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Outline

This lecture :
> The classical trade-off between model complexity and risk
> The generalization mystery in deep learning
> Implicit regularization of optimization algorithms
> Double descent curves
> Generalization bounds based on algorithmic stability
Next lecture :

> Optimization in Deep Learning
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Understanding the trade-off between model complexity and expected risk

Models

Let [X; : 4 =1,...] be a nested sequence of parameter domain, i.e.,
X; C Xj41. For example, let X; = neural networks with ¢ neurons.

1. Rp(x}) = minkex; Rn(x): ERM solution over X;
2. R(x}): True risk of the ERM solution over X;

3. Supyex, |R(X) — Rn(x)|: Worst-case Generalization error of &;

Practical performance of the ERM estimator

R(x}) < min R, (x)+ sup |R(x) — Rn(x)] (1)
xEX; XEX;
As we increase the index ¢ — ¢ + 1 of the parameter domain, i.e., we choose a larger (more complex) model
1. The minimum empirical risk decreases minyex; Rn(x) > minxex, Rn(x).

2. The generalization error increases. supyc x, |R(x) — Rn(x)| < SUDxex; |, |R(x) — Rn(x)].

3. What happens with the true risk R(x})?
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The classical trade-off between model complexity and risk

—-—~- worst case generalization error
minimum empirical risk
—— risk bound

risk

complexity of model class

Figure: Bias-variance trade-off [9].

Occam'’s Razor: Simple is better than complex.
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The dangers of complex function classes: sévére (cevher) overfitting

Degree 3 polynomial funtion

— ground-truth
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Figure: Training over a complex function class can lead to overfitting.
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The dangers of complex function classes: sévére (cevher) overfitting

Noisy samples

— ground-truth
o samples

mingex Rn(x) 7

supxex [R(%) = R (X)|
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Figure: Training over a complex function class can lead to overfitting.
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The dangers of complex function classes: sévére (cevher) overfitting

Degree 19 polynomial fit
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Figure: Training over a complex function class can lead to overfitting.
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The complexity vs risk trade-off in practice (I)

MNIST CIFAR-10
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Figure: Training (empirical) and test (true) error for one-hidden-layer networks of increasing width, trained with SGD [20].

Empirical error becomes zero for a wide enough network. What should happen for even wider networks?
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The complexity vs risk trade-off in practice (lI)

MNIST CIFAR-10
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Figure: Training (empirical) and test (true) error for one-hidden-layer networks of increasing width, trained with SGD [20].

Test error continues to go down even if we keep incresing the complexity of the model!
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The benefits of overparametrization

Degree 200 polynomial fit
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Figure: Overparametrization leads to benign overfitting.
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The generalization mystery in deep learning

UNDERSTANDING DEEP LEARNING REQUIRES RE-
THINKING GENERALIZATION

Chiyuan Zhang* Samy Bengio Moritz Hardt
Massachusetts Institute of Technology Google Brain Google Brain
chiyuan@mit.edu bengio@google.com mrtz@google.com
Benjamin Recht! Oriol Vinyals
University of California, Berkeley Google DeepMind
brecht@berkeley.edu vinyals@google.com

ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a
rer ably small difference between training and test performance. Conventional
wisdom attributes small generalization error either to properties of the model fam-
ily, or to the regularization techniques used during training.

Through extensive systematic experiments, we show how these traditional ap-
proaches fail to explain why large neural networks generalize well in practice.
Specifically, our experiments establish that state-of-the-art convolutional networks
for image classification trained with stochastic gradient methods easily fit a ran-
dom labeling of the training data. This phenomenon is qualitatively unaffected
by explicit regularization, and occurs even if we replace the true images by com-
pletely unstructured random noise. We corroborate these experimental findings

with a thanratical canctmietion chawinag that cimnla danth tun nanral natwarle al-
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A gap between theory and practice

o In practice, simple algorithms like SGD can
train neural networks to zero error and
achieve low test error.

o This happens even for large and complex
neural network architectures.

o Complexity measures like the Rademacher
complexity suggest the opposite behaviour
(overfitting)
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Multiple global minimizers of the empirical risk

— empirical risk

risk

=
EM

parameter

o The global minimum is R}
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Multiple global minimizers of the empirical risk

— empirical risk

risk

*

global Pptima

Y Y Y

parameter

o The global minimum is R}, , but many parameters can attain such value
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Multiple global minimizers of the empirical risk

— empirical risk
— true risk

risk

*
n

global Pptima

Y Y N

parameter

o The global minimum is R} , but many parameters can attain such value

o Each minimizer of the empirical risk might have a different true risk.
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Not all global minimizers are the same

o Consider a simple 2D classification task, and train a neural network with fixed step-size SGD.

o The plots below correspond to two different global minimizers:

SGD never lands on the global minimum on the right! Why?
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Understanding the implicit bias of optimization algorithms

o SGD seems to be biased towards good global minimizers (low true risk).
o Some optimization algorithms have an implicit bias towards certain kinds of global minimizers.

o Can we characterize this implicit bias?
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Understanding the implicit bias of optimization algorithms

o SGD seems to be biased towards good global minimizers (low true risk).
o Some optimization algorithms have an implicit bias towards certain kinds of global minimizers.

o Can we characterize this implicit bias?

Definition (Algorithm)

We will refer to a function (deterministic or randomized) </ : Z — X, mapping Z — /7 as an algorithm with
input Z € Z and output o/y € X.

Example: Gradient Descent Algorithm
We denote GD(T,a,x",Vf) := T-steps of GD with stepsize «, starting from x°, using gradient V.

ILGHEII{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 48



What is implicit regularization?

Definition (Implicit Regularization of a Deterministic Algorithm)

Consider a minimization problem
F* = min F(x)
xeX
and let &/ be a deterministic algorithm with input Z € Z and output &/ € X.
We say that o7 solves problem (2) and has implicit regularization H : X x Z — R if

oz € argmin H(x, Z).
F(x)=F*

Given the input Z € Z, the algorithm outputs a global minimizer of F' that, additionaly, minimizes H(-, Z).
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Implicit bias of gradient descent for linear regression

o Consider for example an underdetermined linear system
Ax=Db, withAcR"™P n<p
o If a solution exists (i.e., b € colspan(A)), then there is an infinite number of solutions to this system.

Finding a solution
To find a valid x, we could apply one of the optimization algorithms seen in class to the convex problem
1 2
argmin — [|[Ax — b||5
xERP 2

Among all the possible solutions, which one will the algorithm converge to ?
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Same problem and same initialization vs different algorithms and different solutions
Consider the following simple 2D example :

“.Ax=b Different Solutions
’ Gradient Descent and AdaGrad converge to different
points on the line.

Gradient 102 -
Descent — GD
—-- AdaGrad
10° -
1072
Initialization
an 1074
-]
|
5 107
Euclidean norm <
ball - .
1078
1071
10712

60
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Implicit bias of gradient descent for linear regression

o Gradient descent seems to converge to the closest one in terms of £3-norm.

Theorem (Implicit bias of Gradient Descent [10])
For the underdetermined, realizable linear system

1
F* = min F(x) = —||[Ax — b||2
i (%) 2|| x — bll3

the gradient descent algorithm GD(T@’XO,VF), for T = co and for any x° € RP, and valid step-size c, has
implicit bias H(x) = ||x — x°||2, i.e.,

GD(T:oo,a,xO,VF) = argmin ||x — xo||2.
F(x i5

Remark: o The theorem also holds for stochastic gradient descent, see [2].
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Same problem and same initialization vs different algorithms and different solutions

Gradient

Inifialization

Euclidean norm'
ball
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Proof : For simplicity, take x¢9 = 0.
> The gradient of Fis AT(Ax —b).
> This implies that Vx, V f(x) € colspan(AT).

GD iterates stay in the rowspan

Gradient Descent is therefore constrained to the space
colspan(AT) = rowspan(A)

So its limit point at 7' = oo is in rowspan(A).

> Note that because of the preconditionning,
AdaGrad can get out of the rowspan(A).



Same problem and same initialization vs different algorithms and different solutions

Proof (continued):
» The minimum norm solution
A _ . 2
Xcandidate = arg min ”xHQ
x:Ax=Db
is also in rowspan(A).

> So both Xcandidate and the limit point of GD are
solutions of Ax = b that are in the rowspan(A)

> Since nullA Nrowspan(A) = {0}, there can only
be one solution in the rowspan(A), so

* .
XGD = Xcandidate

x? 4 h, h € null(A)
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Implicit bias for linear models

o We can extend this analysis to linear models:

arg min F(x) := Z L({x,a;),b;).
i=1

xXERP

o If the observations are realizable and there are many global minima Glob = {x : F(x) = 0}, then

Theorem (Implicit Bias of Gradient Descent [10])

If the loss L is convex and has a unique (attained) minimum, then the iterates xt of Gradient Descent converge
to the global minimum that is closest to initialization xo in the 2-distance :

x! —— argmin ||x — xo/|2
t—00 xcGlob

Proof : (Sketch) The assumption on L implies the problem reduces to a linear system: If x is a global
minimum, we must have (x,a;) = b; for all : € {1,..,n}. We can recycle the results we have just seen.
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Implicit bias for linearly separable datasets

o For linearly separable datasets, we know of an algorithm capable of finding a separating hyperplane.

o It maximizes the margin (i.e., distance between the boundary and the nearest training-data point).

N
4
\
o
ag +,‘Z’\/' /\
\Fe 7 . .
5/ W Hard-margin Support Vector Machines
S
‘L"ZJ\,/ The hard margin Support Vector Machine solves the
/O' ' following optimization problem :
',Q argmin |[x||2  subject to y;(x,a;) > 1.
R ‘{w\ o xERP
4 It finds a hyperplane that maximizes the margin. It
a; does so by design.
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Implicit bias for linearly separable datasets

o What happens if we do not explicitly enforce margin maximization?

Theorem (Implicit Bias of Gradient Descent on Separable Data [23, 10])

For the logistic loss (and some other strictly monotonically decreasing losses) and for linearly separable datasets,
the direction of the iterates xt of Gradient Descent for any initialization converges to the hard-margin SVM

direction:
t *
x x
= *SVM where X3y, = § argmin ||x||2  subject to y;(x,a;) > 1
X2 t=oo  [IxEpll2 xERP
Remarks: o Here, without explicit instructions, gradient descent maximizes the margin.

o The rate of this convergence is O (@)
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Implicit bias for linearly separable datasets

o A similar result can be established for stochastic gradient descent for the logistic loss on separable datasets.

Theorem (Implicit Bias of Stochastic Gradient Descent on Separable Data [18])

The direction of the iterates xt of Stochastic Gradient Descent for any initialization and for a small enough
fixed step-size, converges almost surely to the hard-margin SVM direction:

t *
X _Xswm -0 ( 1 )
Il [Ixgymll2 ||, log ¢
Remarks: o This result is particularly interesting as it establishes convergence of fixed step-size SGD.

o Both SGD and GD have the same implicit bias towards maximizing margins.
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Implicit bias for non-convex objectives

o Characterizing implicit bias of stochastic gradient descent for non-convex objectives is an active research area.

o Some papers study deep matrix factorization as a first step towards getting results for neural networks.

Deep Matrix Factorization

Deep matrix factorization consists of parametrizing a matrix M as a product of N matrices:
M=XnyXn_1...X1

which can be understood as parametrizing M by a depth N “linear neural network,” i.e., a neural network with
no activations and with weight matrices X.
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Implicit bias for deep matrix completion

o The matrix completion problem consists of filling the missing entries of a partially observed matrix.

o The deep matrix factorization approach consists of solving the following problem with gradient descent:

argmin Z ((XNXn-1.--X1]i; — b ;)%
XNXN—1- (Z] )eQ

o It was conjectured in 2017 [11] that gradient descent was biased towards solutions with small nuclear norm.

Theorem (Implicit Regularization May Not Be Explainable by Norms (2020) [22])

For deep matrix completion the implicit bias can not be expressed as a function of a norm or semi-norm.
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Double descent

o A failure of conventional wisdom

under-fitting . over-fitting

. Test risk

under-parameterized

Risk

over-parameterized

Risk

“classical”

“modern”
regime

interpolating regime

N
sweet spot__ . —

Training risk

Capacity of H -

Figure: The classical U-shaped risk curve vs. double-descent risk curve. source: [7].

> classical large-sample limit setting: n — oo under fixed p

> high dimensional setting: n and p comparably large
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Double descent curve in practice (1)

Typical examples:
> linear/nonlinear regression [13]

> random features, random forest, and shallow neural networks [7]

88 =
- RFF
Min. norm solution hy,
" (original kernel) "
0
~ o
9
T 15 o 3
u -
e ©
= >
[s3
2]
4 -
2 T T T T T T T | I 1 | | |
0 10 20 30 40 50 60 3 10 40 100 300 800
i 3
Number of Random Fourier Features (x103) (N) Number of parameters/weights (x103)
(a) Random features model (b) A fully connected neural network

Figure: Experiments on MNIST. Source: [7].
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Double descent curve in practice (1)

Classical Regime:
Bias-Variance Tradeoff

Modern Regime:
Larger Model is Better

05 1 _ Critical — Test 0.7 ____ Optimal Early
S g ~ Regime Train Stopping
o
5 0.4 _ 06
w
< g
T 0.3 5os
= Interpolation o
=
= 0.2 Threshold 'ﬂ_) 0.4
2o 03
0.0 20 30 40 50 60 027 10 20 30 40 50 60

Figure: Left: Train and test error as a function of model size, for ResNet18s of varying width on CIFAR-10 with 15% label noise.

ResNet18 width parameter

ResNet18 Width Parameter

Right: Test error, shown for varying train epochs. source: [19].
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Underparametrized regime

Figure: Low generalization but high empirical error Figure: Sweet spot for the model complexity
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Interpolation threshold

Figure: The unique degree 19 polynomial that can fit 20 samples.
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Benign overfitting in the over-parametrized regime

Figure: A degree 200 polynomial that can harmlessly fits noisy 20 points. 0

400 600 800 1000
Degree of polynomial fit

Figure: Double descent for polynomial fits

Benign Overfitting [6]: good prediction with zero training error for regression loss

> Statistical wisdom: a predictor should not fit too well.

> deep networks fit perfectly on noisy data and generalize well on test data.
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A simple case: linear regression with Gaussian data

Problem setting
o linear model:
> training data {a;}?_; with a; ~ A(0,1,) such that A = [a1,az, -+ ,an]"
> label b; = (x9,a;) +w; with the target vector x? ~ N (0, %Ip), noise w; ~ N(0,0?)
o min-norm solution:
> x* = argmin, {||x|]2: Ax=b} = (ATA)TATb
o excess risk: for a test point a
> R(x*;x%) = E[((a,x*) — (a,x"))?|A]

Theorem [13]

Under the above problem setting, assume that ||xh||§ =72, asn, p— oo, and p/n — v, then we have

o? i , fory <1
1—~

R(x*,x%) — 1 1
r2 (177> +o02——, fory>1
) v .
Y y—1

Remark: The asymptotic risk curves depend on « and the SNR 2 /o2,
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Alternatives to complexity-based generalization bounds

o So far we have seen that complexity based generalization bounds:

> characterize worst-case scenario
> not tight in practice
> disregard the effect of the optimization algorithm

Can we understand generalization as a property of an optimization algorithm?

model class complexity

generalization

algorithm
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Alternatives to complexity-based generalization bounds

o So far we have seen that complexity based generalization bounds:

> characterize worst-case scenario
> not tight in practice
> disregard the effect of the optimization algorithm

Can we understand generalization as a property of an optimization algorithm? YES!

model class complexity

generalization

algorithm stability
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Formal definition of stability (I)

Definition (Uniform Stability [12])
Let & : Z — H be a randomized algorithm with input a finite sample S, and output a function /s € H.

The algorithm o7 has uniform stability (8n),>1 with respect to the loss function L if for all subsets
S, 8" C A x B such that |[S| =|S’| =n and S and S’ differ in at most one sample:

sup  E|L(#s(a),b) — L(#s (a),b)| < Bn
(a,b)e AXB

The expectation is taken with respect to the randomness in the algorithm <.

Misnomer: Lower stability (small values of 3,,) means the difference in the output of the algorithm is smaller.

IHEETNl  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 48 EPFL



Formal definition of stability (I1)

lions@epfl

S =|
s'=|
s=|
s'=|

aj a;

/

a1 a;

a1 a;

a /
1 a; an

_ H.N‘L@s, (a).b)

Figure: Algorithm 2 is less stable than algorithm <.
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Generalization bounds based on uniform stability — definitions

Definition (Empirical Risk on a set)

Let S := [(a1,b1),...,(an,bn)] be an i.i.d. sample drawn from a distribution on A x B. Let L : B x B — R be
a loss function and H be a class of functions h : A — B. The empirical risk of h € H on the set S is defined as:

R(h) = = 3 Lih(ar), bi)
=1

(Almost) same definition as before. Makes explicit the dependence on the set S.

Definition (Expected Generalization Error)

Let & : Z — H be a randomized algorithm that takes as input a finite sample S of arbitrary size, and outputs a
function /s € H. Suppose that S = [(a1,b1),...,(an,bn)] is an i.i.d. sample form probability distribution on
A X B. The expected generalization error on a sample of size n is the value

E[Rs(#s) — R(s))]

the expectation is taken with respect to the draw of the sample S and the randomness of 7.
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Generalization bounds based on uniform stability — Fundamental theorem (1)

Theorem (Hardt et al. 2016 [12])

Let A be uniformly stable with stability (8n)n>1, then for a random i.i.d. sample S of size n, the expected
generalization error is bounded as follows

E[|Rs(4s) — R(5))|] < Bn
Proof.
Let S = [(a1,b1),...,(an,bn)] and S’ = [(a],b)),...,(a},,bn)] be two i.i.d. samples of size n. Denote

SO = [(a1,b1), ..., (@i—1,bi—1), (@}, b)), (@i11, bit1), - -, (An, bn)]
the sample that results from replacing (a;, b;) by (af,b}) in S.

E[Rs(#/5)] =E % Z L(e/s(ai),bi)| =E % Z L(eg0) (a7), ;)

1
—E fZL /5o (a5),b) — was )| FE| = Ls(a)), b))

=1
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Generalization bounds based on uniform stability — Fundamental theorem (I1)

Proof. (continued).
We have

n

BRs(s)] =B | = 3 Ly (al), ) = = > Ldls(@), b)) | +B | =Y L(ass(al),¥)
=1 =1

=1

Note that S and S() only differ in one sample: uniform stability allows bounding the first term as:
n n n
=B | =3 Dl @6 — = > Lls@), )| = = > B [L(orgeo (@), B) — L(ls(al), )] < B
i=1 i=1 i=1
Finally note that because the samples (a;, b;) are independent of S we have:
n
E % 3 L(ls(al). B) | = R(ats)
i=1

analogously we can show E [R(%s) — Rs(%s)] < Bn.
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The stability of SGD

o Let hx € Hx be an element of a parametric function class. Consider the ERM optimization objective:
1 n
f(x):=— g fi(x), fi(x) := L(hx(ai), b;).
n
i=1

o The SGD iterates for t = 0,...,T are x¢4+1 = x¢ — ot Vx fi(x¢), for i ~ Unif[n].

Algorithm Assumptions on f; Stability
i
SGD convex, L-smooth, B-Lipschitz, a; < 2/L — ZZLO ot
n =
2
SGD p-str convex, L-smooth, B-Lipschitz, a; < 2/L ﬁ—
nu
1 2+ L
SGD p-str convex, L-smooth, S-Lipschitz, ay = — u
ut n2,u,
. L BT
SGD avg. iterate convex, L-smooth, -Lipschitz —_—
1+1/8 nL2
SGD non-convex, L-smooth, S-Lipschitz, ay = 1/t —— [BIHITIHT
n

Table: Summary of stability upper bounds for different assumptions on the objective function [12]
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Effect of the number of iterations on the stability of SGD and the generalization error

Train vs test vs parameter distance Train vs test vs parameter distance

0.6 0.6
k\ 4— norm diff 1 A— norm diff
ost | T train error o5 £ train error
I o -6 testerror g ¢ -¢ testerror
04l \g k-1 abs(train error - test error) 0.4 l k-4 abs(train error - test error)
S

o
03r e, MKKK 0.3
®06 0000 206000

02} 0.2
A EA
0.1} a-xE 0.1
awt *
i =t
0.0 0.0
0 5 10 15 20 0 10 20 30 40 50 60
epoch epoch

Figure: Normalized parameter distance between two networks trained on two datasets S, S’ differing only in one sample,
training error, test error and generalization error (0-1 loss) on CIFAR10 [12].

o Parameter distance is a stronger notion than stability.
o More iterations = Parameter distance increases (we expect stability to increase).

o Generalization error follows the same behavior as the parameter distance (proxy for stability).
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Wrap up!

o The visualizations can be deceiving to understand the high-dimensional behavior

o Are we really in the interpolation regime in machine learning?

Theorem (Probability of interpolation [5])

Given a p-dimensional dataset A, = {ai,...,an} with i.i.d. samples, where a; ~ N'(0,1) foralli=1,...,n,
the probability that a new sample a ~ N(0, I)is in the interpolation regime (i.e., within the convex hull of Ay,)
has the following limiting behavior

lim p(a € convex hull(Ay)) =

p—>o0

1 if n>2P/2/p;
0 if n<2°/2/p.

o We are most likely in the extrapolation regime [4]
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Wrap up!

o The visualizations can be deceiving to understand the high-dimensional behavior
o Are we really in the interpolation regime in machine learning?

Theorem (Probability of interpolation [5])

Given a p-dimensional dataset A, = {ai,...,an} with i.i.d. samples, where a; ~ N'(0,1) foralli=1,...,n,
the probability that a new sample a ~ N(0, I)is in the interpolation regime (i.e., within the convex hull of Ay,)
has the following limiting behavior

lim p(a € convex hull(Ay)) =

p—>o0

1 if n>2P/2/p;
0 if n<2°/2/p.

o We are most likely in the extrapolation regime [4]

o Recitation 4 on Friday!
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*From neural networks to random features model [14, 21]

1-hidden-layer neural network with m neurons (fully-connected architecture):

Let X; € R™*XP a € RP, Xg € R™, and p2 € R

activation weight bias bias
1
hx(a) := X o X1 + | H1 + k2|,

hidden layer = fixed random features

> X: Gaussian initialization and then fixed
> Xs5: to be learned

> over-parameterized model: #neurons m > #training data n
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*Double descent: random features model (1)

o high dimensions: #training data n, #neurons m, feature dimension p are comparably large

Figure: Test MSE, Bias, and Variance of RF regression as a function of the ratio m/n on MNIST data set (digit 3 vs. 7) for
p = 784 and n = 600 across the Gaussian kernel. Source: [16].

>

v
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—-averaged SGD -1-B1||
102 +B82
% Yessgmaaa-¢--a-«- |-} B34
= 107
‘aﬁ) e 2 O e |
2 o.

0 0.5

(a) SGD vs. min-norm solution

random features regression solved by SGD: interplay between excess risk and optimization
bias variance decomposition for understanding multiple randomness sources

monotonic decreasing bias and unimodal variance = double descent
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(b) Bias < B1 4+ B2 + B3

(c) Variance < V1 + V2 + V3
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*Double descent: random features model (11)

Algorithm  data assumption  solution type Result on risk curve
[13] Gaussian closed-form variance 7\
[17] i.i.d on sphere closed-form variance, bias 7 N\
[8] Gaussian closed-form refined decomposition on variance
[1] Gaussian closed-form fully decomposition on variance
[15] general closed-form SN
[3] Gaussian GD variance '\
[16] sub-exponential SGD variance '\, bias \

Table: Comparison of representative random features on double descent.

o multiple randomness sources: data sampling, label noise, initialization

o phase transition due to non-monotonic variance
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