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Outline

I This class
1. Time-data trade-offs
2. Rate iteration-cost trade-offs
3. Variance reduction

I Next class
1. Deep learning introduction
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A simple regression model

bi = hx\ (ai)
x\ : unknown function parameters
ai : input
bi : response / output

Linear model:

b A x\ w

n× p

bi = 〈ai,x\〉+ wi

Applications: Compressive sensing, machine learning, theoretical computer science...
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A simple regression model and many practical questions

bi = 〈ai,x\〉+ wi

x\ : unknown function parameters
ai : input
bi : response / output
wi : perturbations / noise

◦ Estimation: find x? to minimize ‖x? − x\‖

◦ Prediction: find x? to minimize L
(
〈ai,x?〉, 〈ai,x\〉

)
◦ Decision: choose ai for estimation or prediction

b = Ax
x1

x2

x3

Thursday, June 19, 14

A difficult estimation challenge when n < p:

Nullspace (null) of A: x\ + v → b, ∀v ∈ null(A)

◦ Needle in a haystack: We need additional information on x\!
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A natural signal model

Definition (s-sparse vector)
A vector x ∈ Rp is s-sparse if it has at most s
non-zero entries.

Rp

x\

Sparse representations
◦ x\: sparse transform coefficients
◦ Basis representations Ψ ∈ Rp×p

I Wavelets, DCT, ...

◦ Frame representations Ψ ∈ Rm×p, m > p

I Gabor, curvelets, shearlets, ...

◦ Other dictionary representations...

=y\ x\ 
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Sparse representations strike back!

b Ã y\

◦ b ∈ Rn, Ã ∈ Rn×p, and n < p

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x\ if we knew the location of the non-zero entries of x\.
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◦ b ∈ Rn, Ã ∈ Rn×p, and n < p
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Sparse representations strike back!

b A x\

n× 1 n× s s× 1

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x\ if we knew the location of the non-zero entries of x\.
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Enter sparsity

A combinatorial approach for estimating x\ from b = Ax\ + w
We may consider the estimator with the least number of non-zero entries. That is,

x? ∈ arg min
x∈Rp

{
‖x‖0 : ‖b−Ax‖2 ≤ κ

}
(P0)

with some κ ≥ 0. If κ = ‖w‖2, then x\ is a feasible solution.

◦ P0 has the following characteristics:
I sample complexity: O(s)
I computational effort: NP-Hard
I stability: No

◦ Tightest convex relaxation:

I ‖x‖∗∗0 is the biconjugate
I i.e., Fenchel conjugate of Fenchel conjugate

◦ Fenchel conjugate:
I f∗(y) := supx:dom(f) xTy− f(x).

A technicality: Restrict x\ ∈ [−1, 1]p.
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A combinatorial approach for estimating x\ from b = Ax\ + w
We may consider the estimator with the least number of non-zero entries. That is,

x? ∈ arg min
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{
‖x‖0 : ‖b−Ax‖2 ≤ κ

}
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with some κ ≥ 0. If κ = ‖w‖2, then x\ is a feasible solution.
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I stability: No

◦ Tightest convex relaxation:

I ‖x‖∗∗0 is the biconjugate
I i.e., Fenchel conjugate of Fenchel conjugate

◦ Fenchel conjugate:
I f∗(y) := supx:dom(f) xTy− f(x).

‖x‖1 is the convex envelope of ‖x‖0

A technicality: Restrict x\ ∈ [−1, 1]p.
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The role of convexity

A convex candidate solution for b = Ax\ + w

x? ∈ arg min
x∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ ‖w‖2, ‖x‖∞ ≤ 1

}
. (SOCP)

Theorem (A model recovery guarantee [17])
Let A ∈ Rn×p be a matrix of i.i.d. Gaussian random variables with zero mean and variances 1/n. For any t > 0
with probability at least 1− 6 exp

(
−t2/26

)
, we have

∥∥x? − x\
∥∥

2
≤

[
2
√

2s log( p
s

) + 5
4 s

√
n−

√
2s log( p

s
) + 5

4 s− t

]
‖w‖2 B ε, when ‖x\‖0 ≤ s.

Observations: ◦ perfect recovery (i.e., ε = 0) with n ≥ 2s log( p
s

) + 5
4 s whp when w = 0.

◦ ε-accurate solution in k = O
(√

2p+ 1 log( 1
ε
)
)
iterations via IPM with a total complexity of

O(n2p1.5 log( 1
ε
)) with each iteration requiring the solution of a structured n×2p linear system.

◦ robust to noise.
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A Time-Data conundrum — I

A computational dogma
Running time of a learning algorithm increases with the size of the data.

◦ Misaligned goals in the statistical and optimization disciplines

Discipline Goal Metric
Optimization reaching numerical ε-accuracy ‖xk − x?‖ ≤ ε
Statistics learning ε-accurate model ‖x? − x\‖ ≤ ε

◦ Main issue: ε and ε are NOT the same but should be treated jointly!
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A Time-Data conundrum — II
A stylized formalization of the time-data tradeoff
The goals of optimization and statistical modeling are tightly connected:

‖xk − x\‖︸         ︷︷         ︸
learning quality

≤ ‖xk − x?‖︸         ︷︷         ︸
ε: needs “time” t(k)

+ ‖x? − x\‖︸         ︷︷         ︸
ε: needs “data”n

,

x\: true model in Rp
x?: statistical model estimate
xk: numerical solution at iteration k

ε̄(t(k), n): actual learning quality at time t(k) with n samples

◦ As the number of data samples n increases with a fixed optimization formulation,
x? ∈ arg minx∈Rp

{
‖x‖1 : ‖b−Ax‖2 ≤ ‖w‖2, ‖x‖∞ ≤ 1

}
I numerical methods take longer time t to reach ε-accuracy

I e.g., per-iteration time to solve an n× 2p linear system

I statistical model estimates ε become more precise when ‖w‖2 = O(
√
n)

I ε =
2
√

2s log( p
s

)+ 5
4 s

√
n−
√

2s log( p
s

)+ 5
4 s−t

‖w‖2, with probability 1− 6exp(−t2/26).

“Time” effort has significant diminishing returns on ε in the underdetermined case∗ (cf., [8, 5, 19, 7, 6])
∗ “Data” effort also exhibits a similar behavior in the overdetermined case when a signal prior is used due to noise!
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Data as a computational resource

A stylized formalization of the time-data tradeoff
The goals of optimization and statistical modeling are tightly connected:

‖xk(t) − x\‖︸             ︷︷             ︸
≤ε̄(t,n)

≤ ‖xk(t) − x?‖︸             ︷︷             ︸
ε: needs “time” t

+ ‖x? − x\‖︸         ︷︷         ︸
ε: needs “data”n

,

x\: true model in Rp
ε̄(t, n): actual model precision at time t with n samples

Rest of the lecture: ◦ estimator formulation and sample complexity

◦ a “continuous” time-data tradeoff

◦ a different, algorithmic tradeoff with SGD "̄(t, n)
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Sample complexity analysis

Convex optimization formulation for the estimator

x? ∈ arg min
x∈Rp

{f(x) : b = Ax} ,

where f : Rp → R ∪ {−∞,∞} is a convex function.

Sample complexity
Assume that A ∈ Rn×p is a matrix of independent identically distributed (i.i.d.) Gaussian random variables.

What is the minimum number of samples n such that x? = x\ with high probability?
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Characterization of the error vector

x? ∈ arg min
x∈Rp

{f(x) : b = Ax}

Define the error vector δ := x? − x\.

x\

�
x : f(x)  f(x\)

 

{x : b = Ax}

x?
null(A)

�

�

�
� : f(x\ + �)  f(x\)
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Descent cone

Definition (Descent cone)
Let f : Rp → R ∪ {−∞,∞} be a proper lower-semicontinuous function. The descent cone of f at x\ is defined
as

Df (x\) := cone
({
δ : f(x\ + δ) ≤ f(x\)

})
.

x\

Df (x\)

�
x : f(x)  f(x\)
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Condition for exact recovery in the noiseless case

Proposition (Condition for exact recovery)
We have successful recovery, i.e., δ := x? − x\ = 0 with x? ∈ arg minx∈Rp {f(x) : b = Ax}, if and only if
null(A) ∩ Df (x\) = {0}.

null (A)

x̃

x\

�
x : f(x)  f(x\)

 

Df (x\)
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Condition for exact recovery in the noiseless case

Proposition (Condition for exact recovery)
We have successful recovery, i.e., δ := x? − x\ = 0 with x? ∈ arg minx∈Rp {f(x) : b = Ax}, if and only if
null(A) ∩ Df (x\) = {0}.

x\

null (A)

b = Ax\

xx � x\

�
x : f(x)  f(x\)

 

Df (x\)
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Statistical dimension and approximate kinematic formula

Now we have
P
{

x? = x\
}

= P
{

null(A) ∩ Df (x\) = {0}
}
.

Definition (Statistical dimension [3]1)
Let C ⊆ Rp be a closed convex cone. The statistical dimension of C is defined as

d(C) := E
[
‖projC(g)‖22

]
.

Theorem (Approximate kinematic formula [3])
Let A ∈ Rn×p, n < p, be a matrix of i.i.d. standard Gaussian random variables, and let C ⊆ Rp be a closed
convex cone. Let η ∈ (0, 1) Then

n ≥ d(C) + cη
√
p ⇒ P {null(A) ∩ C = {0}} ≥ 1− η;

n ≤ d(C)− cη
√
p ⇒ P {null(A) ∩ C = {0}} ≤ η,

where cη :=
√

8 log(4/η).

1The statistical dimension is closely related to the Gaussian complexity [4], Gaussian width [9], and Gaussian squared complexity [8].
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Probability of exact recovery

Corollary
For any η ∈ (0, 1),

n ≥ d(Df (x\)) + cη
√
p ⇒ P

{
x? = x\

}
≥ 1− η;

n ≤ d(Df (x\))− cη
√
p ⇒ P

{
x? = x\

}
≤ η,

where cη :=
√

8 log(4/η).

◦ There is a phase transition at n ≈ d(Df (x\)).

Examples ([3])
◦ Let f(x) := ‖x‖1, and let x\ ∈ Rp be s-sparse. Then d(Df (x\)) ≤ 2s log(p/s) + (5/4)s.
◦ Let f(x) := ‖X‖∗, and let X\ ∈ Rp×p of rank r. Then d(Df (x\)) ≤ 3r(2p− r).
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Smoothing increases the statistical dimension

Key properties of the statistical dimension [3]
◦ The statistical dimension is invariant under unitary transformations (rotations).
◦ Let C1 and C2 be closed convex cones. If C1 ⊆ C2, then d(C1) ≤ d(C2).

The larger the statistical dimension is, the more number of observations is required.

x\

Df (x\) Dfµ
(x\)

�
x : f(x)  f(x\)

 

�
x : fµ(x)  fµ(x\)

 

f(x) := kxk1 ,

fµ(x) := kxk1 +
µ

2
kxk2

2 .
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Numerical results for the statistical dimension and µ(n)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized sparsity (⇢)

N
or

m
al

iz
ed

st
at

is
tic

al
di

m
en

si
on

(�
/d

)

Stat. dim. of the dual-smoothed `1 descent cones

µ = 0
µ = 0.1
µ = 1
µ = 10

0 0.2 0.4 0.6 0.8 1

10�2

10�1

100

101

102

Normalized sample size (m/d)

M
ax

im
al

sm
oo

th
in

g
pa

ra
m

et
er

(µ
(m

))

Maximal dual-smoothing of the `1 norm

⇢ = 0.01
⇢ = 0.05
⇢ = 0.1
⇢ = 0.2

N
or

m
al

iz
ed

st
at

is
ti

ca
l
d
im

en
si

on
(d

/p
)

M
ax

im
al

sm
o
ot

h
in

g
p
ar

am
et

er
(µ

(n
))

Maximal smoothing parameter

Normalized sparisty (⇢) Normalized sample size (n/p)

Statistical dimension of Dfµ
(x\)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 52



Smoothing decreases the computational cost

◦ Consider the estimator,

x? ∈ arg min
x∈Rp

{
fµ(x) : b = Ax, ‖x‖∞ ≤ ‖x\‖∞

}
, µ ∈ [0,∞).

Proposition
Let µ > 0 and f(x) = ‖x‖1. Consider solving (1) with a primal-dual method as in [6, 7]. The output after the
k-th iteration, xk, satisfies∥∥x? − xk

∥∥
2
≤

4pκ(A)
[
ρ(1 + µ ‖x?‖∞)2 + (1− ρ)

]
µk

∝
1
µk

∣∣∣
ρ�1

,

where ρ := s/p, s being the number of non-zero entries in x?, and κ(A) denotes the restricted condition
number of A.

Observations: ◦ When ρ� 1, the number of iterations k to achieve the required precision decreases.

◦ In fact, we need 1/(µε) iterations to have an error bound
∥∥x? − xk

∥∥
2
≤ ε for a fixed ε > 0.
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Time-data tradeoff
◦ Define the maximal smoothing parameter

µ(n) := arg max
µ>0

{
µ : d

(
Dfµ (x\)

)
≤ n
}
.

◦ Consider the “conservative” estimator in probability,

x? ∈ arg min
x∈Rp

{
fµ(x)|µ= 1

4µ(n) : b = Ax
}
.

Corollary
Let ρ := s/p� 1. Then we have, with high probability, x? = x\, and∥∥x\ − xk

∥∥
2
∝

1
µ(n)k

.

Therefore, to achieve the error bound,
∥∥x\ − xk

∥∥
2
≤ ε for a fixed ε > 0, it suffices to choose

k = O

( 1
µ(n)

)
.
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A numerical result for the time-data tradeoff
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Another trade-off in optimization

◦ Statistics vs Optimization:

Discipline Goal Metric
Optimization reaching numerical ε-accuracy ‖xk − x?‖ ≤ ε
Statistics learning ε-accurate model ‖x? − x\‖ ≤ ε

Remarks: As data sample size gets larger we have seen that:

◦ Algorithms take longer to reach ε accuracy.
◦ However, statistical error ε decreases as the estimation is more precise.

Similar analogy exists between per-iteration cost and convergence rate for optimization algorithms

Understanding this trade-off helps us reduce total complexity!
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Recall: GD vs. SGD
Problem (Unconstrained convex minimization)

Deterministic setting

f? = min
x∈Rp

f(x)

◦ f(x) is a proper, closed, convex and smooth.

◦ The solution set
S? := {x? ∈ dom (f) : f(x?) = f?} , ∅.

Stochastic programming

f? = min
x∈Rp

{f(x) := E[f(x, θ)]}

◦ f(x) is proper, closed, convex and smooth.

◦ The solution set
S? := {x? ∈ dom (f) : f(x?) = f?} , ∅.

◦ θ is a random vector, supported on set Θ.

Algorithms
Gradient Descent

xk+1 = xk − αk∇f(xk)

◦ αk < 2/L.

Stochastic Gradient Descent

xk+1 = xk − αkG(xk, θk)

◦ αk = O(1/
√
k)

◦ E[G(xk, θk)] = ∇f(xk)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 52



Example: Convex optimization with finite sum
◦ Consider the finite sum (e.g., ERM) setting

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

Algorithms in the finite sum setting

Gradient Descent

xk+1 = xk − αk∇f(xk)

◦ ∇f(xk) = 1
n

∑n

j=1∇fj(x
k)

Stochastic Gradient Descent

xk+1 = xk − αkG(xk, θk)

◦ G(xk, θk) = ∇fj(xk), j ∼ Uniform({1, · · · , n})

◦ f(x): µ-strongly convex and L-Lipschitz gradient
rate cost per iteration iteration complexity total complexity

GD ρk n log(1/ε) n log(1/ε)
SGD 1/k 1 1/ε 1/ε
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When f is µ-strongly convex and L-Lipschitz gradient

Finite sums

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

rate cost per iteration iteration complexity total complexity
GD ρk n log(1/ε) n log(1/ε)
SGD 1/k 1 1/ε 1/ε

Remarks: ◦ SGD trades off convergence rate with low per-iteration cost.
◦ When n is large, SGD proves to be effective.
◦ To control variance of the stochastic gradient estimate, SGD decreases step size at a certain rate.
◦ In turn, convergence deteriorates from linear to sublinear.
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An observation of GD vs. SGD step

xk+1 = xk − γk∇f(xk) (GD)

Lemma
Assume f is Lipschitz smooth with constant L. Then,

f(xk+1)− f(xk) ≤
(
γ2
kL

2
− γk

)
‖∇f(xk)‖2.

xk+1 = xk − γkG(xk, θk) (SGD)

Lemma
Assume f is Lipschitz smooth with constant L. Then,

E[f(xk+1)− f(xk)] ≤
(
γ2
kL

2
− γk

)
E[‖∇f(xk)‖2] +

Lγ2
k

2
E[‖G(xk, θk)−∇f(xk)‖2]

◦ The variance of gradient estimate dominates as ∇f(xk)→ 0.

◦ To ensure convergence we need to control variance.

γk → 0 =⇒ Slow convergence!

Can we decrease the variance while using a constant step-size?

Choose a stochastic gradient, s.t. E
[
‖G(xk; θk)‖2

]
→ 0.
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A simple approach: Mini-batch SGD

◦ More samples → better estimate for full gradient.

SGD with mini batches
Let G(x, θ) be an unbiased gradient estimate (E[G(x, θ)] = ∇f(x)) and Bk be the batch size. Then,

xk+1 = xk − αk
1
Bk

Bk∑
j=1

G(xk, θk,j)

Theorem
Let Bk > 0 be the batch size and G(x, θ) be an unbiased gradient estimate with bounded variance, i.e.,
E[‖G(x, θ)−∇f(x)‖2 | x] ≤ σ2. Then, the mini-batch estimate has the following properties:

E

[
1
Bk

Bk∑
j=1

G(x, θk,j)

]
= ∇f(x) and E

∥∥∥∥∥ 1
Bk

Bk∑
j=1

G(x, θk,j)−∇f(x)

∥∥∥∥∥
2

| x

 ≤ σ2

Bk

Remarks: ◦ We might need to increase the batch size over time to take variance to 0.

◦ We can come up with a “smarter” estimate for ∇f(x).
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How to construct a new estimate G(xk; θk)? [10]
Finite sum structure: SGD update rule:

f? := minx∈Rp
{
f(x) := 1

n

∑n

j=1 fj(x)
}

xk+1 = xk − γk∇fj(xk)

◦ Let X = ∇fj(xk) be a random variable (due to j ∼ Uniform({1, · · · , n})).

◦ Let Y = ∇fj(x̃) be another random variable, and x̃ is a particularly selected point.

Remarks: ◦ We want X and Y to be correlated (we will see why!).
◦ Given Y , we should be able to estimate E[X] with more confidence.

Observations: ◦ Choice of x̃ affects how correlated X and Y are.
◦ We can compute E[Y ] = 1

n

∑n

j=1∇fj(x̃) = ∇f(x̃).

Goal: ◦ Find a good estimate of E[X] = 1
n

∑n

j=1∇fj(x
k) = ∇f(xk).

A generalized estimator: Rα = α(X − Y ) + E[Y ]

◦ E[Rα] = αE[X] + (1− α)E[Y ]

◦ Var(Rα) = α2(Var(X) + Var(Y )− 2Cov(X,Y ))

Observations: ◦ When α = 1, Rα becomes unbiased, i.e., E[Rα] = E[X].
◦ If Cov(X,Y ) is large enough (X and Y are correlated enough), Var(Rα) ≤ Var(X).

How could we use this information to construct our estimate?

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 52



How to construct a new estimate G(xk; θk)? [10]

Finite sum structure: SGD update rule:

f? := minx∈Rp
{
f(x) := 1

n

∑n

j=1 fj(x)
}

xk+1 = xk − γk∇fj(xk)

◦ Let X = ∇fj(xk) be a random variable (due to j ∼ Uniform({1, · · · , n})).

◦ Let Y = ∇fj(x̃) be another random variable, and x̃ is a particularly selected point.

A generalized estimator: Rα = α(X − Y ) + E[Y ]

◦ E[Rα] = αE[X] + (1− α)E[Y ]

◦ Var(Rα) = α2(Var(X) + Var(Y )− 2Cov(X,Y ))

Observations: ◦ When α = 1, Rα becomes unbiased, i.e., E[Rα] = E[X].
◦ If Cov(X,Y ) is large enough (X and Y are correlated enough), Var(Rα) ≤ Var(X).

How could we use this information to construct our estimate?

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 52



Variance reduction techniques: SVRG

◦ Select the stochastic gradient ∇fik , and compute a gradient estimate

rk = ∇fik (xk)−∇fik (x̃) +∇f(x̃).

◦ As x̃→ x? and xk → x?,

∇fik (xk)−∇fik (x̃) +∇f(x̃)→ 0.

◦ Therefore,

E
[
‖∇fik (xk)−∇fik (x̃) +∇f(x̃)‖2

]
→ 0.

Remarks: ◦ Remember the generalized estimator: Rα = α(X − Y ) + E[Y ].
◦ For SVRG, α = 1, X = ∇fik (xk) and Y = ∇fik (x̃).
◦ We will see how x̃ is computed!
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Stochastic gradient algorithm with variance reduction

Stochastic gradient with variance reduction (SVRG) [12, 21]
1. Choose x̃0 ∈ Rp as a starting point and γ > 0 and q ∈ N+.
2. For s = 0, 1, 2 · · · , perform:

2a. x̃ = x̃s, ṽ = ∇f(x̃), x0 = x̃.
2b. For k = 0, 1, · · · q − 1, perform:{

Pick ik ∈ {1, . . . , n} uniformly at random
rk = ∇fik (xk)−∇fik (x̃) + ṽ
xk+1 := xk − γrk,

(1)

2c. Update x̃s+1 = 1
m

∑q−1
j=0 xj .

Features
◦ The SVRG method uses a multistage scheme to reduce the variance of the stochastic gradient rk.

◦ Learning rate γ does not necessarily tend to 0 while xk and x̃s tend to x?.

◦ Each stage, SVRG uses n+ 2q component gradient evaluations.

◦ n for the full gradient at the beginning of each stage, and 2q for each of the q stochastic gradient steps.
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Convergence analysis

Assumption A5.
(i) f is µ-strongly convex
(ii) The learning rate 0 < γ < 1/(4Lmax), where Lmax = max1≤j≤n Lj .
(iii) q is large enough such that

κ =
1

µγ(1− 4γLmax)q
+

4γLmax(q + 1)
(1− 4γLmax)q

< 1.

Theorem
Assumptions:
◦ The sequence {x̃s}k≥0 is generated by SVRG.

◦ Assumption A5 is satisfied.

Conclusion: Linear convergence is obtained:

Ef(x̃s)− f(x?) ≤ κs(f(x̃0)− f(x?)).
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Choice of γ and q, and complexity

Chose γ and q such that κ ∈ (0, 1):
For example

γ = 0.1/Lmax, q = 100(Lmax/µ) =⇒ κ ≈ 5/6.

Complexity

Ef(x̃s)− f(x?) ≤ ε, when s ≥ log((f(x̃0)− f(x?))/ε)/ log(κ−1)

◦ Each stage needs n+ 2q component gradient evaluations

◦ With q = O(Lmax/µ), we obtain an overall complexity of

O
(

(n+ Lmax/µ) log(1/ε)
)
.
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Comparison: GD vs. SGD vs. SVRG
◦ GD update: {

xk+1 := xk − γ∇f(xk),

◦ SGD update: {
xk+1 := xk − γ∇fik (xk),

◦ SVRG update: {
rk = ∇fik (xk)−∇fik (x̃) +∇f(x̃)
xk+1 := xk − γrk,

SGD SVRG GD
Requires gradient storage? no no no

Epoch-based no yes no
Parameters stepsize stepsize & epoch length stepsize

Gradient evaluations 1 per iteration n+ 2q per epoch n per iteration

Table: Comparisons of SGD, SVRG and GD [10]

◦ Recall that q = O(Lmax/µ) is the epoch length for SVRG.
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Example: `2-regularized least squares with synthetic data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
#epochs

10 2

10 1

100

101

f(x
k )

f

GD
SGD
SVRG
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Taxonomy of algorithms

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ f(x) = 1
n

∑n

j=1 fj(x): µ-strongly convex with L-Lipschitz continuous gradient.

SVRG GD SGD
Linear Linear Sublinear

Table: Rate of convergence.

◦ κ = L/µ.

SVRG AGD SGD
O((n+ κ) log(1/ε)) O((nκ) log(1/ε)) 1/ε

Table: Complexity to obtain ε-solution.
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The variance reduction zoo

Setting Algorithm Lower bound Complexity bound
Gradient descent L∆0 min{σ/ε3,

√
n/ε2} [11] nL∆0/ε

2

SVRG (Bk = 1) [18] L∆0 min{σ/ε3,
√
n/ε2} [11] nL∆0/ε

2

SVRG (Bk = Ω(n2/3)) [18] L∆0 min{σ/ε3,
√
n/ε2} [11] n2/3L∆0/ε

2

L-smooth fi’s SAGA (Bk = 1) [18] L∆0 min{σ/ε3,
√
n/ε2} [11] nL∆0/ε

2

with bounded variance SAGA (Bk = Ω(n2/3)) [18] L∆0 min{σ/ε3,
√
n/ε2} [11] n2/3L∆0/ε

2

SpiderBoost [20] L∆0 min{σ/ε3,
√
n/ε2} [11]

√
nL∆0/ε

2

SpiderBoost-M [20] L∆0 min{σ/ε3,
√
n/ε2} [11]

√
nL∆0/ε

2

Spider [11] L∆0 min{σ/ε3,
√
n/ε2} [11] L∆0 min{σ/ε3,

√
n/ε2}

PAGE [14] L∆0 min{σ/ε3,
√
n/ε2} [11] L∆0 min{σ/ε3,

√
n/ε2}

f is µ-SCVX and L-smooth
fi’s are average L-smooth KatyushaX [2] (n + n3/4

√
L
µ

) log ∆0
ε

[22] (n + n3/4
√

L
µ

) log ∆0
ε

f is CVX and L-smooth
fi’s are average L-smooth KatyushaX [2] n + n3/4

√
LD2

0
ε

[23] n + n3/4

√
LD2

0
ε

f is α-weakly CVX and L-smooth
fi’s are average L-smooth Spider [11] ∆0

ε2
min{n3/4√αL,

√
nL} [23] ∆0

ε2
min{n3/4√αL,

√
nL}

fi’s are α-weakly CVX and L-smooth Natasha [1] ∆0
ε2

min{
√
nαL,L} [23] ∆0

ε2
min{

√
nαL,

√
nL}

Remarks: ◦ Complexity (nonCVX f): total number of stochastic first-order oracle calls to find x̂ with E[‖∇f(x̂)‖2] ≤ ε2
◦ Complexity ((S)CVX f): total number of stochastic first-order oracle calls to find x̂ with E[f(x̂)− f(x?)] ≤ ε
◦ ∆0 = f(x0)− f?, D0 = ‖x0 − x?‖
◦ Bounded variance: Ei[‖∇fi(x)−∇f(x)‖2] ≤ σ2 ∀x
◦ Average L-smooth: Ei[‖∇fi(x)−∇fi(y)‖2] ≤ L2‖x− y‖2 ∀x,y
◦ f(x) is α-weakly convex if f(x) + α

2 ‖x‖
2 is convex ∀x.
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Wrap up!

◦ Please finalize Homework 1 on Friday!

◦ Deep learning next week!
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?Calculation of d
(
Df
(
x\
))

and d
(
Dfµ

(
x\
))

Lemma ([3])
Let f be a proper lower-semicontinuous convex function, and let x ∈ dom (f). We have

d
(
Df (x)

)
≤ inf
τ>0
E
[
dist2 (g, τ∂f(x))

]
,

where g is a vector of i.i.d. standard Gaussian random variables.

The upper bounds on d
(
Df
(
x\
))

and d
(
Dfµ

(
x\
))

can be derived based on above.

Proposition
Let x\ be an s-sparse vector. We have

d
(
Dfµ

(
x\
))
≤ inf
τ>0

{
s(1 + τ2) + 2µfµ(x\)τ2

+(p− s)

√
2
π

∫ ∞
τ

(u− τ)2e−u
2/2 du

}
.

Note that f = fµ|µ=0.
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?Variance reduction techniques: SAGA

◦ Select the stochastic gradient rk as

rk = ∇fik (xk)−∇fik (x̃kik ) +
1
n

n∑
j=1

∇fj(x̃kj ),

where, at each iteration, x̃ is updated as x̃kik = xk and x̃kj stays the same for j , ik.

◦ As x̃kj → x? and xk → x?,

∇fik (xk)−∇fik (x̃kik ) +
1
n

n∑
j=1

∇fj(x̃kj )→ 0.

◦ Therefore,

E
[
‖∇fik (xk)−∇fik (x̃kik ) +

1
n

n∑
j=1

∇fj(x̃kj )‖2
]
→ 0.
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?Variance reduction techniques: SAGA
Stochastic Average Gradient (SAGA) [10]

1a. Choose x̃0
i = x0 ∈ Rp, ∀i, q ∈ N+ and stepsize γ > 0.

1b. Store ∇fi(x̃0
i ) in a table data-structure with length n.

2. For k = 0, 1 . . . perform:
2a. Pick ik ∈ {1, . . . , n} uniformly at random
2b. Take x̃k+1

ik
= xk, store ∇fik (x̃k+1

ik
) in the table and leave other

entries the same.
2c. rk = ∇fik (xk)−∇fik (x̃kik ) + 1

n

∑n

j=1∇fj(x̃
k
j )

3. xk+1 = xk − γrk

Recipe:
In each iteration:
I Store last gradient evaluated at each datapoint.
I Previous gradient for datapoint j is ∇fj(x̃kj ).
I Perform SG-iterations with the following stochastic gradient

rk = ∇fik (xk)−∇fik (x̃kik ) +
1
n

n∑
j=1

∇fj(x̃kj ).
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?Convergence of SAGA

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

Theorem (Convergence of SAGA [10])
Suppose that f is µ-strongly convex and that the stepsize is γ = 1

2(µn+L) with

ρ = 1−
µ

2(µn+ L)
< 1,

C = ‖x0 − x?‖2 +
n

µn+ L
[f(x0)− 〈∇f(x?),x0 − x?〉 − f(x?)]

Then
E[‖xk − x?‖2] ≤ ρkC.

◦ Allows the constant step-size.

◦ Obtains linear rate convergence.
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?Variance reduction techniques: SARAH

◦ Select the stochastic gradient rk

rk = ∇fik (xk)−∇fik (xk−1) + rk−1,

◦ The variance reduction in SARAH can be characterized as

E[‖rk‖2] ≤
[

1−
( 2
γL
− 1
)
µ2γ2

]k
E[‖∇f(x0)‖2].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 44/ 52



?Variance reduction techniques: SARAH

Stochastic Recursive Gradient Algorithm (SARAH) [16]
1. Choose x0 ∈ Rp, q ∈ N+ and stepsize γ > 0.
2. For k = 0, 1 . . . perform:
2. x0 = xk, r0 = 1

n

∑n

j=1 fj(x
0)

2a. x1 = x0 − γr0
2b. For l = 1 . . . , q − 1, perform:pick il ∈ {1, . . . , n} uniformly at random,

rl = ∇fil (xl)−∇fil (xl−1) + rl−1,

xl+1 = xl − γrl.

3 Update xk+1 = xl where l is chosen uniformly at random from
{0, . . . , q} .

Recipe: In a cycle of q inner iterations:

◦ Compute stochastic step direction by recursively adding and subtracting component gradients.

rl = ∇fil (x
l)−∇fil (x

l−1) + rl−1.

◦ Perform q SG-iterations with rl.
◦ Update next iteration by picking uniformly at random from q previous iterations.
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?Convergence of SARAH

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

Theorem (Convergence of SARAH [16])
Suppose that f is µ-strongly convex and that the stepsize γ and number of inner iterations q satisfies

ρq =
1

µγ(1 + q)
+

Lmaxγ

2− Lmaxγ
< 1.

Then
E[‖∇f(xk)‖2] ≤ ρkq‖∇f(x0)‖2.
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?An abridged variance reduction results for distributed optimization

Setting Algorithm Complexity bound
Gradient descent mL∆0/ε2

SVRG (Bk = Ω(n2/3)) [18] n+ n2/3L∆0/ε2

SpiderBoost [20] n+
√
nL∆0/ε2

L-smooth fi’s Spider [11] n+
√
nL∆0/ε2

SARAH [16] n+
√
nL∆0/ε2

PAGE [14] n+
√
nL∆0/ε2

ZeroSARAH [15]
(B0 = n and then Bk =

√
n) n+

√
nL∆0/ε2

Gradient descent mL∆0/ε2

SCAFFOLD [13] m+ m

n1/3
L∆0
ε2

Distributed with L-smooth fi,j ’s Spider [11] m+
√
m√
n
L∆0
ε2

SARAH [16] m+
√
m√
n
L∆0
ε2

ZeroSARAH [15]
(B0 = m and then Bk =

√
m) m+

√
m√
n
L∆0
ε2

Distributed: fi(x) = 1
m

∑m

j=1 fi,j(x) loss on client or device i with m data samples
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