xk

(Every vector operation is an element-wise operation)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 53



Non-convergence of ADAM and a new method: AmsGrad
◦ It has been shown that ADAM may not converge for some objective functions [47].

◦ An ADAM alternative is proposed that is proved to be convergent [37].

AmsGrad
Input. Step size {γk}k∈N, exponential decay rates {β1,k}k∈N, β2 ∈ [0, 1)
1. Set m0 = 0,v0 = 0 and v̂0 > 0
2. For k = 1, 2, . . ., iterate

gk = G(xk, θ)
mk = β1,kmk−1 + (1− β1,k)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g·2k ← 2nd order estimate
v̂k = max{v̂k−1,vk} and V̂k = diag(v̂k)
Hk =

√
v̂k

xk+1 = Π
√

V̂k
X (xk − γkm̂k./Hk)

Output : xk

where ΠA
K (y) = arg minx∈K 〈(x− y),A(x− y)〉 (weighted projection onto K).

(Every vector operation is an element-wise operation)
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AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [43])
Assume f is non-convex and L-smooth, such that ‖∇f(x)‖2 ≤ G2 and f? = infx f(x) >∞. Also consider
bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then with probability

1− δ,

min
i∈{1,..,k−1}

‖∇f(xi)‖2 = Õ
(

σ

δ3/2
√
k

)
◦ Note: As 1− δ → 1, the rate deteriorates by a factor of δ−3/2.

Theorem (AmsGrad convergence rate 1: stochastic, non-convex [8])
Let gk = G(xk, θ). Assume ‖gk‖ ≤ G. Consider a non-increasing sequence β1,k and β1,k ≤ β1 ∈ [0, 1). Set
γk = 1/

√
k. Then,

min
i∈{1,..,k−1}

E
[
‖∇f(xi)‖2

]
= O

( log k
√
k

)
.
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AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [43])
Assume f is non-convex and L-smooth, such that ‖∇f(x)‖2 ≤ G2 and f? = infx f(x) >∞. Also consider
bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then with probability

1− δ,

min
i∈{1,..,k−1}

‖∇f(xi)‖2 = Õ
(

σ

δ3/2
√
k

)
◦ Note: As 1− δ → 1, the rate deteriorates by a factor of δ−3/2.

Theorem (AmsGrad convergence rate 2: stochastic, non-convex [49, 7])
Consider f : Rp → R to be non-convex and L-smooth. Assume ‖G(x, θ)‖∞ ≤ G∞ and set γk = 1/

√
pT . Also

define xout = xk, for k = 1, . . . , T with probability γk/
∑T

i=1 γi. Then,

E
[
‖∇f(xout)‖2

]
= O

(√
p

T

)
.
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Adam variants without large batch sizes

Guarantees of Adam-variants [1]
By using one subgradient each iteration, with the same setup as before, AMSGrad converges for minx∈X f(x)

E‖Gλ(xout)‖2 ≤ Õ

(√
1
T

)
, (2)

on the gradient mapping Gλ(x) =
H1/2
k
λ

(
x− PHk

X (x− λH−1
k
∇f(x))

)
, where xout is chosen uniformly at

random from the iterates.
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A comparison of adaptive algorithms

GD/SGD Accelerated GD/SGD AdaGrad AcceleGrad/UniXgrad Adam/AMSGrad

Convex, stochastic O
(

1√
k

)
1 O

(
1√
k

)
1 O

(
1√
k

)
2 O

(
1√
k

)
3,4 O

(
1√
k

)
5

Convex, deterministic, L-smooth O
(

1
k

)
1 O

(
1
k2

)
1 O

(
1
k

)
3 O

(
1
k2

)
3,4 O

(
1
k

)
6

Nonconvex, stochastic, L-smooth O
(

1√
k

)
1 O

(
1√
k

)
1 O

(
1√
k

)
7 ? O

(
1√
k

)
8

Nonconvex, deterministic, L-smooth O
(

1
k

)
1 O

(
1
k

)
1 O

(
1
k

)
7 ? O

(
1
k

)
6

1 Lan, First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020.
2 Duchi, Hazan, Singer, Adaptive subgradient methods for online learning and stochastic optimization, JMLR, 2011
3 Levy, Yurtsever, Cevher, Online adaptive methods, universality and acceleration, NeurIPS 2018
4 Kavis, Levy, Bach, Cevher, UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization, NeurIPS, 2019
5 Reddi, Kale, Kumar, On the convergence of adam and beyond, ICLR, 2018.
Alacaoglu, Malitsky, Mertikopoulos, Cevher, A new regret analysis for Adam-type algorithms, ICML 2020.
6 Barakat, Bianchi, Convergence Rates of a Momentum Algorithm with Bounded Adaptive Step Size for Nonconvex Optimization, ACML, 2020
7 Ward, Xu, Bottou, AdaGrad stepsizes: Sharp convergence over nonconvex landscapes, ICML 2019.
8 Alacaoglu, Malitsky, Cevher, Convergence of adaptive algorithms for weakly convex constrained optimization, NeurIPS, 2021.
Chen, Zhou, Tang, Yang, Cao, Gu, Closing the generalization gap of adaptive gradient methods in training deep neural networks, IJCAI 2020.
Chen, Liu, Sun, Hong, On the convergence of a class of adam-type algorithms for non-convex optimization, ICLR 2018.
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Example: ADAM vs. AcceleGrad

0 10 20 30 40 50
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Train Loss vs Epochs
accelegrad
adam

Figure: Resnet classifier optimization (train loss)
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Figure: Resnet classifier optimization (test loss)
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Example: Least squares with synthetic data
Setting:
I f(x) = ‖Ax− b‖2

I A ∈ Rn×d, A ∼ N(µ, σ2I)
I n = 1000, d = 1000
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Figure: Comparison of convergence rate and stepsize evolution. Mini-batch stochastic gradients with a batch size of 20
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Performance of optimization algorithms (nonconvex)
◦ Assuming only L-smoothness, SGD, Adagrad, RmsProp, ADAM & AmsGrad and Accelegrad has 1√

k
-rate

◦ Additional assumptions help improve this rate

I Polyak-Lojasiewicz (PL)9

I (Strong) growth condition (SGC)10

I Averaged L-smoothness [14]
I Interpolation (IP) [34]

◦ A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
L-smooth Basically all first order methods Sublinear (1/

√
k) One stochastic gradient

Averaged L-smooth STORM [9] & STORM+ [30] Sublinear (1/k2/3) Two stochastic gradients
L-smooth + SGC SGD Sublinear (1/k)[42] One stochastic gradient

L-smooth + SGC + PL SGD Linear (ρk) [42] One stochastic gradient
f(x) := 1

n

∑n

i=1
fi(x)

fi are β-smooth
f is L-smooth + IP + PL

(mini-batch) SGD Linear (ρk) [4] m stochastic gradients
m ∈ N

9J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. “From error bounds to the complexity of first-order descent methods for convex
functions.”

10V. Cevher and B. C. Vu. “On the linear convergence of the stochastic gradient method with constant step-size.”
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Implicit regularization of adaptive methods may overfit

Flat Minimum Sharp Minimum

Training Function
Testing Function

f(x)

Figure: Sharp Minima vs Flat Minima [25]

◦ Intuition suggests flat minima has better generalization property than sharp minima

◦ Empirically, adaptive methods finds sharper minima than ones found by SGD

◦ The relationship between sharpness of minima and their generalization is open [10, 15]
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Example: Generalization performance

◦ Adaptive learning methods may converge fast but generalize worse
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SGD: 5.09±0.04

HB: 5.13±0.01

AdaGrad: 5.24±0.02

RMSProp: 5.28±0.00

Adam: 5.35±0.01

Adam (Default): 5.47±0.02

Figure: Performance of different optimizers in training and development set of a language modeling problem. The training and
test perplexity are the exponential values of training and test losses.[45]
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Neural Network Architectures
◦ Deeper and more complicated models correlates with better performance

◦ No universal optimizers other than slow and steady SGD

◦ A long way to go (makes it exciting)...

Figure: Performance of popular architectures on test set in CIFAR10 (left) and CIFAR100 (right). 11

11Credit to: https://github.com/bearpaw/pytorch-classification
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Wrap up!

◦ Homework 2 on Friday.
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?Perturbed SGD escapes saddle points

Theorem (Convergence of PSGD [16])
Suppose that f has the following properties
I f is an (α, γ, ε, δ)-strict saddle,
I f is β-smooth.
I its Hessian is ρ-Lipschitz. i.e.

∥∥∇2f(x)−∇2f(y)
∥∥ ≤ ρ ‖x− y‖.

Then there exists a threshold αmax such that by choosing
I α ≤ αmax/max{1, log(1/ζ)}
I T = O(α−2 log(1/ζ)).

the algorithm Perturbed SGD outputs with probability at least 1− ζ a point xT that is O(
√
α log(1/αζ))

close to some local minimum x∗.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 39/ 53



?Convergence of SGD in non-convex problems with small step-size

Assumptions
1. Function f is lower bounded: ∃f? s.t. ∀x ∈ X , f(x) ≥ f?

2. Function f has Lipschitz continuous gradient:

‖∇f(x1)−∇f(x2)‖2 ≤ L‖x1 − x2‖2 (3)

3. The stochastic gradient ĝx is unbiased and has bounded variance:

E(ĝ) = g, E(‖ĝ− g‖2
2) ≤ σ2 (4)

Theorem (Convergence of SGD in non-convex problems [6])
For SGD with assumptions above, N iterations and stepsize γt = 1

L
√
N
, we have

E

[
1
N

N−1∑
t=0

‖gt‖2
2

]
∼ O

( 1
√
N

)
, (5)

where the convergence is captured by the gradient norm.
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?Convergence of SGD

Proof
Take the assumption 2 and algorithmic update policy xt+1 = xt − γĝt

f(xt+1)− f(xt) ≤ (xt+1 − xt)T gt +
L

2
‖xt+1 − xt‖2

2

= −γt(ĝt)T gt +
γ2
t L

2
‖ĝt‖2

2

(6)

Take the expectation and use the assumption 3

E[f(xt+1)− f(xt)] = −γt‖gt‖2
2 +

γ2
t L

2
(‖gt‖2

2 + σ2) (7)

Set the learning rate γt = 1
L
√
N

E[f(xt+1)− f(xt)] = −
1

L
√
N
‖gt‖2

2 +
1

2LN
(‖gt‖2

2 + σ2)

≤ −
1

2L
√
N
‖gt‖2

2 +
σ2

2LN

(8)
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?Convergence of SGD

Proof (Cont’d).
Sum the inequality of N steps together and use assumption 1

f(x0)− f? ≥ f(x0)− E[f(xN )]

= E

[
N−1∑
t=0

(f(xt)− f(xt+1))

]

≥
1

2L
E

[
N−1∑
t=0

(
‖gt‖2

2√
N
−
σ2

N
)

] (9)

Rearrange the inequality, we have the following

E

[
1
N

N−1∑
t=0

‖gt‖2
2

]
≤

1
√
N

[2L(f(x0)− f? + σ2)] (10)

The right hand side vanishes as N →∞, so E
[

1
N

∑N−1
t=0 ‖g

t‖2
2
]
vanishes also. This indicates the model

converges to a critical point. �
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