Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 6: Time-data tradeoffs and variance reduction

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2021)

License Information for Mathematics of Data Slides

- ▶ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

This class

- 1. Time-data trade-offs
- 2. Rate iteration-cost trade-offs
- 3. Variance reduction

Next class

1. Deep learning introduction

A simple *regression* model

Applications: Compressive sensing, machine learning, theoretical computer science...

lions@epfl

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

A simple *regression* model and many *practical* questions

$$\mathbf{b}_i = \langle \mathbf{a}_i, \mathbf{x}^{\natural}
angle + \mathbf{w}_i$$

- \mathbf{x}^{\natural} : unknown function parameters \mathbf{a}_i : input \mathbf{b}_i : response / output \mathbf{w}_i : perturbations / noise
- \circ Estimation: find \mathbf{x}^{\star} to minimize $\|\mathbf{x}^{\star} \mathbf{x}^{\natural}\|$
- Prediction: find \mathbf{x}^* to minimize $L\left(\langle \mathbf{a}_i, \mathbf{x}^* \rangle, \langle \mathbf{a}_i, \mathbf{x}^{\natural} \rangle\right)$
- \circ Decision: choose \mathbf{a}_i for estimation or prediction

A difficult estimation challenge when n < p:

Nullspace (null) of A: $\mathbf{x}^{\natural} + \mathbf{v} \rightarrow \mathbf{b}, \quad \forall \mathbf{v} \in \mathsf{null}(\mathbf{A})$

 \circ Needle in a haystack: We need additional information on x^{\natural} !

A natural signal model

Definition (s-sparse vector)

A vector $\mathbf{x} \in \mathbb{R}^p$ is s-sparse if it has at most s non-zero entries.

Sparse representations

- $\circ \mathbf{x}^{\natural}$: *sparse* transform coefficients
- \circ Basis representations $\Psi \in \mathbb{R}^{p \times p}$
 - ▶ Wavelets, DCT, ...
- \circ Frame representations $\Psi \in \mathbb{R}^{m \times p}$, m > p
 - Gabor, curvelets, shearlets, …
- Other *dictionary* representations...

$\circ \ \mathbf{b} \in \mathbb{R}^n$, $ilde{\mathbf{A}} \in \mathbb{R}^{n imes p}$, and n < p

 $egin{aligned} &\circ \mathbf{b} \in \mathbb{R}^n, \ ilde{\mathbf{A}} \in \mathbb{R}^{n imes p}, \ ext{and} \ n$

 $\circ \mathbf{b} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n imes p}$, and $\mathbf{x}^{\natural} \in \mathbb{R}^p$, and $\|\mathbf{x}^{\natural}\|_0 \le s < n < p$

Enter sparsity

A combinatorial approach for estimating \mathbf{x}^{\natural} from $\mathbf{b}=\mathbf{A}\mathbf{x}^{\natural}+\mathbf{w}$

We may consider the estimator with the least number of non-zero entries. That is,

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{0} : \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_{2} \le \kappa \right\}$$
(\mathcal{P}_{0})

with some $\kappa \geq 0$. If $\kappa = \|\mathbf{w}\|_2$, then \mathbf{x}^{\natural} is a feasible solution.

Enter sparsity

A combinatorial approach for estimating \mathbf{x}^{\natural} from $\mathbf{b}=\mathbf{A}\mathbf{x}^{\natural}+\mathbf{w}$

We may consider the estimator with the least number of non-zero entries. That is,

$$\mathbf{x}^{*} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{0} : \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_{2} \le \kappa \right\}$$
(\mathcal{P}_{0})

with some $\kappa \geq 0$. If $\kappa = \|\mathbf{w}\|_2$, then \mathbf{x}^{\natural} is a feasible solution.

• \mathcal{P}_0 has the following characteristics:

- **•** sample complexity: $\mathcal{O}(s)$
- computational effort: NP-Hard
- stability: No

Enter sparsity

A combinatorial approach for estimating \mathbf{x}^{\natural} from $\mathbf{b}=\mathbf{A}\mathbf{x}^{\natural}+\mathbf{w}$

We may consider the estimator with the least number of non-zero entries. That is,

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{0} : \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_{2} \le \kappa \right\}$$
(\mathcal{P}_{0})

with some $\kappa \geq 0$. If $\kappa = \|\mathbf{w}\|_2$, then \mathbf{x}^{\natural} is a feasible solution.

$\circ \ \mathcal{P}_0$ has the following characteristics:

- **•** sample complexity: $\mathcal{O}(s)$
- computational effort: NP-Hard
- stability: No
- Tightest convex relaxation:
 - $|\mathbf{x}||_0^{**}$ is the biconjugate
 - i.e., Fenchel conjugate of Fenchel conjugate
- Fenchel conjugate:

•
$$f^*(\mathbf{y}) := \sup_{\mathbf{x}: \mathsf{dom}(f)} \mathbf{x}^T \mathbf{y} - f(\mathbf{x})$$

 $\|\mathbf{x}\|_1$ is the convex envelope of $\|\mathbf{x}\|_0$

A technicality: Restrict $\mathbf{x}^{\natural} \in [-1, 1]^{p}$.

Slide 7/ 52

lions@epf

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

The role of convexity

A convex candidate solution for $\mathbf{b}=\mathbf{A}\mathbf{x}^{\natural}+\mathbf{w}$

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x}\in\mathbb{R}^{p}}\left\{ \left\|\mathbf{x}\right\|_{1}: \left\|\mathbf{b} - \mathbf{A}\mathbf{x}\right\|_{2} \le \left\|\mathbf{w}\right\|_{2}, \left\|\mathbf{x}\right\|_{\infty} \le 1 \right\}.$$
 (SOCP)

Theorem (A model recovery guarantee [17])

Let $\mathbf{A} \in \mathbb{R}^{n \times p}$ be a matrix of i.i.d. Gaussian random variables with zero mean and variances 1/n. For any t > 0 with probability at least $1 - 6 \exp\left(-t^2/26\right)$, we have

$$\left\|\mathbf{x}^{\star} - \mathbf{x}^{\natural}\right\|_{2} \leq \left[\frac{2\sqrt{2s\log(\frac{p}{s}) + \frac{5}{4}s}}{\sqrt{n} - \sqrt{2s\log(\frac{p}{s}) + \frac{5}{4}s} - t}\right] \|\mathbf{w}\|_{2} \coloneqq \mathbf{\varepsilon}, \quad \text{when } \|\mathbf{x}^{\natural}\|_{0} \leq s.$$

Observations: o perfect recovery (i.e., $\varepsilon = 0$) with $n \ge 2s \log(\frac{p}{s}) + \frac{5}{4}s$ whp when $\mathbf{w} = 0$. o ϵ -accurate solution in $k = \mathcal{O}\left(\sqrt{2p+1}\log(\frac{1}{\epsilon})\right)$ iterations via IPM with a total complexity of $\mathcal{O}(n^2p^{1.5}\log(\frac{1}{\epsilon}))$ with each iteration requiring the solution of a structured $n \times 2p$ linear system. o robust to noise.

A Time-Data conundrum — I

A computational dogma

Running time of a learning algorithm increases with the size of the data.

A Time-Data conundrum — I

A computational dogma

Running time of a learning algorithm increases with the size of the data.

 \circ Misaligned goals in the statistical and optimization disciplines

Discipline	Goal	Metric
Optimization	reaching numerical ϵ -accuracy	$\ \mathbf{x}^k - \mathbf{x}^\star\ \le \epsilon$
Statistics	learning $arepsilon$ -accurate model	$\ \mathbf{x}^{\star} - \mathbf{x}^{\natural}\ \leq \varepsilon$

 \circ Main issue: ϵ and ε are NOT the same but should be treated jointly!

A Time-Data conundrum — II

A stylized formalization of the time-data tradeoff

The goals of optimization and statistical modeling are tightly connected:

	$\underbrace{\ \mathbf{x}^k - \mathbf{x}^{\natural}\ }_{\text{learning quality}} \leq \underbrace{\ \mathbf{x}^k - \mathbf{x}^{\star}\ }_{\epsilon: \text{ needs "time" } t(k)} + \underbrace{\ \mathbf{x}^{\star} - \mathbf{x}^{\natural}\ }_{\epsilon: \text{ needs "data"}}$
\mathbf{x}^{\natural} :	true model in \mathbb{R}^p
\mathbf{x}^{\star} :	statistical model estimate
\mathbf{x}^k :	numerical solution at iteration k

 \circ As the number of data samples n increases with a fixed optimization formulation,

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{1} : \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_{2} \le \left\| \mathbf{w} \right\|_{2}, \left\| \mathbf{x} \right\|_{\infty} \le 1 \right\}$$

- \blacktriangleright numerical methods take longer time t to reach ϵ -accuracy
 - $\blacktriangleright\,$ e.g., per-iteration time to solve an $n\times 2p$ linear system

► statistical model estimates
$$\varepsilon$$
 become more precise when $\|\mathbf{w}\|_2 = \mathcal{O}(\sqrt{n})$
► $\varepsilon = \frac{2\sqrt{2s \log(\frac{p}{s}) + \frac{5}{4}s}}{2 \sqrt{2s \log(\frac{p}{s}) + \frac{5}{4}s}} \|\mathbf{w}\|$ with probability $1 - 6\exp(-t^2/26)$

A Time-Data conundrum — II

A stylized formalization of the time-data tradeoff

The goals of optimization and statistical modeling are tightly connected:

$\underbrace{\ \mathbf{x}\ }_{\leq i}$	$\underbrace{\frac{k}{\epsilon} - \mathbf{x}^{\natural}}_{\epsilon(t(k),n)} \leq \underbrace{\ \mathbf{x}^{k} - \mathbf{x}^{\star}\ }_{\epsilon: \text{ needs "time" } t(k)} + \underbrace{\ \mathbf{x}^{\star} - \mathbf{x}^{\natural}\ }_{\epsilon: \text{ needs "data" } n},$
\mathbf{x}^{\natural} :	true model in \mathbb{R}^p
\mathbf{x}^{\star} :	statistical model estimate
\mathbf{x}^k :	numerical solution at iteration k
$\bar{arepsilon}(t(k),n)$:	actual learning quality at time $t(k)$ with n samples

 \circ As the number of data samples n increases with a fixed optimization formulation,

$$\mathbf{x}^{\star} \in \operatorname{arg\,min}_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ \left\| \mathbf{x} \right\|_{1} : \left\| \mathbf{b} - \mathbf{A} \mathbf{x} \right\|_{2} \le \left\| \mathbf{w} \right\|_{2}, \left\| \mathbf{x} \right\|_{\infty} \le 1 \right\}$$

- \blacktriangleright numerical methods take longer time t to reach ϵ -accuracy
 - \blacktriangleright e.g., per-iteration time to solve an $n\times 2p$ linear system

▶ statistical model estimates
$$\varepsilon$$
 become more precise when $\|\mathbf{w}\|_2 = \mathcal{O}(\sqrt{n})$

$$\varepsilon = \frac{2\sqrt{2s\log(\frac{p}{s}) + \frac{5}{4}s}}{\sqrt{n} - \sqrt{2s\log(\frac{p}{s}) + \frac{5}{4}s - t}} \|\mathbf{w}\|_2, \text{ with probability } 1 - 6\exp(-t^2/26).$$

"Time" effort has significant diminishing returns on ε in the underdetermined case* (cf., [8, 5, 19, 7, 6])

* "Data" effort also exhibits a similar behavior in the overdetermined case when a signal prior is used due to noise!

Data as a computational resource

A stylized formalization of the time-data tradeoff

The goals of optimization and statistical modeling are tightly connected:

estimator formulation and sample complexity

 \circ a "continuous" time-data tradeoff

 \circ a different, algorithmic tradeoff with SGD

Sample complexity analysis

Convex optimization formulation for the estimator

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x}\in\mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x} \right\},$$

where $f:\mathbb{R}^p\to\mathbb{R}\cup\{-\infty,\infty\}$ is a convex function.

Sample complexity

Assume that $A \in \mathbb{R}^{n \times p}$ is a matrix of independent identically distributed (i.i.d.) Gaussian random variables. What is the minimum number of samples n such that $\mathbf{x}^* = \mathbf{x}^{\natural}$ with high probability?

Characterization of the error vector

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x}\in\mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x} \right\}$$

Define the error vector $\boldsymbol{\delta} := \mathbf{x}^{\star} - \mathbf{x}^{\natural}$.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Descent cone

Definition (Descent cone)

Let $f : \mathbb{R}^p \to \mathbb{R} \cup \{-\infty, \infty\}$ be a proper lower-semicontinuous function. The descent cone of f at \mathbf{x}^{\natural} is defined as

$$\mathcal{D}_f(\mathbf{x}^{\natural}) := \operatorname{cone}\left(\left\{\delta : f(\mathbf{x}^{\natural} + \delta) \le f(\mathbf{x}^{\natural})\right\}\right).$$

Condition for exact recovery in the noiseless case

Proposition (Condition for exact recovery)

We have successful recovery, i.e., $\delta := \mathbf{x}^* - \mathbf{x}^{\natural} = 0$ with $\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{f(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x}\}$, if and only if $\operatorname{null}(\mathbf{A}) \cap \mathcal{D}_f(\mathbf{x}^{\natural}) = \{0\}$.

Condition for exact recovery in the noiseless case

Proposition (Condition for exact recovery)

We have successful recovery, i.e., $\delta := \mathbf{x}^* - \mathbf{x}^{\natural} = 0$ with $\mathbf{x}^* \in \arg \min_{\mathbf{x} \in \mathbb{R}^p} \{f(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x}\}$, if and only if $\operatorname{null}(\mathbf{A}) \cap \mathcal{D}_f(\mathbf{x}^{\natural}) = \{0\}$.

Statistical dimension and approximate kinematic formula

Now we have

$$\mathbb{P}\left\{\mathbf{x}^{\star} = \mathbf{x}^{\natural}\right\} = \mathbb{P}\left\{\operatorname{null}(\mathbf{A}) \cap \mathcal{D}_{f}(\mathbf{x}^{\natural}) = \{0\}\right\}.$$

Definition (Statistical dimension $[3]^1$)

Let $\mathcal{C} \subseteq \mathbb{R}^p$ be a closed convex cone. The statistical dimension of \mathcal{C} is defined as

 $d(\mathcal{C}) := \mathbb{E}\left[\|\operatorname{proj}_{\mathcal{C}}(\mathbf{g})\|_{2}^{2} \right].$

Theorem (Approximate kinematic formula [3])

Let $A \in \mathbb{R}^{n \times p}$, n < p, be a matrix of i.i.d. standard Gaussian random variables, and let $\mathcal{C} \subseteq \mathbb{R}^p$ be a closed convex cone. Let $n \in (0, 1)$ Then

$$\begin{split} n &\geq d(\mathcal{C}) + c_{\eta} \sqrt{p} \quad \Rightarrow \quad \mathbb{P}\left\{ \mathrm{null}(\mathbf{A}) \cap \mathcal{C} = \{0\} \right\} \geq 1 - \eta; \\ n &\leq d(\mathcal{C}) - c_{\eta} \sqrt{p} \quad \Rightarrow \quad \mathbb{P}\left\{ \mathrm{null}(\mathbf{A}) \cap \mathcal{C} = \{0\} \right\} \leq \eta, \end{split}$$

where $c_{\eta} := \sqrt{8 \log(4/\eta)}$.

¹The statistical dimension is closely related to the Gaussian complexity [4], Gaussian width [9], and Gaussian squared complexity [8].

Probability of exact recovery

Corollary

For any $\eta \in (0,1)$,

$$\begin{split} n &\geq d(\mathcal{D}_f(\mathbf{x}^{\natural})) + c_\eta \sqrt{p} \quad \Rightarrow \quad \mathbb{P}\left\{\mathbf{x}^{\star} = \mathbf{x}^{\natural}\right\} \geq 1 - \eta;\\ n &\leq d(\mathcal{D}_f(\mathbf{x}^{\natural})) - c_\eta \sqrt{p} \quad \Rightarrow \quad \mathbb{P}\left\{\mathbf{x}^{\star} = \mathbf{x}^{\natural}\right\} \leq \eta, \end{split}$$

where $c_{\eta} := \sqrt{8 \log(4/\eta)}$.

• There is a *phase transition* at $n \approx d(\mathcal{D}_f(\mathbf{x}^{\natural}))$.

Examples ([3]) \circ Let $f(\mathbf{x}) := \|\mathbf{x}\|_1$, and let $\mathbf{x}^{\natural} \in \mathbb{R}^p$ be s-sparse. Then $d(\mathcal{D}_f(\mathbf{x}^{\natural})) \leq 2s \log(p/s) + (5/4)s$. \circ Let $f(\mathbf{x}) := \|\mathbf{X}\|_*$, and let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ of rank r. Then $d(\mathcal{D}_f(\mathbf{x}^{\natural})) \leq 3r(2p-r)$.

Smoothing increases the statistical dimension

Key properties of the statistical dimension [3]

• The statistical dimension is invariant under unitary transformations (rotations). • Let C_1 and C_2 be closed convex cones. If $C_1 \subset C_2$, then $d(C_1) < d(C_2)$.

The larger the statistical dimension is, the more number of observations is required.

Numerical results for the statistical dimension and $\mu(n)$

Smoothing decreases the computational cost

• Consider the estimator,

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x}\in\mathbb{R}^{p}} \left\{ f_{\mu}(\mathbf{x}) : \mathbf{b} = \mathbf{A}\mathbf{x}, \|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}^{\natural}\|_{\infty} \right\}, \quad \mu \in [0, \infty).$$

Proposition

Let $\mu > 0$ and $f(\mathbf{x}) = \|\mathbf{x}\|_1$. Consider solving (1) with a primal-dual method as in [6, 7]. The output after the k-th iteration, \mathbf{x}^k , satisfies

$$\left\|\mathbf{x}^{\star} - \mathbf{x}^{k}\right\|_{2} \leq \frac{4p\kappa(\mathbf{A})\left[\rho(1+\mu\|\mathbf{x}^{\star}\|_{\infty})^{2} + (1-\rho)\right]}{\mu k} \propto \frac{1}{\mu k}\Big|_{\rho \ll 1},$$

where $\rho := s/p$, s being the number of non-zero entries in \mathbf{x}^* , and $\kappa(\mathbf{A})$ denotes the restricted condition number of \mathbf{A} .

Observations: \circ When $\rho \ll 1$, the number of iterations k to achieve the required precision decreases.

• In fact, we need $1/(\mu\varepsilon)$ iterations to have an error bound $\|\mathbf{x}^{\star} - \mathbf{x}^{k}\|_{2} \leq \varepsilon$ for a fixed $\epsilon > 0$.

Time-data tradeoff

Define the maximal smoothing parameter

$$\mu(n) := \arg \max_{\mu > 0} \left\{ \mu : d\left(\mathcal{D}_{f_{\mu}}(\mathbf{x}^{\natural}) \right) \leq n \right\}.$$

• Consider the "conservative" estimator in probability.

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x}\in\mathbb{R}^p} \left\{ \left. f_{\mu}(\mathbf{x}) \right|_{\mu=\frac{1}{4}\mu(n)} : \mathbf{b} = \mathbf{A}\mathbf{x} \right\}.$$

Corollary

Let $\rho := s/p \ll 1$. Then we have, with high probability, $\mathbf{x}^* = \mathbf{x}^{\natural}$, and

$$\left\| \mathbf{x}^{\natural} - \mathbf{x}^{k}
ight\|_{2} \propto rac{1}{\mu(n)k}.$$

Therefore, to achieve the error bound, $\left\|\mathbf{x}^{\natural} - \mathbf{x}^{k}\right\|_{2} \leq \varepsilon$ for a fixed $\varepsilon > 0$, it suffices to choose

$$k = O\left(\frac{1}{\mu(n)}\right).$$

A numerical result for the time-data tradeoff

Another trade-off in optimization

• Statistics vs Optimization:

Discipline	Goal	Metric
Optimization	reaching numerical ϵ -accuracy	$\ \mathbf{x}^k - \mathbf{x}^\star\ \le \epsilon$
Statistics	learning $arepsilon$ -accurate model	$\ \mathbf{x}^{\star} - \mathbf{x}^{\natural}\ \leq \varepsilon$

Remarks: As data sample size gets larger we have seen that:

 \circ Algorithms take longer to reach ϵ accuracy.

 \circ However, statistical error ε decreases as the estimation is more precise.

Another trade-off in optimization

• Statistics vs Optimization:

Discipline	Goal	Metric
Optimization	reaching numerical ϵ -accuracy	$\ \mathbf{x}^k - \mathbf{x}^\star\ \le \epsilon$
Statistics	learning $arepsilon$ -accurate model	$\ \mathbf{x}^{\star} - \mathbf{x}^{\natural}\ \leq \varepsilon$

Remarks: As data sample size gets larger we have seen that:

• Algorithms take longer to reach ϵ accuracy.

 \circ However, statistical error ε decreases as the estimation is more precise.

Similar analogy exists between per-iteration cost and convergence rate for optimization algorithms

Another trade-off in optimization

• Statistics vs Optimization:

Discipline	Goal	Metric
Optimization	reaching numerical ϵ -accuracy	$\ \mathbf{x}^k - \mathbf{x}^\star\ \le \epsilon$
Statistics	learning $arepsilon$ -accurate model	$\ \mathbf{x}^{\star} - \mathbf{x}^{\natural}\ \leq \varepsilon$

Remarks: As data sample size gets larger we have seen that:

• Algorithms take longer to reach ϵ accuracy.

 \circ However, statistical error ε decreases as the estimation is more precise.

Similar analogy exists between per-iteration cost and convergence rate for optimization algorithms

Understanding this trade-off helps us reduce total complexity!

Recall: GD vs. SGD

Problem (Unconstrained convex minimization)

Deterministic setting

$$f^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} f(x)$$

- \circ $f(\mathbf{x})$ is a proper, closed, convex and smooth.
- The solution set $S^* := \{ \mathbf{x}^* \in \operatorname{dom}(f) : f(\mathbf{x}^*) = f^* \} \neq \emptyset.$

Stochastic programming

$$f^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) := \mathbb{E}[f(\mathbf{x}, \theta)] \right\}$$

 \circ $f(\mathbf{x})$ is proper, closed, convex and smooth.

$$\circ \text{ The solution set} \\ \mathcal{S}^{\star} := \{ \mathbf{x}^{\star} \in \operatorname{dom} (f) : f(\mathbf{x}^{\star}) = f^{\star} \} \neq \emptyset.$$

 $\circ \theta$ is a random vector, supported on set Θ .

Algorithms

Gradient Descent

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)$$

 $\circ \alpha_k < 2/L.$

Stochastic Gradient Descent

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k G(\mathbf{x}^k, \theta_k)$$

$$\circ \ \alpha_k = \mathcal{O}(1/\sqrt{k})$$
$$\circ \ \mathbb{E}[G(\mathbf{x}^k, \theta_k)] = \nabla f(\mathbf{x}^k)$$

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 25/ 52

Example: Convex optimization with finite sum

 \circ Consider the finite sum (e.g., ERM) setting

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \bigg\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \bigg\}.$$

Algorithms in the finite sum setting	
Gradient Descent	Stochastic Gradient Descent
$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \nabla f(\mathbf{x}^k)$	$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k G(\mathbf{x}^k, \theta_k)$
$\circ \nabla f(\mathbf{x}^k) = rac{1}{n} \sum_{j=1}^n abla f_j(\mathbf{x}^k)$	$\circ G(\mathbf{x}^k, \theta_k) = \nabla f_j(\mathbf{x}^k), \ j \sim \text{Uniform}(\{1, \cdots, n\})$

Example: Convex optimization with finite sum

 \circ Consider the finite sum (e.g., ERM) setting

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \bigg\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \bigg\}.$$

Algorithms in the finite sum setting	
Gradient Descent	Stochastic Gradient Descent
$\mathbf{x}^{k+1} = \mathbf{x}^k - lpha_k abla f(\mathbf{x}^k)$	$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k G(\mathbf{x}^k, \theta_k)$
$\circ \nabla f(\mathbf{x}^k) = rac{1}{n} \sum_{j=1}^n abla f_j(\mathbf{x}^k)$	$\circ G(\mathbf{x}^k, \theta_k) = abla f_j(\mathbf{x}^k), \ j \sim \mathrm{Uniform}(\{1, \cdots, n\})$

 \circ $f(\mathbf{x})$: convex and L-Lipschitz gradient

	rate	cost per iteration	iteration complexity	total complexity
GD	1/k	n	$1/\epsilon$	n/ϵ
SGD	$1/\sqrt{k}$	1	$1/\epsilon^2$	$1/\epsilon^2$

Example: Convex optimization with finite sum

 \circ Consider the finite sum (e.g., ERM) setting

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \bigg\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \bigg\}.$$

Algorithms in the finite sum setting	
Gradient Descent	Stochastic Gradient Descent
$\mathbf{x}^{k+1} = \mathbf{x}^k - lpha_k abla f(\mathbf{x}^k)$	$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k G(\mathbf{x}^k, \theta_k)$
$\circ \nabla f(\mathbf{x}^k) = rac{1}{n} \sum_{j=1}^n abla f_j(\mathbf{x}^k)$	$\circ G(\mathbf{x}^k, \theta_k) = abla f_j(\mathbf{x}^k), \ j \sim \mathrm{Uniform}(\{1, \cdots, n\})$

 \circ $f(\mathbf{x})$: μ -strongly convex and L-Lipschitz gradient

	rate	cost per iteration	iteration complexity	total complexity
GD	$ ho^k$	n	$\log(1/\epsilon)$	$n\log(1/\epsilon)$
SGD	1/k	1	$1/\epsilon$	$1/\epsilon$

When f is μ -strongly convex and L-Lipschitz gradient

Finite sums

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \bigg\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \bigg\}.$$

	rate	cost per iteration	iteration complexity	total complexity
GD	$ ho^k$	n	$\log(1/\epsilon)$	$n\log(1/\epsilon)$
SGD	1/k	1	$1/\epsilon$	$1/\epsilon$

Remarks: • SGD trades off convergence rate with low per-iteration cost.

 \circ When n is large, SGD proves to be effective.

• To control variance of the stochastic gradient estimate, SGD decreases step size at a certain rate.

• In turn, convergence deteriorates from linear to sublinear.

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \gamma_k \nabla f(\mathbf{x}^k) \quad (\mathsf{GD})$$

Lemma

Assume f is Lipschitz smooth with constant L. Then,

$$f(\mathbf{x}^{k+1}) - f(\mathbf{x}^k) \le \left(\frac{\gamma_k^2 L}{2} - \gamma_k\right) \|\nabla f(\mathbf{x}^k)\|^2.$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \gamma_k G(\mathbf{x}^k, \theta_k) \quad (SGD)$$

Lemma

Assume f is Lipschitz smooth with constant L. Then,

$$\mathbb{E}[f(\mathbf{x}^{k+1}) - f(\mathbf{x}^k)] \le \left(\frac{\gamma_k^2 L}{2} - \gamma_k\right) \mathbb{E}[\|\nabla f(\mathbf{x}^k)\|^2] + \frac{L\gamma_k^2}{2} \mathbb{E}[\|G(\mathbf{x}^k, \theta_k) - \nabla f(\mathbf{x}^k)\|^2]$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \gamma_k G(\mathbf{x}^k, \theta_k) \quad (SGD)$$

Lemma

Assume f is Lipschitz smooth with constant L. Then,

$$\mathbb{E}[f(\mathbf{x}^{k+1}) - f(\mathbf{x}^k)] \le \left(\frac{\gamma_k^2 L}{2} - \gamma_k\right) \mathbb{E}[\|\nabla f(\mathbf{x}^k)\|^2] + \frac{L\gamma_k^2}{2} \mathbb{E}[\|G(\mathbf{x}^k, \theta_k) - \nabla f(\mathbf{x}^k)\|^2]$$

 \circ The variance of gradient estimate dominates as $abla f(\mathbf{x}^k)
ightarrow 0$.

• To ensure convergence we need to control variance.

 $\gamma_k \rightarrow 0 \Longrightarrow$ Slow convergence!

Can we decrease the variance while using a constant step-size?

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \gamma_k G(\mathbf{x}^k, \theta_k) \quad (SGD)$$

Lemma

Assume f is Lipschitz smooth with constant L. Then,

$$\mathbb{E}[f(\mathbf{x}^{k+1}) - f(\mathbf{x}^k)] \le \left(\frac{\gamma_k^2 L}{2} - \gamma_k\right) \mathbb{E}[\|\nabla f(\mathbf{x}^k)\|^2] + \frac{L\gamma_k^2}{2} \mathbb{E}[\|G(\mathbf{x}^k, \theta_k) - \nabla f(\mathbf{x}^k)\|^2]$$

 \circ The variance of gradient estimate dominates as $abla f(\mathbf{x}^k)
ightarrow 0$.

• To ensure convergence we need to control variance.

 $\gamma_k \rightarrow 0 \Longrightarrow$ Slow convergence!

Can we decrease the variance while using a constant step-size?

Choose a stochastic gradient, s.t. $\mathbb{E}\left[\|G(\mathbf{x}^k; \theta_k)\|^2\right] \to 0.$

A simple approach: Mini-batch SGD

 \circ More samples \rightarrow better estimate for full gradient.

SGD with mini batches

Let $G(\mathbf{x}, \theta)$ be an unbiased gradient estimate $(\mathbb{E}[G(\mathbf{x}, \theta)] = \nabla f(\mathbf{x}))$ and B_k be the batch size. Then,

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \frac{1}{B_k} \sum_{j=1}^{B_k} G(\mathbf{x}^k, \theta_{k,j})$$

Theorem

Let $B_k > 0$ be the batch size and $G(\mathbf{x}, \theta)$ be an unbiased gradient estimate with bounded variance, i.e., $\mathbb{E}[\|G(\mathbf{x}, \theta) - \nabla f(\mathbf{x})\|^2 | \mathbf{x}] \le \sigma^2$. Then, the mini-batch estimate has the following properties:

$$\mathbb{E}\left[\frac{1}{B_k}\sum_{j=1}^{B_k}G(\mathbf{x},\theta_{k,j})\right] = \nabla f(\mathbf{x}) \qquad \text{ and } \qquad \mathbb{E}\left[\left\|\frac{1}{B_k}\sum_{j=1}^{B_k}G(\mathbf{x},\theta_{k,j}) - \nabla f(\mathbf{x})\right\|^2 \mid \mathbf{x}\right] \leq \frac{\sigma^2}{B_k}$$

Remarks: • We might need to increase the batch size over time to take variance to 0.

• We can come up with a "smarter" estimate for $\nabla f(\mathbf{x})$.

How to construct a new estimate $G(\mathbf{x}^k; \theta_k)$? [10]

Finite sum structure:	SGD update rule:
$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \right\}$	$\mathbf{x}^{k+1} = \mathbf{x}^k - \gamma_k abla f_j(\mathbf{x}^k)$

• Let $X = \nabla f_j(\mathbf{x}^k)$ be a random variable (due to $j \sim \text{Uniform}(\{1, \dots, n\}))$.

• Let $Y = \nabla f_j(\tilde{\mathbf{x}})$ be another random variable, and $\tilde{\mathbf{x}}$ is a particularly selected point.

Remarks: \circ We want X and Y to be correlated (we will see why!). \circ Given Y, we should be able to estimate $\mathbb{E}[X]$ with more confidence.

Observations: • Choice of $\tilde{\mathbf{x}}$ affects how correlated X and Y are. • We can compute $\mathbb{E}[Y] = \frac{1}{n} \sum_{j=1}^{n} \nabla f_j(\tilde{\mathbf{x}}) = \nabla f(\tilde{\mathbf{x}})$.

Goal: • Find a good estimate of $\mathbb{E}[X] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_j(\mathbf{x}^k) = \nabla f(\mathbf{x}^k).$

lions@epf

How to construct a new estimate $G(\mathbf{x}^k; \theta_k)$? [10]

Finite sum structure:	SGD update rule:
$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \right\}$	$\mathbf{x}^{k+1} = \mathbf{x}^k - \gamma_k abla f_j(\mathbf{x}^k)$

• Let $X = \nabla f_j(\mathbf{x}^k)$ be a random variable (due to $j \sim \text{Uniform}(\{1, \dots, n\})$).

• Let $Y = \nabla f_j(\tilde{\mathbf{x}})$ be another random variable, and $\tilde{\mathbf{x}}$ is a particularly selected point.

```
A generalized estimator: R_{\alpha} = \alpha(X - Y) + \mathbb{E}[Y]
```

```
\circ \mathbb{E}[R_{\alpha}] = \alpha \mathbb{E}[X] + (1 - \alpha) \mathbb{E}[Y]
 \circ \operatorname{Var}(R_{\alpha}) = \alpha^{2} (\operatorname{Var}(X) + \operatorname{Var}(Y) - 2\operatorname{Cov}(X, Y))
```

Observations: • When $\alpha = 1$, R_{α} becomes unbiased, i.e., $\mathbb{E}[R_{\alpha}] = \mathbb{E}[X]$.

• If $\operatorname{Cov}(X, Y)$ is large enough (X and Y are correlated enough), $\operatorname{Var}(R_{\alpha}) \leq \operatorname{Var}(X)$.

How could we use this information to construct our estimate?

Variance reduction techniques: SVRG

 \circ Select the stochastic gradient $\nabla f_{i_k},$ and compute a gradient estimate

$$\mathbf{r}_k = \nabla f_{i_k}(\mathbf{x}^k) - \nabla f_{i_k}(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}}).$$

 \circ As $\tilde{\mathbf{x}} \to \mathbf{x}^{\star}$ and $\mathbf{x}^k \to \mathbf{x}^{\star}$,

$$\nabla f_{i_k}(\mathbf{x}^k) - \nabla f_{i_k}(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}}) \to 0.$$

• Therefore,

$$\mathbb{E}\Big[\|\nabla f_{i_k}(\mathbf{x}^k) - \nabla f_{i_k}(\tilde{\mathbf{x}}) + \nabla f(\tilde{\mathbf{x}})\|^2\Big] \to 0.$$

Remarks: • Remember the generalized estimator: $R_{\alpha} = \alpha(X - Y) + \mathbb{E}[Y]$. • For SVRG, $\alpha = 1$, $X = \nabla f_{i_k}(\mathbf{x}^k)$ and $Y = \nabla f_{i_k}(\tilde{\mathbf{x}})$. • We will see how $\tilde{\mathbf{x}}$ is computed!

Stochastic gradient algorithm with variance reduction

Stochastic gradient with variance reduction (SVRG) [12, 21] 1. Choose $\widetilde{\mathbf{x}}^0 \in \mathbb{R}^p$ as a starting point and $\gamma > 0$ and $q \in \mathbb{N}_+$. 2. For $s = 0, 1, 2 \cdots$, perform: 2a. $\widetilde{\mathbf{x}} = \widetilde{\mathbf{x}}^s$, $\widetilde{\mathbf{v}} = \nabla f(\widetilde{\mathbf{x}})$, $\mathbf{x}^0 = \widetilde{\mathbf{x}}$. 2b. For $k = 0, 1, \cdots q - 1$, perform: $\begin{cases}
\operatorname{Pick} i_k \in \{1, \dots, n\} \text{ uniformly at random} \\
\mathbf{r}_k = \nabla f_{i_k}(\mathbf{x}^k) - \nabla f_{i_k}(\widetilde{\mathbf{x}}) + \widetilde{\mathbf{v}} \\
\mathbf{x}^{k+1} := \mathbf{x}^k - \gamma \mathbf{r}_k,
\end{cases}$ (1) 2c. Update $\widetilde{\mathbf{x}}^{s+1} = \frac{1}{m} \sum_{j=0}^{q-1} \mathbf{x}^j$.

Features

- The SVRG method uses a multistage scheme to reduce the variance of the stochastic gradient \mathbf{r}_k .
- \circ Learning rate γ does not necessarily tend to 0 while \mathbf{x}^k and $\mathbf{\widetilde{x}}^s$ tend to \mathbf{x}_{\star} .
- \circ Each stage, SVRG uses $\pmb{n}+2\pmb{q}$ component gradient evaluations.
- \circ *n* for the full gradient at the beginning of each stage, and 2q for each of the *q* stochastic gradient steps.

Convergence analysis

Assumption A5.

- (i) f is μ -strongly convex
- (ii) The learning rate $0 < \gamma < 1/(4L_{\max})$, where $L_{\max} = \max_{1 \le j \le n} L_j$.
- (iii) q is large enough such that

$$\kappa = \frac{1}{\mu\gamma(1 - 4\gamma L_{\max})q} + \frac{4\gamma L_{\max}(q+1)}{(1 - 4\gamma L_{\max})q} < 1.$$

Theorem

Assumptions:

- \circ The sequence $\{\widetilde{\mathbf{x}^s}\}_{k\geq 0}$ is generated by SVRG.
- Assumption A5 is satisfied.

Conclusion: Linear convergence is obtained:

$$\mathbb{E}f(\widetilde{\mathbf{x}}^s) - f(\mathbf{x}^\star) \le \kappa^s (f(\widetilde{\mathbf{x}}^0) - f(\mathbf{x}^\star)).$$

Choice of γ and q, and complexity

Chose γ and q such that $\kappa \in (0,1)$:

For example

$$\gamma = 0.1/L_{\max}, q = 100(L_{\max}/\mu) \Longrightarrow \kappa \approx 5/6.$$

Complexity

$$\mathbb{E}f(\widetilde{\mathbf{x}}^s) - f(\mathbf{x}^\star) \le \varepsilon, \quad \text{when } s \ge \log((f(\widetilde{\mathbf{x}}^0) - f(\mathbf{x}^\star))/\epsilon) / \log(\kappa^{-1})$$

 \circ Each stage needs n+2q component gradient evaluations

 \circ With $q=\mathcal{O}(L_{\max}/\mu)$, we obtain an overall complexity of

$$\mathcal{O}\left((n+L_{\max}/\mu)\log(1/\epsilon)\right)$$

lions@epfl

Comparison: GD vs. SGD vs. SVRG

 \circ GD update:

$$\left\{ \begin{array}{l} \mathbf{x}^{k+1} := \mathbf{x}^k - \gamma \nabla f(\mathbf{x}^k), \end{array} \right.$$

 \circ SGD update:

$$\left\{ \begin{array}{l} \mathbf{x}^{k+1} := \mathbf{x}^k - \gamma \nabla f_{i_k}(\mathbf{x}^k), \end{array} \right.$$

• SVRG update:

$$\begin{cases} \mathbf{r}_k = \nabla f_{i_k}(\mathbf{x}^k) - \nabla f_{i_k}(\widetilde{\mathbf{x}}) + \nabla f(\widetilde{\mathbf{x}}) \\ \mathbf{x}^{k+1} := \mathbf{x}^k - \gamma \mathbf{r}_k, \end{cases}$$

	SGD	SVRG	GD
Requires gradient storage?	no	no	no
Epoch-based	no	yes	no
Parameters	stepsize	stepsize & epoch length	stepsize
Gradient evaluations	1 per iteration	n+2q per epoch	n per iteration

Table: Comparisons of SGD, SVRG and GD [10]

 \circ Recall that $q=\mathcal{O}(L_{\max}/\mu)$ is the epoch length for SVRG.

Example: ℓ_2 -regularized least squares with synthetic data

Taxonomy of algorithms

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \right\}.$$

• $f(\mathbf{x}) = \frac{1}{n} \sum_{j=1}^{n} f_j(\mathbf{x})$: μ -strongly convex with L-Lipschitz continuous gradient.

SVRG	GD	SGD
Linear	Linear	Sublinear

Table: Rate of convergence.

 $\circ \kappa = L/\mu.$

SVRG	AGD	SGD
$\mathcal{O}((n+\kappa)\log(1/\varepsilon))$	$\mathcal{O}((n\kappa)\log(1/\varepsilon))$	$1/\varepsilon$

Table: Complexity to obtain ε -solution.

The variance reduction zoo

Setting	Algorithm	Lower bound	Complexity bound
	Gradient descent	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$ [11]	$nL\Delta_0/\epsilon^2$
	SVRG $(B_k = 1)$ [18]	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$ [11]	$nL\Delta_0/\epsilon^2$
	SVRG $(B_k = \Omega(n^{2/3}))$ [18]	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$ [11]	$n^{2/3}L\Delta_0/\epsilon^2$
L -smooth f_i 's	SAGA $(B_k = 1)$ [18]	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$ [11]	$nL\Delta_0/\epsilon^2$
with bounded variance	SAGA $(B_k = \Omega(n^{2/3}))$ [18]	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$ [11]	$n^{2/3}L\Delta_0/\epsilon^2$
	SpiderBoost [20]	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$ [11]	$\sqrt{n}L\Delta_0/\epsilon^2$
	SpiderBoost-M [20]	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$ [11]	$\sqrt{n}L\Delta_0/\epsilon^2$
	Spider [11]	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$ [11]	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$
	PAGE [14]	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$ [11]	$L\Delta_0 \min\{\sigma/\epsilon^3, \sqrt{n}/\epsilon^2\}$
f is μ -SCVX and L -smooth f_i 's are average L -smooth	KatyushaX [2]	$(n+n^{3/4}\sqrt{\frac{L}{\mu}})\log\frac{\Delta_0}{\epsilon}$ [22]	$(n+n^{3/4}\sqrt{\frac{L}{\mu}})\log\frac{\Delta_0}{\epsilon}$
f is CVX and L -smooth f_i 's are average L -smooth	KatyushaX [2]	$n+n^{3/4}\sqrt{rac{LD_0^2}{\epsilon}}$ [23]	$n + n^{3/4} \sqrt{\frac{LD_0^2}{\epsilon}}$
f is α -weakly CVX and L -smooth f_i 's are average L -smooth	Spider [11]	$\frac{\Delta_0}{\epsilon^2} \min\{n^{3/4} \sqrt{\alpha L}, \sqrt{n}L\} [23]$	$\frac{\Delta_0}{\epsilon^2} \min\{n^{3/4} \sqrt{\alpha L}, \sqrt{n}L\}$
f_i 's are $lpha$ -weakly CVX and L -smooth	Natasha [1]	$\frac{\Delta_0}{\epsilon^2} \min\{\sqrt{n\alpha L}, L\}$ [23]	$\frac{\Delta_0}{\epsilon^2} \min\{\sqrt{n\alpha L}, \sqrt{n}L\}$

Remarks: \circ Complexity (nonCVX f): total number of stochastic first-order oracle calls to find $\hat{\mathbf{x}}$ with $\mathbb{E}[\|\nabla f(\hat{\mathbf{x}})\|^2] \leq \epsilon^2$ \circ Complexity ((S)CVX f): total number of stochastic first-order oracle calls to find $\hat{\mathbf{x}}$ with $\mathbb{E}[f(\hat{\mathbf{x}}) - f(\mathbf{x}^*)] \leq \epsilon^2$ $\circ \Delta_0 = f(\mathbf{x}^0) - f^*, D_0 = \|\mathbf{x}^0 - \mathbf{x}^*\|$ \circ Bounded variance: $\mathbb{B}_i[\|\nabla f_i(\mathbf{x}) - \nabla f(\mathbf{x})\|^2] \leq \sigma^2 \quad \forall \mathbf{x}$ \circ Average *L*-smooth: $\mathbb{E}_i[\|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\|^2] \leq L^2 \|\mathbf{x} - \mathbf{y}\|^2 \quad \forall \mathbf{x}, \mathbf{y}$ $\circ f(\mathbf{x})$ is α -weakly convex if $f(\mathbf{x}) + \frac{\alpha}{2} \|\mathbf{x}\|^2$ is convex $\forall \mathbf{x}$.

Wrap up!

• Please finalize Homework 1 on Friday!

 \circ Deep learning next week!

*Calculation of $d\left(\mathcal{D}_{f}\left(\mathbf{x}^{\natural}\right)\right)$ and $d\left(\mathcal{D}_{f_{\mu}}\left(\mathbf{x}^{\natural}\right)\right)$

Lemma ([3])

Let f be a proper lower-semicontinuous convex function, and let $\mathbf{x} \in \text{dom}(f)$. We have

$$d\left(\mathcal{D}_{f}\left(\mathbf{x}\right)\right) \leq \inf_{\tau>0} \mathbb{E}\left[\operatorname{dist}^{2}\left(\mathbf{g}, \tau \partial f(\mathbf{x})\right)\right],$$

where g is a vector of i.i.d. standard Gaussian random variables.

The upper bounds on $d\left(\mathcal{D}_{f}\left(\mathbf{x}^{\natural}\right)\right)$ and $d\left(\mathcal{D}_{f_{\mu}}\left(\mathbf{x}^{\natural}\right)\right)$ can be derived based on above.

Proposition

Let \mathbf{x}^{\natural} be an *s*-sparse vector. We have

$$d\left(\mathcal{D}_{f_{\mu}}\left(\mathbf{x}^{\natural}\right)\right) \leq \inf_{\tau>0} \left\{ s(1+\tau^{2}) + 2\mu f_{\mu}(\mathbf{x}^{\natural})\tau^{2} + (p-s)\sqrt{\frac{2}{\pi}} \int_{\tau}^{\infty} (u-\tau)^{2} e^{-u^{2}/2} du \right\}$$

Note that $f = f_{\mu}|_{\mu=0}$.

*Variance reduction techniques: SAGA

 \circ Select the stochastic gradient \mathbf{r}_k as

$$\mathbf{r}_{k} = \nabla f_{i_{k}}(\mathbf{x}^{k}) - \nabla f_{i_{k}}(\tilde{\mathbf{x}}_{i_{k}}^{k}) + \frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}(\tilde{\mathbf{x}}_{j}^{k}),$$

where, at each iteration, $\tilde{\mathbf{x}}$ is updated as $\tilde{\mathbf{x}}_{i_k}^k = \mathbf{x}^k$ and $\tilde{\mathbf{x}}_j^k$ stays the same for $j \neq i_k$.

• As
$$\tilde{\mathbf{x}}_j^k \to \mathbf{x}^\star$$
 and $\mathbf{x}^k \to \mathbf{x}^\star$,
 $\nabla f_{i_k}(\mathbf{x}^k) - \nabla f_{i_k}(\tilde{\mathbf{x}}_{i_k}^k) + \frac{1}{n} \sum_{j=1}^n \nabla f_j(\tilde{\mathbf{x}}_j^k) \to 0.$

• Therefore,

$$\mathbb{E}\Big[\|\nabla f_{i_k}(\mathbf{x}^k) - \nabla f_{i_k}(\tilde{\mathbf{x}}_{i_k}^k) + \frac{1}{n}\sum_{j=1}^n \nabla f_j(\tilde{\mathbf{x}}_j^k)\|^2\Big] \to 0.$$

*Variance reduction techniques: SAGA

Stochastic Average Gradient (SAGA) [10]1a. Choose $\tilde{\mathbf{x}}_i^0 = \mathbf{x}^0 \in \mathbb{R}^p$, $\forall i, q \in \mathbb{N}_+$ and stepsize $\gamma > 0$.1b. Store $\nabla f_i(\tilde{\mathbf{x}}_i^0)$ in a table data-structure with length n.2. For $k = 0, 1 \dots$ perform:2a. Pick $i_k \in \{1, \dots, n\}$ uniformly at random2b. Take $\tilde{\mathbf{x}}_{i_k}^{k+1} = \mathbf{x}^k$, store $\nabla f_{i_k}(\tilde{\mathbf{x}}_{i_k}^{k+1})$ in the table and leave other entries the same.2c. $\mathbf{r}_k = \nabla f_{i_k}(\mathbf{x}^k) - \nabla f_{i_k}(\tilde{\mathbf{x}}_{i_k}^k) + \frac{1}{n} \sum_{j=1}^n \nabla f_j(\tilde{\mathbf{x}}_j^k)$ 3. $\mathbf{x}^{k+1} = \mathbf{x}^k - \gamma \mathbf{r}_k$

Recipe:

In each iteration:

- Store last gradient evaluated at each datapoint.
- Previous gradient for datapoint j is $\nabla f_j(\tilde{\mathbf{x}}_i^k)$.
- Perform SG-iterations with the following stochastic gradient

$$\mathbf{r}_{k} = \nabla f_{i_{k}}(\mathbf{x}^{k}) - \nabla f_{i_{k}}(\tilde{\mathbf{x}}_{i_{k}}^{k}) + \frac{1}{n} \sum_{j=1}^{n} \nabla f_{j}(\tilde{\mathbf{x}}_{j}^{k}).$$

*Convergence of SAGA

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \bigg\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \bigg\}.$$

Theorem (Convergence of SAGA [10])

Suppose that f is $\mu\text{-strongly convex and that the stepsize is <math display="inline">\gamma=\frac{1}{2(\mu n+L)}$ with

$$\rho = 1 - \frac{\mu}{2(\mu n + L)} < 1$$

$$C = \|\mathbf{x}^0 - \mathbf{x}^\star\|^2 + \frac{n}{\mu n + L} [f(\mathbf{x}^0) - \langle \nabla f(\mathbf{x}^\star), \mathbf{x}^0 - \mathbf{x}^\star \rangle - f(\mathbf{x}^\star)]$$

Then

$$\mathbb{E}[\|\mathbf{x}^k - \mathbf{x}^\star\|^2] \le \rho^k C.$$

• Allows the constant step-size.

• Obtains linear rate convergence.

*Variance reduction techniques: SARAH

 \circ Select the stochastic gradient \mathbf{r}_k

$$\mathbf{r}_k = \nabla f_{i_k}(\mathbf{x}^k) - \nabla f_{i_k}(\mathbf{x}^{k-1}) + \mathbf{r}_{k-1},$$

 \circ The variance reduction in SARAH can be characterized as

$$\mathbb{E}[\|\mathbf{r}_k\|^2] \le \left[1 - \left(\frac{2}{\gamma L} - 1\right)\mu^2 \gamma^2\right]^k \mathbb{E}[\|\nabla f(\mathbf{x}^0)\|^2].$$

*Variance reduction techniques: SARAH

 $\begin{array}{l} \textbf{Stochastic Recursive Gradient Algorithm (SARAH) [16]} \\ \textbf{1. Choose } \overline{\mathbf{x}}^0 \in \mathbb{R}^p, \ q \in \mathbb{N}_+ \ \text{and stepsize } \gamma > 0. \\ \textbf{2. For } k = 0, 1 \dots \text{ perform:} \\ \textbf{2. } \mathbf{x}^0 = \overline{\mathbf{x}}^k, \ \mathbf{r}_0 = \frac{1}{n} \sum_{j=1}^n f_j(\overline{\mathbf{x}}^0) \\ \textbf{2a. } \mathbf{x}^1 = \mathbf{x}^0 - \gamma \mathbf{r}_0 \\ \textbf{2b. For } l = 1 \dots, q-1, \ \text{perform:} \\ \begin{cases} \mathsf{pick } i_l \in \{1, \dots, n\} \ \text{uniformly at random}, \\ \mathbf{r}_l = \nabla f_{i_l}(\mathbf{x}^l) - \nabla f_{i_l}(\mathbf{x}^{l-1}) + \mathbf{r}_{l-1}, \\ \mathbf{x}^{l+1} = \mathbf{x}^l - \gamma \mathbf{r}_l. \end{cases} \\ \textbf{3 Update } \overline{\mathbf{x}}^{k+1} = \mathbf{x}^l \ \text{where } l \ \text{is chosen uniformly at random from} \\ \{0, \dots, q\}. \end{array}$

Recipe: In a cycle of q inner iterations:

• Compute stochastic step direction by recursively adding and subtracting component gradients.

$$\mathbf{r}_{l} = \nabla f_{i_{l}}(\mathbf{x}^{l}) - \nabla f_{i_{l}}(\mathbf{x}^{l-1}) + \mathbf{r}_{l-1}.$$

 \circ Perform q SG-iterations with \mathbf{r}_l .

 \circ Update next iteration by picking uniformly at random from q previous iterations.

*Convergence of SARAH

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \bigg\{ f(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^n f_j(\mathbf{x}) \bigg\}.$$

Theorem (Convergence of SARAH [16])

Suppose that f is μ -strongly convex and that the stepsize γ and number of inner iterations q satisfies

$$\rho_q = \frac{1}{\mu\gamma(1+q)} + \frac{L_{\max}\gamma}{2 - L_{\max}\gamma} < 1.$$

Then

 $\mathbb{E}[\|\nabla f(\overline{\mathbf{x}}^k)\|^2] \leq \rho_q^k \|\nabla f(\overline{\mathbf{x}}^0)\|^2.$

*An abridged variance reduction results for distributed optimization

Setting	Algorithm	Complexity bound
	Gradient descent	$mL\Delta_0/\epsilon^2$
	SVRG ($B_k = \Omega(n^{2/3})$) [18]	$n + n^{2/3}L\Delta_0/\epsilon^2$
	SpiderBoost [20]	$n + \sqrt{n}L\Delta_0/\epsilon^2$
$L ext{-smooth } f_i$'s	Spider [11]	$n + \sqrt{n}L\Delta_0/\epsilon^2$
	SARAH [16]	$n + \sqrt{n}L\Delta_0/\epsilon^2$
	PAGE [14]	$n + \sqrt{n}L\Delta_0/\epsilon^2$
	ZeroSARAH [15]	$m \perp \sqrt{m} I \Delta_{a} / c^{2}$
	$(B_0=n ext{ and then } B_k=\sqrt{n})$	$n + \sqrt{nL\Delta_0/\epsilon}$
	Gradient descent	$mL\Delta_0/\epsilon^2$
	SCAFFOLD [13]	$m + rac{m}{n^{1/3}} rac{L\Delta_0}{\epsilon^2}$
Distributed with L -smooth $f_{i,j}$'s	Spider [11]	$m + \frac{\sqrt{m}}{\sqrt{n}} \frac{L\Delta_0}{\epsilon^2}$
	SARAH [16]	$m + \frac{\sqrt{m}}{\sqrt{n}} \frac{L\Delta_0}{\epsilon^2}$
	ZeroSARAH [15]	$m \perp \sqrt{m} L\Delta_0$
	$(B_0=m ext{ and then } B_k=\sqrt{m})$	$m \pm \sqrt{n} \epsilon^2$

Distributed: $f_i(\mathbf{x}) = \frac{1}{m} \sum_{j=1}^m f_{i,j}(\mathbf{x})$ loss on client or device i with m data samples

References |

[1] Zeyuan Allen-Zhu.

Natasha: Faster non-convex stochastic optimization via strongly non-convex parameter. In Doina Precup and Yee Whye Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 89–97. PMLR, 06–11 Aug 2017.

[2] Zeyuan Allen-Zhu.

Katyusha x: Simple momentum method for stochastic sum-of-nonconvex optimization.

In Jennifer Dy and Andreas Krause, editors, *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*, pages 179–185. PMLR, 10–15 Jul 2018.

[3] Dennis Amelunxen, Martin Lotz, Michael B. McCoy, and Joel A. Tropp.

Living on the edge: Phase transitions in convex programs with random data. 2014. arXiv:1303.6672v2 [cs.IT].

[4] Peter L. Barlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. J. Mach. Learn. Res., 3, 2002.

[5] Léon Bottou and Oliver Bousquet.

The tradeoffs of large scale learning.

In Advances in Neural Information Processing Systems, 2007.

References II

- [6] John J Bruer, Joel A Tropp, Volkan Cevher, and Stephen Becker. Time-data tradeoffs by aggressive smoothing. In Advances in Neural Information Processing Systems, pages 1664–1672, 2014.
- [7] John J Bruer, Joel A Tropp, Volkan Cevher, and Stephen R Becker. Designing statistical estimators that balance sample size, risk, and computational cost. *IEEE Journal of Selected Topics in Signal Processing*, 9(4):612–624, 2015.
- [8] Venkat Chandrasekaran and Michael I. Jordan.
 Computational and statistical tradeoffs via convex relaxation. *Proc. Natl. Acad. Sci.*, 110(13):E1181–E1190, 2013.
- Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry of linear inverse problems. *Found. Comput. Math.*, 12:805–849, 2012.
- [10] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien.

Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems 27*, pages 1646–1654. Curran Associates, Inc., 2014.

References III

[11] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang.

SPIDER: near-optimal non-convex optimization via stochastic path-integrated differential estimator.

In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, *Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pages 687–697, 2018.

[12] Rie Johnson and Tong Zhang.

Accelerating stochastic gradient descent using predictive variance reduction.

In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems 26*, pages 315–323. Curran Associates, Inc., 2013.

[13] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and Ananda Theertha Suresh.

Scaffold: Stochastic controlled averaging for federated learning.

In International Conference on Machine Learning, pages 5132-5143. PMLR, 2020.

[14] Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtarik.
 Page: A simple and optimal probabilistic gradient estimator for nonconvex optimization.
 In Marina Meila and Tong Zhang, editors, *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pages 6286–6295. PMLR, 18–24 Jul 2021.

References IV

[15] Zhize Li and Peter Richtárik.

ZeroSARAH: Efficient nonconvex finite-sum optimization with zero full gradient computation. *arXiv preprint arXiv:2103.01447*, 2021.

[16] Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Martin Takac.

Sarah: A novel method for machine learning problems using stochastic recursive gradient, 2017.

[17] Samet Oymak, Christos Thrampoulidis, and Babak Hassibi.

Simple bounds for noisy linear inverse problems with exact side information. 2013. arXiv:1312.0641v2 [cs.IT].

[18] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic frank-wolfe methods for nonconvex optimization. arXiv preprint arXiv:1607.08254, 2016.

[19] Shai Shalev-Shwartz and Nathan Srebro.

Svm optimization: inverse dependence on training set size.

In Proceedings of the 25th international conference on Machine learning, pages 928–935, 2008.

References V

[20] Zhe Wang, Kaiyi Ji, Yi Zhou, Yingbin Liang, and Vahid Tarokh. Spiderboost and momentum: Faster stochastic variance reduction algorithms. In Advances in Neural Information Processing Systems, 2019.

[21] Lin Xiao and Tong Zhang.

A proximal stochastic gradient method with progressive variance reduction. *SIAM Journal on Optimization*, 24, 03 2014.

[22] Guangzeng Xie, Luo Luo, and Zhihua Zhang.

A general analysis framework of lower complexity bounds for finite-sum optimization, 2019.

[23] Dongruo Zhou and Quanquan Gu.

Lower bounds for smooth nonconvex finite-sum optimization.

In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 7574–7583. PMLR, 09–15 Jun 2019.