Lecture 5: Introduction to Proximal Operators and Proximal Gradient methods

Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2021)
License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
 - Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
 - Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor’s permission.
 - Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor’s work.
 - Full Text of the License
Outline

- Composite minimization
- Proximal gradient methods
- Introduction to Frank-Wolfe method
Recall sparse regression in generalized linear models (GLMs)

Problem (Sparse regression in GLM)
Our goal is to estimate $x^\natural \in \mathbb{R}^p$ given $\{b_i\}_{i=1}^n$ and $\{a_i\}_{i=1}^n$, knowing that the likelihood function at y_i given a_i and x^\natural is given by $L(\langle a_i, x^\natural \rangle, b_i)$, and that x^\natural is sparse.

Optimization formulation

$$\min_{x \in \mathbb{R}^p} \left\{ -\sum_{i=1}^n \log L(\langle a_i, x^\natural \rangle, b_i) + \rho_n \|x\|_1 \right\}$$

where $\rho_n > 0$ is a parameter which controls the strength of sparsity regularization.

Theorem (cf. [13] for details)
Under some technical conditions, there exists $\{\rho_i\}_{i=1}^\infty$ such that with high probability,

$$\|x^* - x^\natural\|_2^2 = \mathcal{O} \left(\frac{s \log p}{n} \right), \quad \text{supp} \ x^* = \text{supp} \ x^\natural.$$

Recall ML:

$$\|x_{ML} - x^\natural\|_2^2 = \mathcal{O} \left(\frac{p}{n} \right).$$
Composite convex minimization

Problem (Composite convex minimization)

\[
F^* := \min_{x \in \mathbb{R}^p} \{ F(x) := f(x) + g(x) \}
\]

- \(f \) and \(g \) are both proper, closed, and convex.
- \(\text{dom}(F) := \text{dom}(f) \cap \text{dom}(g) \neq \emptyset \) and \(-\infty < F^* < +\infty \).
- The solution set \(S^* := \{ x^* \in \text{dom}(F) : F(x^*) = F^* \} \) is nonempty.

Remarks:
- Without loss of generality, \(f \) is smooth and \(g \) is non-smooth in the sequel.
- By Moreau-Rockafellar Theorem, we have \(\partial F = \partial(f + g) = \partial f + \partial g = \nabla f + \partial g \).
- Subgradient method attains a \(O\left(1/\sqrt{T}\right) \) rate.
- Without \(g \), accelerated gradient method attains a \(O\left(1/T^2\right) \) rate.
Composite **convex** minimization

Problem (Composite convex minimization)

\[
F^* := \min_{x \in \mathbb{R}^p} \{ F(x) := f(x) + g(x) \}
\]

- \(f\) and \(g\) are both proper, closed, and convex.
- \(\text{dom}(F) := \text{dom}(f) \cap \text{dom}(g) \neq \emptyset\) and \(-\infty < F^* < +\infty\).
- The solution set \(S^* := \{ x^* \in \text{dom}(F) : F(x^*) = F^* \}\) is nonempty.

Remarks:
- Without loss of generality, \(f\) is smooth and \(g\) is non-smooth in the sequel.
- By Moreau-Rockafellar Theorem, we have \(\partial F = \partial (f + g) = \partial f + \partial g = \nabla f + \partial g\).
- Subgradient method attains a \(O\left(\frac{1}{\sqrt{T}}\right)\) rate.
- Without \(g\), accelerated gradient method attains a \(O\left(\frac{1}{T^2}\right)\) rate.

Can we design algorithms that achieve a faster convergence rate for composite convex minimization?
Designing algorithms for finding a solution x^*

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, $\forall x, y \in \mathbb{R}^p$

$$f(x) \leq f(y) + \nabla f(y)^T(x - y) + \frac{L}{2} \|x - y\|^2_2$$
Designing algorithms for finding a solution x^*

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, $\forall x, y \in \mathbb{R}^p$

$$f(x) \leq f(y) + \nabla f(y)^T (x - y) + \frac{L}{2} \| x - y \|^2_2$$

Quadratic majorizer for $f + g$

When f has L-Lipschitz continuous gradient, we have, $\forall x, y \in \mathbb{R}^p$

$$f(x) + g(x) \leq f(y) + \nabla f(y)^T (x - y) + \frac{L}{2} \| x - y \|^2_2 + g(x) := P_L(x, y)$$
Designing algorithms for finding a solution x^*

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, $\forall x, y \in \mathbb{R}^p$

$$f(x) \leq f(y) + \nabla f(y)^T (x - y) + \frac{L}{2} \|x - y\|^2_2$$

Quadratic majorizer for $f + g$

When f has L-Lipschitz continuous gradient, we have, $\forall x, y \in \mathbb{R}^p$

$$f(x) + g(x) \leq f(y) + \nabla f(y)^T (x - y) + \frac{L}{2} \|x - y\|^2_2 + g(x) := P_L(x, y)$$

Majorization-minimization for $f + g$

$$x^{k+1} = \arg\min_{x \in \mathbb{R}^p} P_L(x, x^k)$$

$$= \arg\min_{x \in \mathbb{R}^p} \left\{ g(x) + \frac{L}{2} \left\| x - \left(x^k - \frac{1}{L} \nabla f(x^k) \right) \right\|^2 \right\}$$
Geometric illustration

\[P_L(x, x^k) := f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{L}{2} \| x - x^k \|_2^2 + g(x) \]

\[F(x) = f(x) + g(x) \]
A short detour: Proximal-point operators

Definition (Proximal operator [17])
Let $g \in \mathcal{F}(\mathbb{R}^p)$, $x \in \mathbb{R}^p$ and $\lambda \geq 0$. The proximal operator (or prox-operator) of g is defined as:

$$\text{prox}_\lambda g(x) \equiv \arg \min_{y \in \mathbb{R}^p} \left\{ g(y) + \frac{1}{2\lambda} \|y - x\|_2^2 \right\}. \quad (2)$$
A short detour: Proximal-point operators

Definition (Proximal operator [17])

Let \(g \in \mathcal{F}(\mathbb{R}^p) \), \(x \in \mathbb{R}^p \) and \(\lambda \geq 0 \). The proximal operator (or prox-operator) of \(g \) is defined as:

\[
\text{prox}_{\lambda g}(x) \equiv \arg \min_{y \in \mathbb{R}^p} \left\{ g(y) + \frac{1}{2\lambda} \|y - x\|^2 \right\}.
\] (2)

Remarks:

- The \textit{proximal operator} of \(\frac{1}{L}g \) evaluated at \(\left(x^k - \frac{1}{L} \nabla f(x^k) \right) \) is given by

 \[
 \text{prox}_{\frac{1}{L}g} \left(x^k - \frac{1}{L} \nabla f(x^k) \right) = \arg \min_{x \in \mathbb{R}^p} \left\{ g(x) + \frac{L}{2} \left\| x - \left(x^k - \frac{1}{L} \nabla f(x^k) \right) \right\|^2 \right\}.
 \]

- This prox-operator minimizes the majorizing bound:

 \[
 f(x) + g(x) \leq f(x^k) + \nabla f(x^k)^T (x - x^k) + \frac{L}{2} \|x - x^k\|^2 + g(x)
 \]

- Rule of thumb: Replace gradient steps with proximal gradient steps!
Tractable prox-operators

Processing non-smooth terms in (15)

▶ We handle the nonsmooth term g in (15) using its proximal operator.
▶ However, computing proximal operator prox_g of a general convex function g

$$\text{prox}_g(x) \equiv \arg \min_{y \in \mathbb{R}^p} \left\{ g(y) + \frac{1}{2}\|y - x\|_2^2 \right\}.$$

can be computationally demanding.

Definition (Tractable proximity)

▶ Given $g \in \mathcal{F}(\mathbb{R}^p)$. We say that g is proximally tractable if prox_g defined by (2) can be computed efficiently.
▶ "efficiently" = \{closed form solution, low-cost computation, polynomial time\}.
Tractable prox-operators

Example

▶ For separable functions, the prox-operator can be efficient. When \(g(x) := \|x\|_1 = \sum_{i=1}^{n} |x_i| \), we have

\[
\text{prox}_\lambda g(x) = \text{sign}(x) \otimes \max\{|x| - \lambda, 0\}.
\]

▶ Sometimes, we can compute the prox-operator via basic algebra. When \(g(x) := (1/2)\|Ax - b\|_2^2 \), we have

\[
\text{prox}_\lambda g(x) = \left(I + \lambda A^T A \right)^{-1} \left(x + \lambda Ab \right).
\]

▶ For the indicator functions of simple sets, e.g., \(g(x) := \delta_{\mathcal{X}}(x) \), the prox-operator is the projection operator

\[
\text{prox}_\lambda g(x) := \pi_{\mathcal{X}}(x),
\]

where \(\pi_{\mathcal{X}}(x) \) denotes the projection of \(x \) onto \(\mathcal{X} \). For instance, when \(\mathcal{X} = \{x : \|x\|_1 \leq \lambda \} \), the projection can be obtained efficiently.
Computational efficiency - Example

Proximal operator of quadratic function

The proximal operator of a quadratic function \(g(x) := \frac{1}{2} \|Ax - b\|_2^2 \) is defined as

\[
\text{prox}_{\lambda g}(x) := \arg \min_{y \in \mathbb{R}^p} \left\{ \frac{1}{2} \|Ay - b\|_2^2 + \frac{1}{2\lambda} \|y - x\|_2^2 \right\}.
\]

(3)

How do we compute \(\text{prox}_{\lambda g}(x) \)?

The derivation:
- The optimality condition implies that the solution of (3) should satisfy the following:

\[
A^T (Ay - b) + \lambda^{-1} (y - x) = 0.
\]

- Setting \(y = \text{prox}_{\lambda g}(x) \), we obtain

\[
\text{prox}_{\lambda g}(x) = \left(\mathbb{I} + \lambda A^T A \right)^{-1} (x + \lambda Ab)
\]

Remarks:
- The Woodbury matrix identity can be useful: \((\mathbb{I} + \lambda A^T A)^{-1} = \mathbb{I} - A^T (\lambda^{-1} \mathbb{I} + AA^T)^{-1} A \).
- When \(A^T A \) is efficiently diagonalizable, i.e., \(A^T A := U \Lambda U^T \), such that
 - \(U \) is a unitary matrix, i.e., \(UU^T = U^TU = \mathbb{I} \), and \(\Lambda \) is a diagonal matrix.
 - \(\text{prox}_{\lambda g}(x) = U (\mathbb{I} + \lambda \Lambda)^{-1} U^T (x + \lambda Ab) \).
A non-exhaustive list of proximal tractability functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Function</th>
<th>Proximal operator</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ₁-norm</td>
<td>(f(x) := |x|_1)</td>
<td>(\text{prox}\lambda f(x) = \text{sign}(x) \otimes [|x| - \lambda]+)</td>
<td>(\mathcal{O}(p))</td>
</tr>
<tr>
<td>ℓ₂-norm</td>
<td>(f(x) := |x|_2)</td>
<td>(\text{prox}_\lambda f(x) = [1 - \lambda/|x|2]+ x)</td>
<td>(\mathcal{O}(p))</td>
</tr>
<tr>
<td>Support function</td>
<td>(f(x) := \max_{y \in C} x^T y)</td>
<td>(\text{prox}_\lambda f(x) = x - \lambda \pi_C(x))</td>
<td>(\mathcal{O}(p))</td>
</tr>
<tr>
<td>Box indicator</td>
<td>(f(x) := \delta_{[a,b]}(x))</td>
<td>(\text{prox}\lambda f(x) = \pi{[a,b]}(x))</td>
<td>(\mathcal{O}(p))</td>
</tr>
<tr>
<td>Positive semidefinite cone indicator</td>
<td>(f(X) := \delta_{S_p^+}(X))</td>
<td>(\text{prox}_\lambda f(X) = U\Sigma U^T), where (X = U\Sigma U^T)</td>
<td>(\mathcal{O}(p^3))</td>
</tr>
<tr>
<td>Hyperplane indicator</td>
<td>(f(x) := \delta_\mathcal{X}(x), \mathcal{X} := {x : a^T x = b})</td>
<td>(\text{prox}\lambda f(x) = \pi\mathcal{X}(x) = x + (b - a^T x/|a|_2) a)</td>
<td>(\mathcal{O}(p))</td>
</tr>
<tr>
<td>Simplex indicator</td>
<td>(f(x) := \delta_\mathcal{X}(x), \mathcal{X} := {x : x \geq 0, 1^T x = 1})</td>
<td>(\text{prox}_\lambda f(x) = (x - \nu 1)) for some (\nu \in \mathbb{R}), which can be efficiently calculated</td>
<td>(\mathcal{O}(p))</td>
</tr>
<tr>
<td>Convex quadratic</td>
<td>(f(x) := (1/2)x^T Q x + q^T x)</td>
<td>(\text{prox}_\lambda f(x) = (\lambda I + Q)^{-1} x)</td>
<td>(\mathcal{O}(p \log p) \rightarrow \mathcal{O}(p^3))</td>
</tr>
<tr>
<td>Square ℓ₂-norm</td>
<td>(f(x) := (1/2)|x|_2^2)</td>
<td>(\text{prox}_\lambda f(x) = (1/(1 + \lambda)) x)</td>
<td>(\mathcal{O}(p))</td>
</tr>
<tr>
<td>log-function</td>
<td>(f(x) := - \log(x))</td>
<td>(\text{prox}_\lambda f(x) = ((x^2 + 4\lambda)^{1/2} + x)/2)</td>
<td>(\mathcal{O}(1))</td>
</tr>
<tr>
<td>log det-function</td>
<td>(f(x) := - \log \det(X))</td>
<td>(\text{prox}_\lambda f(X)) is the log-function prox applied to the individual eigenvalues of (X)</td>
<td>(\mathcal{O}(p^3))</td>
</tr>
</tbody>
</table>

Here: \([x]_+ := \max\{0, x\}\) and \(\delta_\mathcal{X}\) is the indicator function of the convex set \(\mathcal{X}\), \(\text{sign}\) is the sign function, \(S_p^+\) is the cone of symmetric positive semidefinite matrices.

For more functions, see [1, 15].
Solution methods

Composite convex minimization

\[F^* := \min_{x \in \mathbb{R}^p} \left\{ F(x) := f(x) + g(x) \right\}. \] (4)

Choice of numerical solution methods

- **Solve (4)** = Find \(x^k \in \mathbb{R}^p \) such that
 \[F'(x^k) - F^* \leq \varepsilon \]
 for a given tolerance \(\varepsilon > 0 \).

- **Oracles**: We can use one of the following configurations (oracles):
 1. \(\partial f(\cdot) \) and \(\partial g(\cdot) \) at any point \(x \in \mathbb{R}^p \).
 2. \(\nabla f(\cdot) \) and \(\text{prox}_{\lambda g}(\cdot) \) at any point \(x \in \mathbb{R}^p \).
 3. \(\text{prox}_{\lambda f} \) and \(\text{prox}_{\lambda g}(\cdot) \) at any point \(x \in \mathbb{R}^p \).
 4. \(\nabla f(\cdot) \), inverse of \(\nabla^2 f(\cdot) \) and \(\text{prox}_{\lambda g}(\cdot) \) at any point \(x \in \mathbb{R}^p \).

Using different oracle leads to different types of algorithms
Proximal-gradient algorithm

<table>
<thead>
<tr>
<th>Basic proximal-gradient scheme (ISTA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose $x^0 \in \text{dom}(F)$ arbitrarily as a starting point.</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \cdots$, generate a sequence ${x^k}_{k \geq 0}$ as:</td>
</tr>
<tr>
<td>$x^{k+1} := \text{prox}_{\alpha g} \left(x^k - \alpha \nabla f(x^k) \right)$,</td>
</tr>
<tr>
<td>where $\alpha := \frac{1}{L}$.</td>
</tr>
</tbody>
</table>

Theorem (Convergence of ISTA [3])

Let $\{x^k\}$ be generated by ISTA. Then:

$$F(x^k) - F^* \leq L_f \| x^0 - x^* \|^2_2 \left(k + 1 \right).$$

The worst-case complexity to reach $F(x^k) - F^* \leq \varepsilon$ of (ISTA) is $O \left(L f R_0^2 \right)$, where $R_0 := \max_{x^* \in S^*} \| x^0 - x^* \|^2_2$.}

° Oracles: $\text{prox}_{\alpha g} (\cdot)$ and $\nabla f (\cdot)$.

° Compared to the subgradient gradient method, the rate improves at the cost of prox-computation.
Proximal-gradient algorithm

Basic proximal-gradient scheme (ISTA)

1. Choose $x^0 \in \text{dom}(F)$ arbitrarily as a starting point.
2. For $k = 0, 1, \cdots$, generate a sequence $\{x^k\}_{k \geq 0}$ as:

$$x^{k+1} := \text{prox}_{\alpha g} \left(x^k - \alpha \nabla f(x^k) \right),$$

where $\alpha := \frac{1}{L_f}$.

Theorem (Convergence of ISTA [3])

Let $\{x^k\}$ be generated by ISTA. Then:

$$F(x^k) - F^* \leq \frac{L_f \|x^0 - x^*\|_2^2}{2(k + 1)}$$

The worst-case complexity to reach $F(x^k) - F^* \leq \varepsilon$ of (ISTA) is $\mathcal{O} \left(\frac{L_f R_0^2}{\varepsilon} \right)$, where $R_0 := \max_{x^* \in S^*} \|x^0 - x^*\|_2$.

- **Oracles**: $\text{prox}_{\alpha g}(\cdot)$ and $\nabla f(\cdot)$.

- Compared to the subgradient gradient method, the rate improves at the cost of prox-computation.
Fast proximal-gradient algorithm

<table>
<thead>
<tr>
<th>Fast proximal-gradient scheme (FISTA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose $x^0 \in \text{dom}(F)$ arbitrarily as a starting point.</td>
</tr>
<tr>
<td>2. Set $y^0 := x^0$ and $t_0 := 1$, $\alpha := L^{-1}$.</td>
</tr>
<tr>
<td>3. For $k = 0, 1, \ldots$, generate two sequences ${x^k}{k \geq 0}$ and ${y^k}{k \geq 0}$ as:</td>
</tr>
</tbody>
</table>
| $\begin{cases}
 x^{k+1} := \text{prox}_{\alpha g} \left(y^k - \alpha \nabla f(y^k) \right), \\
 t_{k+1} := (1 + \sqrt{4t_k^2 + 1})/2, \\
 y^{k+1} := x^{k+1} + \frac{t_k - 1}{t_{k+1}} (x^{k+1} - x^k).
\end{cases}$ |
Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)

1. Choose $x^0 \in \text{dom}(F)$ arbitrarily as a starting point.
2. Set $y^0 := x^0$ and $t_0 := 1$, $\alpha := L^{-1}$.
3. For $k = 0, 1, \ldots$, generate two sequences $\{x^k\}_{k \geq 0}$ and $\{y^k\}_{k \geq 0}$ as:

\[
\begin{align*}
 x^{k+1} &:= \text{prox}_{\alpha g}(y^k - \alpha \nabla f(y^k)), \\
 t_{k+1} &:= (1 + \sqrt{4t_k^2 + 1})/2, \\
 y^{k+1} &:= x^{k+1} + t_{k+1}^{-1} (x^{k+1} - x^k).
\end{align*}
\]

Theorem (Convergence of FISTA [3])

Let $\{x^k\}$ be generated by FISTA. Then:

\[
F(x^k) - F^* \leq \frac{2L_f \|x^0 - x^*\|^2}{(k + 1)^2}
\]

The worst-case complexity to reach $F(x^k) - F^* \leq \varepsilon$ of (FISTA) is $O \left(R_0 \sqrt{\frac{L_f \varepsilon}{\varepsilon}} \right)$, where $R_0 := \max_{x^* \in S^*} \|x^0 - x^*\|_2$.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch
Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)

1. Choose $x^0 \in \text{dom}(F)$ arbitrarily as a starting point.
2. Set $y^0 := x^0$ and $t_0 := 1$, $\alpha := L^{-1}$.
3. For $k = 0, 1, \ldots$, generate two sequences $\{x^k\}_{k \geq 0}$ and $\{y^k\}_{k \geq 0}$ as:

 $$
 \begin{cases}
 x^{k+1} := \text{prox}_{\alpha g} \left(y^k - \alpha \nabla f(y^k) \right), \\
 t_{k+1} := (1 + \sqrt{4t_k^2 + 1})/2, \\
 y^{k+1} := x^{k+1} + t_k^{-1} (x^{k+1} - x^k).
 \end{cases}
 $$

Remark: From $\mathcal{O} \left(\frac{L_f R_0^2}{\epsilon} \right)$ to $\mathcal{O} \left(R_0 \sqrt{\frac{L_f}{\epsilon}} \right)$ iterations at almost no additional cost!

Complexity per iteration

- **One** gradient $\nabla f(y^k)$ and **one** prox-operator of g;
- **8** arithmetic operations for t_{k+1} and γ_{k+1};
- **2** more vector additions, and **one** scalar-vector multiplication.

The **cost per iteration** is almost the same as in **gradient scheme** if proximal operator of g is efficient.
Example 1: \(\ell_1 \)-regularized least squares

Problem (\(\ell_1 \)-regularized least squares)

Given \(A \in \mathbb{R}^{n \times p} \) and \(b \in \mathbb{R}^n \), solve:

\[
F^* := \min_{x \in \mathbb{R}^p} \left\{ F(x) := \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1 \right\},
\]

where \(\lambda > 0 \) is a regularization parameter.

Complexity per iterations

- Evaluating \(\nabla f(x^k) = A^T(Ax^k - b) \) requires one \(Ax \) and one \(A^T y \).
- One soft-thresholding operator \(\text{prox}_{\lambda g}(x) = \text{sign}(x) \otimes \max\{|x| - \lambda, 0\} \).
- Optional: Evaluating \(L = \|A^T A\| \) (spectral norm) - via power iterations

Synthetic data generation

- \(A := \text{randn}(n, p) \) - standard Gaussian \(\mathcal{N}(0, I) \).
- \(x^\star \) is a \(k \)-sparse vector generated randomly.
- \(b := Ax^\star + \mathcal{N}(0, 10^{-3}) \).
Example 1: Theoretical bounds vs practical performance

Theoretical bounds

We have the following guarantees for $\text{FISTA} := \frac{2L_f R_0^2}{(k+2)^2}$ and for $\text{ISTA} := \frac{L_f R_0^2}{2(k+2)}$.

Remarks:

- ℓ_1-regularized least squares formulation has restricted strong convexity.
- The proximal-gradient method can automatically exploit this structure.
Example 1: Theoretical bounds vs practical performance

Theoretical bounds

We have the following guarantees for FISTA $:= \frac{2L_f R_0^2}{(k+2)^2}$ and for ISTA $:= \frac{L_f R_0^2}{2(k+2)}$.

![Graph showing theoretical bounds and practical performance of FISTA and ISTA](image)

Remarks:

- ℓ_1-regularized least squares formulation has restricted strong convexity.
- The proximal-gradient method can automatically exploit this structure.
Example 1: Theoretical bounds vs practical performance

Theoretical bounds

We have the following guarantees for \(\text{FISTA} := \frac{2L_f R_0^2}{(k+2)^2} \) and for \(\text{ISTA} := \frac{L_f R_0^2}{2(k+2)} \).

Remarks:
- \(\ell_1 \)-regularized least squares formulation has **restricted strong convexity**.
- The proximal-gradient method can automatically exploit this structure.
Example 2: Sparse logistic regression

Problem (Sparse logistic regression)

Given \(\mathbf{A} \in \mathbb{R}^{n \times p} \) and \(\mathbf{b} \in \{-1, +1\}^n \), solve:

\[
F^* := \min_{\mathbf{x}, \beta} \left\{ F(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^{n} \log \left(1 + \exp \left(-b_j (\mathbf{a}_j^T \mathbf{x} + \beta) \right) \right) + \rho \| \mathbf{x} \|_1 \right\}.
\]

Real data

- Real data: w8a with \(n = 49'749 \) data points, \(p = 300 \) features

Parameters

- \(\rho = 10^{-4} \).
- Number of iterations 5000, tolerance \(10^{-7} \).
- Ground truth: Solve problem up to \(10^{-9} \) accuracy by TFOCS to get a high accuracy approximation of \(\mathbf{x}^* \) and \(F^* \).
Example 2: Sparse logistic regression - numerical results

<table>
<thead>
<tr>
<th></th>
<th>ISTA</th>
<th>LS-ISTA</th>
<th>FISTA</th>
<th>FISTA-R</th>
<th>LS-FISTA</th>
<th>LS-FISTA-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of iterations</td>
<td>5000</td>
<td>5000</td>
<td>4046</td>
<td>2423</td>
<td>447</td>
<td>317</td>
</tr>
<tr>
<td>CPU time (s)</td>
<td>26.975</td>
<td>61.506</td>
<td>21.859</td>
<td>18.444</td>
<td>10.683</td>
<td>6.228</td>
</tr>
<tr>
<td>Solution error ($\times 10^{-7}$)</td>
<td>29370</td>
<td>2.774</td>
<td>1.000</td>
<td>0.998</td>
<td>0.961</td>
<td>0.985</td>
</tr>
</tbody>
</table>
When \(f \) is strongly convex: Algorithms

Proximal-gradient scheme (ISTA\(_\mu\))

1. Given \(x^0 \in \mathbb{R}^p \) as a starting point.
2. For \(k = 0, 1, \cdots \), generate a sequence \(\{x^k\}_{k \geq 0} \) as:

\[
x^{k+1} := \text{prox}_{\alpha_k g}(x^k - \alpha_k \nabla f(x^k)),
\]

where \(\alpha_k := 2/(L_f + \mu) \) is the optimal step-size.

Fast proximal-gradient scheme (FISTA\(_\mu\))

1. Given \(x^0 \in \mathbb{R}^p \) as a starting point. Set \(y^0 := x^0 \).
2. For \(k = 0, 1, \cdots \), generate sequences \(\{x^k\}_{k \geq 0} \) and \(\{y^k\}_{k \geq 0} \) as:

\[
\begin{align*}
\begin{cases}
 x^{k+1} := \text{prox}_{\alpha_k g}(y^k - \alpha_k \nabla f(y^k)), \\
 y^{k+1} := x^{k+1} + \left(\frac{\sqrt{c_f - 1}}{\sqrt{c_f + 1}} \right) (x^{k+1} - x^k),
\end{cases}
\end{align*}
\]

where \(c_f := L_f / \mu \) and \(\alpha_k := L_f^{-1} \) is the optimal step-size.
When f is strongly convex: Convergence

Assumption

f is strongly convex with parameter $\mu > 0$, i.e., $f \in \mathcal{F}_{L, \mu}^{1,1}(\mathbb{R}^p)$.

Condition number: $c_f := \frac{L_f}{\mu} \geq 0$.

Theorem (ISTA$_\mu$ [14])

$$F(x^k) - F^* \leq \frac{L_f}{2} \left(\frac{c_f - 1}{c_f + 1} \right)^{2k} \|x^0 - x^*\|_2^2.$$

Convergence rate: Linear with contraction factor: $\omega := \left(\frac{c_f - 1}{c_f + 1} \right)^2 = \left(\frac{L_f - \mu}{L_f + \mu} \right)^2$.

Theorem (FISTA$_\mu$ [14])

$$F(x^k) - F^* \leq \frac{L_f + \mu}{2} \left(1 - \sqrt{\frac{\mu}{L_f}} \right)^k \|x^0 - x^*\|_2^2.$$

Convergence rate: Linear with contraction factor: $\omega_f = \frac{\sqrt{L_f} - \sqrt{\mu}}{\sqrt{L_f}} < \omega$.
Summary of the worst-case complexities

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Proximal-gradient scheme</th>
<th>Fast proximal-gradient scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity $[\mu = 0]$</td>
<td>$O \left(R_0^2(L_f/\varepsilon) \right)$</td>
<td>$O \left(R_0 \sqrt{L_f/\varepsilon} \right)$</td>
</tr>
<tr>
<td>Per iteration</td>
<td>1-gradient, 1-prox, 1-sv, 1-$v+$</td>
<td>1-gradient, 1-prox, 2-sv, 3-$v+$</td>
</tr>
<tr>
<td>Complexity $[\mu > 0]$</td>
<td>$O \left(\kappa \log(\varepsilon^{-1}) \right)$</td>
<td>$O \left(\sqrt{\kappa \log(\varepsilon^{-1})} \right)$</td>
</tr>
<tr>
<td>Per iteration</td>
<td>1-gradient, 1-prox, 1-sv, 1-$v+$</td>
<td>1-gradient, 1-prox, 1-sv, 2-$v+$</td>
</tr>
</tbody>
</table>

Here: $sv =$ scalar-vector multiplication, $v+$ = vector addition.

$R_0 := \max_{x^* \in S^*} \| x^0 - x^* \|$ and $\kappa = L_f/\mu_f$ is the condition number.
Summary of the worst-case complexities

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Proximal-gradient scheme</th>
<th>Fast proximal-gradient scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity $[\mu = 0]$</td>
<td>$O\left(R_0^2(L_f/\varepsilon)\right)$</td>
<td>$O\left(R_0 \sqrt{L_f/\varepsilon}\right)$</td>
</tr>
<tr>
<td>Per iteration</td>
<td>1-gradient, 1-prox, 1-sv, 1-v+</td>
<td>1-gradient, 1-prox, 2-sv, 3-v+</td>
</tr>
<tr>
<td>Complexity $[\mu > 0]$</td>
<td>$O\left(\kappa \log(\varepsilon^{-1})\right)$</td>
<td>$O\left(\sqrt{\kappa} \log(\varepsilon^{-1})\right)$</td>
</tr>
<tr>
<td>Per iteration</td>
<td>1-gradient, 1-prox, 1-sv, 1-v+</td>
<td>1-gradient, 1-prox, 1-sv, 2-v+</td>
</tr>
</tbody>
</table>

Here: $sv =$ scalar-vector multiplication, $v+$ = vector addition.

$R_0 := \max_{x^* \in S^*} \|x^0 - x^*\|$ and $\kappa = L_f/\mu_f$ is the condition number.

Need alternatives when

- computing $\nabla f(x)$ is much costlier than computing prox_g
Summary of the worst-case complexities

Comparison

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Proximal-gradient scheme</th>
<th>Fast proximal-gradient scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity $[\mu = 0]$</td>
<td>$O \left(R_0^2 \left(\frac{L_f}{\varepsilon} \right) \right)$</td>
<td>$O \left(R_0 \sqrt{\frac{L_f}{\varepsilon}} \right)$</td>
</tr>
<tr>
<td>Per iteration</td>
<td>1-gradient, 1-prox, 1-sv, 1-v+</td>
<td>1-gradient, 1-prox, 2-sv, 3-v+</td>
</tr>
<tr>
<td>Complexity $[\mu > 0]$</td>
<td>$O \left(\kappa \log \left(\frac{1}{\varepsilon - 1} \right) \right)$</td>
<td>$O \left(\sqrt{\kappa} \log \left(\frac{1}{\varepsilon - 1} \right) \right)$</td>
</tr>
<tr>
<td>Per iteration</td>
<td>1-gradient, 1-prox, 1-sv, 1-v+</td>
<td>1-gradient, 1-prox, 1-sv, 2-v+</td>
</tr>
</tbody>
</table>

Here: $sv =$ scalar-vector multiplication, $v+$ = vector addition.

$R_0 := \max_{x^* \in S^*} \| x^0 - x^* \|$ and $\kappa = \frac{L_f}{\mu_f}$ is the condition number.

Need alternatives when
- computing $\nabla f(x)$ is much costlier than computing prox_g

Software

TFOCS is a good software package to learn about first order methods.

Problem (Unconstrained composite minimization)

\[F^* := \min_{x \in \mathbb{R}^p} \{ F(x) := f(x) + g(x) \} \]

- \(g : \mathbb{R}^p \to \mathbb{R} \cup \{\infty\} \) is proper, closed, convex, and (possibly) nonsmooth.
- \(f : \mathbb{R}^p \to \mathbb{R} \) is proper and closed, \(\text{dom}(f) \) is convex, and \(f \) is \(L_f \)-smooth.
- \(\text{dom}(F) := \text{dom}(f) \cap \text{dom}(g) \neq \emptyset \) and \(-\infty < F^* < +\infty \).
- The solution set \(S^* := \{ x^* \in \text{dom}(F) : F(x^*) = F^* \} \) is nonempty.
A different quantification of convergence: Gradient mapping

Definition (Gradient mapping)

Let prox_g denote the proximal operator of g and $\lambda > 0$ some real constant. Then, the gradient mapping operator is defined as

$$G_\lambda(x) := \frac{1}{\lambda} \left(x - \text{prox}_{\lambda g}(x - \lambda \nabla f(x)) \right).$$

Properties [2]

- $\|G_\lambda(x)\| = 0 \iff x$ is a stationary point.
- Lipschitz continuity: $\left\| G_{\frac{1}{L}}(x) - G_{\frac{1}{L}}(y) \right\| \leq (2L + L_f) \|x - y\|$

Why do we care about gradient mapping?

- It is the generalization of the gradient of f, $\nabla f(x)$
- Recall prox-gradient update: $x^{t+1} = \text{prox}_{\lambda g}(x^t - \lambda \nabla f(x^t))$, which is equivalent to $x^{t+1} = x^t - \lambda G_\lambda(x^t)$.
- In fact, when $\text{prox}_g = I$, then, $G_\lambda(x) = \frac{1}{\lambda} (x - (x - \lambda \nabla f(x))) = \nabla f(x)$.
Sufficient Decrease property for proximal-gradient

Assumption

- f is L_f-smooth.
- g is proper, closed, convex, and (possibly) nonsmooth. g is proximally tractable.

$x^{k+1} := \text{prox}_{\frac{1}{L} g} \left(x^k - \frac{1}{L} \nabla f(x^k) \right)$

Lemma (Sufficient decrease [2])

For any $x \in \text{int}(\text{dom}(f))$ and $L \in \left(\frac{L_f}{2}, \infty \right)$, it holds that

$$F(x^{k+1}) \leq F(x^k) - \frac{L_f}{2L^2} \left\| G_{\frac{1}{L}} (x^k) \right\|_2^2,$$

(6)

Corollary

$$F(x^{k+1}) \leq F(x^k) - \frac{1}{2L_f} \left\| G_{\frac{1}{L_f}} (x^k) \right\|_2^2,$$

for $L = L_f$
Non-convex case: Convergence

Basic proximal-gradient scheme

1. Choose $x^0 \in \text{dom} (F)$ arbitrarily as a starting point.
2. For $k = 0, 1, \ldots$, generate a sequence $\{x^k\}_{k \geq 0}$ as:

$$x^{k+1} := \text{prox}_{\alpha g} \left(x^k - \alpha \nabla f (x^k) \right),$$

where $\alpha := \left(0, \frac{2}{L_f} \right)$.

Theorem (Convergence of proximal-gradient method: Non-convex [2])

Let $\{x^k\}$ be generated by proximal-gradient scheme above. Then, we have

$$\min_{i=0,1,\ldots,k} \|G_{\alpha}(x^i)\|_2^2 \leq \frac{F(x^0) - F(x^*)}{M(k+1)},$$

where $M := \alpha^2 \left(\frac{1}{\alpha} - \frac{L_f}{2} \right)$.

- When $\alpha = \frac{1}{L_f}$, $M = \frac{1}{2L_f}$.

- The worst-case complexity to reach $\min_{i=0,1,\ldots,k} \|G_{\alpha}(x^i)\|_2^2 \leq \varepsilon$ is $O \left(\frac{1}{\varepsilon} \right)$.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Slide 26 / 71
Stochastic convex composite minimization

Problem (Mathematical formulation)

Consider the following composite convex minimization problem:

\[
F^* = \min_{x \in \mathbb{R}^p} \left\{ F(x) := \mathbb{E}_\theta [F(x, \theta)] := \mathbb{E}_\theta [f(x, \theta) + g(x, \theta)] \right\}
\]

- \(\theta \) is a random vector whose probability distribution is supported on set \(\Theta \).
- The solution set \(S^* := \{ x^* \in \text{dom} (F) : F(x^*) = F^* \} \) is nonempty.
- **Oracles:** (sub)gradient of \(f(\cdot, \theta) \), \(\nabla f(x, \theta) \), and stochastic prox operator of \(g(\cdot, \theta) \), \(\text{prox}_{g(\cdot, \theta)}(x) \).

Remark

- In this setting, we replace \(\nabla f(\cdot) \) with its stochastic estimates.
- It is possible to replace \(\text{prox}_{g(\cdot)} \) with its stochastic estimate (advanced material).
Stochastic proximal gradient method

Definitions:
- \(\text{prox}_{\lambda g(\cdot, \theta)} := \arg \min_{y \in \mathbb{R}^p} \left\{ g(y, \theta) + \frac{1}{2\lambda} \|y - x\|^2 \right\} \)
- \(\{\theta_k\}_{k=0,1,...} \): sequence of independent random variables.
- \(G(x^k, \theta_k) \in \partial f(x^k, \theta_k) \): an unbiased estimate of the deterministic (sub)gradient:
 \[\mathbb{E}[G(x^k, \theta_k)] \in \partial f(x^k). \]
Stochastic proximal gradient method

Stochastic proximal gradient method (SPG)

1. Choose \(x^0 \in \mathbb{R}^p \) and \((\gamma_k)_{k \in \mathbb{N}} \in]0, +\infty[^\mathbb{N} \).
2. For \(k = 0, 1, \ldots \) perform:

\[
x^{k+1} = \text{prox}_{\gamma_k g(\cdot, \theta)} (x^k - \gamma_k G(x^k, \theta_k)).
\]

Definitions:

- \(\text{prox}_{\lambda g(\cdot, \theta)} := \arg\min_{y \in \mathbb{R}^p} \left\{ g(y, \theta) + \frac{1}{2\lambda} \| y - x \|^2 \right\} \)

- \(\{\theta_k\}_{k=0,1,\ldots} \): sequence of independent random variables.

- \(G(x^k, \theta_k) \in \partial f(x^k, \theta_k) \): an unbiased estimate of the deterministic (sub)gradient:

\[
\mathbb{E}[G(x^k, \theta_k)] \in \partial f(x^k).
\]

Remark

Cost of computing \(G(x^k, \theta_k) \) is usually much cheaper than \(\nabla f(x^k) \).
Convergence analysis

Assumptions for the problem setting

- \(f(\cdot, \theta) \) and \(g(\cdot, \theta) \) are convex functions in the first argument, \(g \) is proximally-tractable.
- (Sub)gradients of \(F \) satisfy stochastic bounded gradient condition: \(\exists C \geq 0, B \geq 0 \) such that
 \[
 \mathbb{E}_\theta[\|\partial F(x, \theta)\|^2] \leq B^2 + C(F(x) - F(x^*)).
 \]
- \(\mathbb{E}[\|x^t - x^*\|^2] \leq R^2 \) for all \(t \geq 0 \).

Implications of the assumptions

- None of the above assumptions enforce that \(f \) is smooth.
- Stochastic bounded gradient condition holds with \(C = 0 \) when both \(f(\cdot, \theta) \) and \(g(\cdot, \theta) \) are Lipschitz continuous.
- The same condition holds when \(f(\cdot, \theta) \) is \(L_f \)-smooth and \(g(\cdot, \theta) \) is Lipschitz continuous.
- However, for the upcoming theorem, we will take \(C > 0 \), which rules out the case when both functions are only Lipschitz continuous.
Convergence analysis

Assumptions for the problem setting

- $f(\cdot, \theta)$ and $g(\cdot, \theta)$ are convex functions in the first argument, g is proximally-tractable.
- (Sub)gradients of F satisfy stochastic bounded gradient condition: $\exists C \geq 0, B \geq 0$ such that
 \[
 \mathbb{E}_\theta[\|\partial F(x, \theta)\|^2] \leq B^2 + C(F(x) - F(x^*)) .
 \]
- $\mathbb{E}[\|x^t - x^*\|^2] \leq R^2$ for all $t \geq 0$.

Theorem (Ergodic convergence [12])

- Assume the above assumptions hold with $C > 0$.
- Let the sequence $\{x^k\}_{k \geq 0}$ be generated by SPG.
- Set $\gamma_k = 1/(C\sqrt{k})$

Conclusion:

- Define $\bar{x}^k = \frac{1}{k} \sum_{i=0}^{k-1} x^i$, then
 \[
 \mathbb{E}[F(\bar{x}^k) - F(x^*)] \leq \frac{1}{\sqrt{k}} \left(R^2 C + \frac{B^2}{C} \right), \quad \forall k \geq 1.
 \]
Revisiting a special composite structure

A basic constrained problem setting

\[f^* := \min_{x \in \mathbb{R}^p} \left\{ f(x) + \delta_{\mathcal{X}}(x) \right\} := \min_{x \in \mathbb{R}^p} \left\{ f(x) : x \in \mathcal{X} \right\}, \]

(7)

Assumptions

- \(\mathcal{X} \) is nonempty, convex and compact (closed and bounded) where \(\delta_{\mathcal{X}} \) is its indicator function.
- \(f \in \mathcal{F}_{1,1}^L(\mathbb{R}^p) \) (i.e., convex with Lipschitz gradient).

Recall proximal gradient algorithm

<table>
<thead>
<tr>
<th>Basic proximal-gradient scheme (ISTA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose (x^0 \in \text{dom}(F)) arbitrarily as a starting point.</td>
</tr>
<tr>
<td>2. For (k = 0, 1, \ldots), generate a sequence ({x^k}_{k \geq 0}) as:</td>
</tr>
<tr>
<td>[x^{k+1} := \text{prox}_{\alpha g} \left(x^k - \alpha \nabla f(x^k) \right)]</td>
</tr>
<tr>
<td>where (\alpha := 1/L).</td>
</tr>
</tbody>
</table>

- Prox-operator of indicator of \(\mathcal{X} \) is projection onto \(\mathcal{X} \) \(\implies \) ensures feasibility

How else can we ensure feasibility?
Frank-Wolfe’s approach - I

\[f^* := \min_{x \in \mathbb{R}^p} \left\{ f(x) : x \in \mathcal{X} \right\} , \]

Conditional gradient method (CGM, see [10] for review)

A plausible strategy which dates back to 1956 [6]. At iteration \(k \):

1. Consider the linear approximation of \(f \) at \(x^k \)

\[\phi_k(x) := f(x^k) + \nabla f(x^k)^T (x - x^k) \]

2. Minimize this approximation within constraint set

\[\hat{x}^k \in \min_{x \in \mathcal{X}} \phi_k(x) = \min_{x \in \mathcal{X}} \nabla f(x^k)^T x \]

3. Take a step towards \(\hat{x}^k \) with step-size \(\gamma_k \in [0, 1] \)

\[x^{k+1} = x^k + \gamma_k (\hat{x}^k - x^k) \]

\(x^{k+1} \) is feasible since it is convex combination of two other feasible points.
Frank-Wolfe’s approach - II

\[f^* := \min_{x \in \mathbb{R}^p} \left\{ f(x) : x \in \mathcal{X} \right\} \]

\[x^k := \text{arg min}_{x \in \mathcal{X}} \nabla f(x^k)^T x \]

Conditional gradient method (CGM)

1. Choose \(x^0 \in \mathcal{X} \).
2. For \(k = 0, 1, \ldots \) perform:

\[
\begin{align*}
\hat{x}^k &:= \text{arg min}_{x \in \mathcal{X}} \nabla f(x^k)^T x \\
\gamma_k &:= \frac{2}{k+2} \\
x^{k+1} &= (1 - \gamma_k)x^k + \gamma_k \hat{x}^k,
\end{align*}
\]

where \(\gamma_k := \frac{2}{k+2} \).
On the linear minimization oracle

\[f^* := \min_{x \in \mathbb{R}^p} \left\{ f(x) : x \in \mathcal{X} \right\} \]

Definition (Linear minimization oracle)

Let \(\mathcal{X} \) be a convex, closed and bounded set. Then, the linear minimization oracle of \(\mathcal{X} \) (\(\text{lmo}_\mathcal{X} \)) returns a vector \(\hat{x} \) such that

\[\text{lmo}_\mathcal{X}(x) := \hat{x} \in \arg \min_{y \in \mathcal{X}} x^T y \]

\((8) \)

▶ \(\text{lmo}_\mathcal{X} \) returns an extreme point of \(\mathcal{X} \).

▶ \(\text{lmo}_\mathcal{X} \) is arguably cheaper than projection.

▶ \(\text{lmo}_\mathcal{X} \) is not single valued, note \(\in \) in the definition.
Convergence guarantees of CGM

Problem setting

\[f^* := \min_{x \in \mathbb{R}^p} \left\{ f(x) : x \in \mathcal{X} \right\}, \]

Assumptions

- \(\mathcal{X} \) is nonempty, convex, closed and bounded.
- \(f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p) \) (i.e., convex with Lipschitz gradient).

Theorem

Under assumptions listed above, CGM with step size \(\gamma_k = \frac{2}{k+2} \) satisfies

\[f(x^k) - f(x^*) \leq \frac{4LD^2}{k+1} \]

where \(D_{\mathcal{X}} := \max_{x, y \in \mathcal{X}} \|x - y\|_2 \) is diameter of constraint set.
Convergence guarantees of CGM: A faster rate

Problem setting

\[f^* := \min_{x \in \mathbb{R}^p} \left\{ f(x) : x \in \mathcal{X} \right\}, \]

Assumptions

- \(\mathcal{X} \) is nonempty, \(\alpha \)-strongly convex, closed and bounded.
- \(f \in \mathcal{F}_{L,\mu}^{1,1}(\mathbb{R}^p) \) (i.e., strongly convex with Lipschitz gradient).

Definition (\(\alpha \)-strongly convex set) [7]

A convex set \(\mathcal{X} \subset \mathbb{R}^{p \times p} \) is \(\alpha \)-strongly convex with respect to \(\| \cdot \| \) if for any \(x, y \in \mathcal{X} \), any \(\gamma \in [0,1] \) and any vector \(z \in \mathbb{R}^{p \times p} \) such that \(\| z \| = 1 \), it holds that

\[\gamma x + (1 - \gamma) y + \gamma (1 - \gamma) \frac{\alpha}{2} \| x - y \|^2 z \in \mathcal{X} \]

More clearly, for any \(x, y \in \mathcal{X} \), the ball centered at \(\gamma x + (1 - \gamma) y \) with radius \(\gamma (1 - \gamma) \frac{\alpha}{2} \| x - y \|^2 \) is contained in \(\mathcal{X} \).
CGM for strongly convex objective + strongly convex set

<table>
<thead>
<tr>
<th>Conditional gradient method - CGM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose $x^0 \in X$.</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$ perform:</td>
</tr>
<tr>
<td>$\hat{x}^k := \arg \min_{x \in X} \nabla f(x^k)^T x$</td>
</tr>
<tr>
<td>$\gamma_k := \arg \min_{\gamma \in [0, 1]} \gamma \langle \hat{x}^k - x^k, \nabla f(x^k) \rangle + \gamma^2 \frac{L}{2} | \hat{x}^k - x^k |^2$</td>
</tr>
<tr>
<td>$x^{k+1} := (1 - \gamma_k)x^k + \gamma_k \hat{x}^k$,</td>
</tr>
</tbody>
</table>

Theorem ([7])

Under assumptions listed previously, CGM2 satisfies

$$f(x^k) - f(x^*) = O \left(\frac{1}{k^2} \right)$$ (10)
Example: lmo of nuclear-norm bal

Consider $\delta_{\mathcal{X}}$, the indicator of nuclear-norm ball $\mathcal{X} := \{ X : X \in \mathbb{R}^{p \times p}, \|X\|_* \leq \alpha \}$

lmo of nuclear-norm ball

\[
\text{lmo}_{\mathcal{X}}(X) := \hat{X} \in \arg \min_{Y \in \mathcal{X}} \langle Y, X \rangle
\]

This can be computed as follows:

- Compute top singular vectors of $X \implies (u_1, \sigma_1, v_1) = \text{svds}(X, 1)$.
- Form the rank-1 output $\implies X = -u_1 \alpha v_1^T$

We can efficiently approximate top singular vectors by power method!
Proximal gradient vs. Frank-Wolfe

Definitions:

- Here: $sv = \text{scalar-vector multiplication}$, $v+ = \text{vector addition}$.
- $R_0 := \max_{x^* \in S^*} \|x^0 - x^*\|$ is the maximum initial distance.
- $D_X := \max_{x,y \in X} \|x - y\|_2$ is diameter of constraint set X.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Proximal-gradient scheme</th>
<th>Frank-Wolfe method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>$\mathcal{O}\left(\frac{(L_f R_0^2)}{k}\right)$</td>
<td>$\mathcal{O}\left(\frac{(L_f D_X^2)}{k}\right)$</td>
</tr>
<tr>
<td>Complexity</td>
<td>$\mathcal{O}\left(\frac{R_0^2(L_f/\varepsilon)}{\varepsilon}\right)$</td>
<td>$\mathcal{O}\left(\frac{D_X^2(L_f/\varepsilon)}{\varepsilon}\right)$</td>
</tr>
<tr>
<td>Per iteration</td>
<td>1-gradient, 1-prox, 1-sv, 1-$v+$</td>
<td>1-gradient, 1-lmo, 2-sv, 1-$v+$</td>
</tr>
</tbody>
</table>

How do prox operator and lmo compare in practice?
An example with matrices

Problem Definition

\[\min_{X \in \mathbb{R}^{p \times p}} f(X) + g(X) \]

- Define \(g(X) = \delta_{\mathcal{X}}(X) \), where \(\mathcal{X} := \{ X : X \in \mathbb{R}^{p \times p}, \|X\|_* \leq \alpha \} \) is nuclear norm ball.
- This problem is equivalent to:

\[\min_{X \in \mathcal{X}} f(X) \]

Observations

- \(\text{prox}_g = \pi_{\mathcal{X}} \). Projection requires full SVD, \(O(p^3) \).
- lmo computes (approximately) top singular vectors, roughly in \(\approx O(p^2) \) with Lanczos algorithm.
Example: Phase retrieval

Phase retrieval

Aim: Recover signal $x^\dagger \in \mathbb{C}^p$ from the measurements $b \in \mathbb{R}^n$:

$$b_i = |\langle a_i, x^\dagger \rangle|^2 + \omega_i.$$

($a_i \in \mathbb{C}^p$ are known measurement vectors, ω_i models noise).

• Non-linear measurements \rightarrow non-convex maximum likelihood estimators.

PhaseLift [5]

Phase retrieval can be solved as a convex matrix completion problem, following a combination of

- semidefinite relaxation ($x^\dagger x^\dagger H = X^\dagger$)
- convex relaxation ($\text{rank} \rightarrow \| \cdot \|_*$)

albeit in terms of the lifted variable $X \in \mathbb{C}^{p \times p}$.
Problem formulation

We solve the following PhaseLift variant:

\[
 f^* := \min_{X \in \mathbb{C}^{p \times p}} \left\{ \frac{1}{2} \| A(X) - b \|_2^2 : \| X \|_* \leq \kappa, \ X \geq 0 \right\}.
\]

(11)

Experimental setup [18]

Coded diffraction pattern measurements, \(b = [b_1, \ldots, b_L] \) with \(L = 20 \) different masks

\[
 b_\ell = |\text{fft}(d_\ell^H \odot x^\ell)|^2
\]

\(\odot \) denotes Hadamard product; \(| \cdot |^2 \) applies element-wise

\(d_\ell \) are randomly generated octonary masks (distributions as proposed in [5])

\(\lambda^0 = 0^n; \quad \epsilon = 10^{-2}; \quad \kappa = \text{mean}(b). \)
Test with synthetic data: Prox vs sharp

→ Synthetic data: $x^h = \text{randn}(p, 1) + i \cdot \text{randn}(p, 1)$.

→ Stopping criteria: $\frac{\|x^h - x^k\|_2}{\|x^h\|_2} \leq 10^{-2}$.

→ Averaged over 10 Monte-Carlo iterations.

Note that the problem is $p \times p$ dimensional!
A basic constrained non-convex problem

Problem setting

\[f^* := \min_{x \in \mathbb{R}^p} \left\{ f(x) : x \in \mathcal{X} \right\}, \]

Assumptions

▶ \(\mathcal{X} \) is nonempty, convex, closed and bounded.
▶ \(f \) has \(L \)-Lipschitz continuous gradients, but it is non-convex.

Stationary point

Due to constraints, \(\| \nabla f(x^*) \| = 0 \) may not hold!

Frank-Wolfe gap: Following measure, known as FW-gap, generalizes the definition of stationary point for constrained problems:

\[g_{FW}(x) := \max_{y \in \mathcal{X}} (x - y)^T \nabla f(x) \]

▶ \(g_{FW}(x) \geq 0 \) for all \(x \in \mathcal{X} \).
▶ \(x \in \mathcal{X} \) is a stationary point if and only if \(g_{FW}(x) = 0 \).
CGM for non-convex problems

1. Choose $x^0 \in \mathcal{X}$, $K > 0$ total number of iterations.
2. For $k = 0, 1, \ldots, K - 1$ perform:

\[
\begin{aligned}
\hat{x}^k &:= \text{lmo}_{\mathcal{X}}(\nabla f(x^k)) \\
x^{k+1} &:= (1 - \gamma_k)x^k + \gamma_k \hat{x}^k,
\end{aligned}
\]

where $\gamma_k := \frac{1}{\sqrt{K+1}}$.

Theorem

Denote \bar{x} chosen uniformly random from $\{x^1, x^2, \ldots, x^K\}$. Then, CGM satisfies

\[
\min_{k=1,2,\ldots,K} g_{FW}(x^k) \leq \mathbb{E}[g_{FW}(\bar{x})] \leq \frac{1}{\sqrt{K}} \left(f(x^0) - f^* + \frac{LD^2}{2} \right).
\]

A basic constrained stochastic problem

Problem setting (Stochastic)

\[f^* := \min_{x \in \mathbb{R}^p} \left\{ \mathbb{E}[f(x, \theta)] : x \in \mathcal{X} \right\}, \quad (12) \]

Assumptions

- \(\theta \) is a random vector whose probability distribution is supported on set \(\Theta \)
- \(\mathcal{X} \) is nonempty, convex, closed and bounded.
- \(f(\cdot, \theta) \in \mathcal{F}^{1,1}_{L}(\mathbb{R}^p) \) for all \(\theta \) (i.e., convex with Lipschitz gradient).

Example (Finite-sum model)

\[\mathbb{E}[f(x, \theta)] = \frac{1}{n} \sum_{j=1}^{n} f_j(x) \]

- \(j = \theta \) is a drawn uniformly from \(\Theta = \{1, 2, \ldots, n\} \)
- \(f_j \in \mathcal{F}^{1,1}_{L}(\mathbb{R}^p) \) for all \(j \) (i.e., convex with Lipschitz gradient).
Stochastic conditional gradient method

Stochastic conditional gradient method (SFW)

1. Choose $x^0 \in \mathcal{X}$.
2. For $k = 0, 1, \ldots$ perform:

 \[
 \begin{align*}
 \hat{x}^k & := \text{lm}_{\mathcal{X}}(\tilde{\nabla} f(x^k, \theta_k)) \\
 x^{k+1} & := (1 - \gamma_k)x^k + \gamma_k \hat{x}^k,
 \end{align*}
 \]

 where $\gamma_k := \frac{2}{k+2}$, and $\tilde{\nabla} f$ is an unbiased estimator of ∇f.

Theorem [9]

Assume that the following variance condition holds

\[
\mathbb{E} \left\| \nabla f(x^k) - \tilde{\nabla} f(x^k, \theta_k) \right\|^2 \leq \left(\frac{L D}{k + 1} \right)^2. \tag{\star}
\]

Then, the iterates of SFW satisfies

\[
\mathbb{E}[f(x^k, \theta)] - f^* \leq \frac{4L D^2}{k + 1}.
\]

(\star) \rightarrow SFW requires decreasing variance!
Stochastic conditional gradient method

<table>
<thead>
<tr>
<th>Stochastic conditional gradient method (SFW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose $x^0 \in \mathcal{X}$.</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$ perform:</td>
</tr>
</tbody>
</table>
| \[
\begin{aligned}
\hat{x}^k &:= \text{lmo}_X(\tilde{\nabla} f(x^k, \theta_k)) \\
x^{k+1} &:= (1 - \gamma_k)x^k + \gamma_k \hat{x}^k,
\end{aligned}
\]
| where $\gamma_k := \frac{2}{k+2}$, and $\tilde{\nabla} f$ is an unbiased estimator of ∇f. |

Example (Finite-sum model)

\[
\mathbb{E}[f(x, \theta)] = \frac{1}{n} \sum_{j=1}^{n} f_j(x)
\]

Assume f_j is G-Lipschitz continuous for all j. Suppose that S_k is a random sampling (with replacement) from $\Theta = \{1, 2, \ldots, n\}$. Then,

\[
\tilde{\nabla} f(x^k, \theta_k) := \frac{1}{|S_k|} \sum_{j \in S_k} f_j(x^k) \implies \mathbb{E} \left\| \nabla f(x) - \tilde{\nabla} f(x, \theta_k) \right\|^2 \leq \frac{G^2}{|S_k|}.
\]

Hence, by choosing $|S_k| = \left(\frac{G(k+1)}{LD} \right)^2$ we satisfy the variance condition for SFW.
Wrap up!

- Monday is for trade-offs :)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch
Expanding on **prox operator and optimality condition**

Notes

- By definition, $g(y) + \frac{1}{2\lambda} \|y - x\|^2$ attains its minimum when $y = \text{prox}_{\lambda g}(x)$.
- One can see that $g(y) + \frac{1}{2\lambda} \|y - x\|^2$ is convex, and prox operator computes its minimizer over \mathbb{R}^p.
- As a result, subdifferential of $g(y) + \frac{1}{2\lambda} \|y - x\|^2$ at the minimizer ($y = \text{prox}_{\lambda g}(x)$) should include 0.
- Hence, $0 \in \partial g(\text{prox}_{\lambda g}(x)) + \frac{1}{\lambda} \left(\text{prox}_{\lambda g}(x) - x\right)$.

- After rearranging the above inclusion we obtain: $x \in \lambda \partial g(\text{prox}_{\lambda g}(x)) + \text{prox}_{\lambda g}(x)$
- We can rewrite the RHS as a single function: $\lambda \partial g(\text{prox}_{\lambda g}(x)) + \text{prox}_{\lambda g}(x) = (\lambda \partial g + \mathbb{I})(\text{prox}_{\lambda g}(x))$
- The inclusion becomes: $x \in (\lambda \partial g + \mathbb{I})(\text{prox}_{\lambda g}(x))$.

- Finally, we compute the inverse of $(\lambda \partial g + \mathbb{I})(\cdot)$ to conclude: $\text{prox}_{\lambda g}(x) = (\lambda \partial g + \mathbb{I})^{-1}(x)$.

- In the literature, $(\lambda \partial g + \mathbb{I})^{-1}$ is called the **resolvent of the subdifferential of g with parameter λ**.
- This is just a technical term that stands for **proximal operator of λg**, as we have defined in this course.
A short detour: Basic properties of prox-operator

Property (Basic properties of prox-operator)

1. prox$_g$(x) is well-defined and single-valued (i.e., the prox-operator (2) has a unique solution since $g(\cdot) + (1/2)\| \cdot - x \|^2_2$ is strongly convex).

2. Optimality condition:

 $x \in \text{prox}_g(x) + \partial g(\text{prox}_g(x)), \ x \in \mathbb{R}^p.$

3. x^* is a fixed point of prox$_g(\cdot)$:

 $0 \in \partial g(x^*) \iff x^* = \text{prox}_g(x^*).$

4. Nonexpansiveness:

 \[\|\text{prox}_g(x) - \text{prox}_g(\tilde{x})\|_2 \leq \|x - \tilde{x}\|_2, \ \forall x, \tilde{x} \in \mathbb{R}^p. \]

Note: An operator is called non-expansive if it is L-Lipschitz continuous with $L = 1$.
Adaptive Restart

It is possible the preserve $O(1/k^2)$ convergence guarantee!

One needs to slightly modify the algorithm as below.

Generalized fast proximal-gradient scheme

1. Choose $x^0 = x^{-1} \in \text{dom}(F)$ arbitrarily as a starting point.
2. Set $\theta_0 = \theta_{-1} = 1$, $\lambda := L_f^{-1}$
3. For $k = 0, 1, \ldots$, generate two sequences $\{x^k\}_{k \geq 0}$ and $\{y^k\}_{k \geq 0}$ as:

\[
\begin{align*}
 y^k &:= x^k + \theta_k (\theta_{k-1}^{-1} - 1)(x^k - x^{k-1}) \\
 x^{k+1} &:= \text{prox}_{\lambda g}(y^k - \lambda \nabla f(y^k)),
\end{align*}
\]

if restart test holds
\[
\begin{align*}
 \theta_{k-1} &= \theta_k = 1 \\
 y^k &= x^k \\
 x^{k+1} &:= \text{prox}_{\lambda g}(y^k - \lambda \nabla f(y^k))
\end{align*}
\]

\[
\theta_{k+1} = \frac{\sqrt{\theta_k^4 + 4\theta_k^2} - \theta_k^2}{2} < \frac{2}{k+3}
\]
Adaptive Restart: Guarantee

Theorem (Global complexity [8])

The sequence \(\{x^k\}_{k \geq 0} \) generated by the modified algorithm satisfies

\[
F(x^k) - F^* \leq \frac{2L \bar{f}}{(k + 2)^2} \left(R_0^2 + \sum_{k_i \leq k} \left(\|x^* - x_{k_i}^k\|^2_2 - \|x^* - z_{k_i}^k\|^2_2 \right) \right) \quad \forall k \geq 0.
\]

(14)

where \(R_0 := \min_{x^* \in S^*} \|x^0 - x^*\| \), \(z^k = x^{k-1} + \theta_{k-1}(x^k - x^{k-1}) \) and \(k_i, i = 1... \) are the iterations for which the restart test holds.

Various restarts tests that might coincide with \(\|x^* - x_{k_i}^k\|^2_2 \leq \|x^* - z_{k_i}^k\|^2_2 \)

- Exact non-monotonicity test: \(F(x^{k+1}) - F(x^k) > 0 \)
- Non-monotonicity test: \(\langle (L \bar{f}(y^{k-1} - x^k), x^{k+1} - \frac{1}{2}(x^k + y^{k-1}) \rangle > 0 \) (implies exact non-monotonicity and it is advantageous when function evaluations are expensive)
- Gradient-mapping based test: \(\langle (L_f(y^k - x^{k+1}), x^{k+1} - x^k \rangle > 0 \)
*Recall: Composite convex minimization

Problem (Unconstrained composite convex minimization)

\[F^* := \min_{x \in \mathbb{R}^p} \{ F(x) := f(x) + g(x) \} \] \hspace{1cm} (15)

- \(f \) and \(g \) are both proper, closed, and convex.
- \(\text{dom}(F) := \text{dom}(f) \cap \text{dom}(g) \neq \emptyset \) and \(-\infty < F^* < +\infty\).
- The solution set \(S^* := \{ x^* \in \text{dom}(F) : F(x^*) = F^* \} \) is nonempty.
*Recall: Composite convex minimization guarantees

Proximal gradient method (ISTA) vs. fast proximal gradient method (FISTA)

Assumptions, step sizes and convergence rates

Proximal gradient method:

\[f \in \mathcal{F}_L^{1,1}, \quad \alpha = \frac{1}{L} \]

\[F(x^k) - F(x^*) \leq \epsilon, \quad O\left(\frac{1}{\epsilon}\right). \]

Fast proximal gradient method:

\[f \in \mathcal{F}_L^{1,1}, \quad \alpha = \frac{1}{L} \]

\[F(x^k) - F(x^*) \leq \epsilon, \quad O\left(\frac{1}{\sqrt{\epsilon}}\right). \]
Recall: Composite convex minimization guarantees

Proximal gradient method (ISTA) vs. fast proximal gradient method (FISTA)

Assumptions, step sizes and convergence rates

Proximal gradient method:

\[
 f \in \mathcal{F}_L^{1,1}, \quad \alpha = \frac{1}{L} \quad \Rightarrow \quad F(x^k) - F(x^*) \leq \epsilon, \quad O\left(\frac{1}{\epsilon}\right).
\]

Fast proximal gradient method:

\[
 f \in \mathcal{F}_L^{1,1}, \quad \alpha = \frac{1}{L} \quad \Rightarrow \quad F(x^k) - F(x^*) \leq \epsilon, \quad O\left(\frac{1}{\sqrt{\epsilon}}\right).
\]

- We require \(\alpha_k \) to be a function of \(L \).
- It may not be possible to know exactly the Lipschitz constant. Line-search?
- Adaptation to local geometry \(\rightarrow \) may lead to larger steps.
How can we better adapt to the local geometry?

Non-adaptive:

$$f(x) = f(x^k) + r f(x^k) + L_k^2 x_k x_k^T + L^2 x_k x_k$$

L is a global worst-case constant

$$\| \nabla f(x) - \nabla f(y) \| \leq L \| y - x \|$$

L is a global worst-case constant

$$x^{k+1} = \arg \min_x \left\{ f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \| x - x^k \|_2^2 \right\}$$
How can we better adapt to the local geometry?

Line-search:

\[x^{k+1} = \arg \min_x \left\{ f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L_k}{2} \| x - x^k \|^2 \right\} \]

\[\| \nabla f(x) - \nabla f(y) \| \leq L \| y - x \| \]

L is a global worst-case constant

Local quadratic upper bound

\[Q_{L_k}(x, x^k) \]

f(x)

\[f(x) \leq f(x^k) + \nabla f(x^k)^T (x - x^k)^2 + \frac{L_k}{2} \| x - x^k \|^2 \]

applies only locally
How can we better adapt to the local geometry?

Variable metric:

\[
\nabla f(x) - \nabla f(y) \leq L\|y - x\|
\]

L is a global worst-case constant
*The idea of the proximal-Newton method

Assumptions A.2
Assume that $f \in \mathcal{F}^{2,1}_{L,\mu}(\mathbb{R}^p)$ and $g \in \mathcal{F}_{\text{prox}}(\mathbb{R}^p)$.

*Proximal-Newton update

- Similar to classical newton, proximal-newton suggests the following update scheme using second order Taylor series expansion near x_k.

$$
x^{k+1} := \arg \min_{x \in \mathbb{R}^p} \left\{ \frac{1}{2} (x - x^k)^T \nabla^2 f(x^k)(x - x^k) + \nabla f(x^k)^T (x - x^k) + g(x) \right\}.
$$

2nd-order Taylor expansion near x^k
The proximal-Newton-type algorithm

Proximal-Newton algorithm (PNA)

1. Given \(x^0 \in \mathbb{R}^p \) as a starting point.
2. For \(k = 0, 1, \cdots \), perform the following steps:
 2.1. Evaluate an SDP matrix \(H_k \approx \nabla^2 f(x^k) \) and \(\nabla f(x^k) \).
 2.2. Compute \(d_k := \text{prox}_{H_k^{-1} g} \left(x^k - H_k^{-1} \nabla f(x^k) \right) - x^k \).
 2.3. Update \(x^{k+1} := x^k + \alpha_k d^k \).
The proximal-Newton-type algorithm

Proximal-Newton algorithm (PNA)

1. Given $x^0 \in \mathbb{R}^p$ as a starting point.
2. For $k = 0, 1, \cdots$, perform the following steps:
 2.1. Evaluate an SDP matrix $H_k \approx \nabla^2 f(x^k)$ and $\nabla f(x^k)$.
 2.2. Compute $d^k := \text{prox}_{H_k^{-1}g} \left(x^k - H_k^{-1} \nabla f(x^k) \right) - x^k$.
 2.3. Update $x^{k+1} := x^k + \alpha_k d^k$.

Remark

- $H_k \equiv \nabla^2 f(x^k) \implies$ proximal-Newton algorithm.
- $H_k \approx \nabla^2 f(x^k) \implies$ proximal-quasi-Newton algorithm.
- A generalized prox-operator: $\text{prox}_{H_k^{-1}g} \left(x^k + H_k^{-1} \nabla f(x^k) \right)$.
*Convergence analysis

Theorem (Global convergence [11])

Assume generalized-prox subproblem is solved exactly for the algorithm and there exists $\mu > 0$ such that $H_k \succeq \mu I$ for all $k \geq 0$. Then;

$$\{x^k\}_{k \geq 0} \text{ globally converges to a solution } x^* \text{ of (15)}. $$
Convergence analysis

Theorem (Global convergence [11])
Assume generalized-prox subproblem is solved exactly for the algorithm and there exists $\mu > 0$ such that $H_k \succeq \mu I$ for all $k \geq 0$. Then;

$$\{x^k\}_{k \geq 0} \text{ globally converges to a solution } x^* \text{ of (15).}$$

Theorem (Local convergence [11])
Assume generalized-prox subproblem is solved exactly for the algorithm there exists $0 < \mu \leq L_2 < +\infty$ such that $\mu I \preceq H_k \preceq L_2 I$ for all sufficiently large k. Then;

- If $H_k \equiv \nabla^2 f(x^k)$, then $\alpha_k = 1$ for k sufficiently large (full-step).
- If $H_k \equiv \nabla^2 f(x^k)$, then $\{x^k\}$ locally converges to x^* at a quadratic rate.
- If H_k satisfies the Dennis-Moré condition:

$$\lim_{k \to +\infty} \frac{\|(H_k - \nabla^2 f(x^*)) (x^{k+1} - x^k)\|}{\|x^{k+1} - x^k\|} = 0,$$ \hspace{1cm} (17)

then $\{x^k\}$ locally converges to x^* at a super linear rate.
How to compute the approximation H_k?

How to update H_k?

Matrix H_k can be updated by using low-rank updates.

- **BFGS update**: maintain the Dennis-Moré condition and $H_k \succ 0$.

$$H_{k+1} := H_k + \frac{y_k y_k^T}{s_k^T y_k} - \frac{H_k s_k s_k^T H_k}{s_k^T H_k s_k}, \quad H_0 := \gamma I, \quad (\gamma > 0).$$

where $y_k := \nabla f(x^{k+1}) - \nabla f(x^k)$ and $s_k := x^{k+1} - x^k$.

- **Diagonal+Rank-1 [4]**: computing PN direction d^k is in polynomial time, but it does not maintain the Dennis-Moré condition:

$$H_k := D_k + u_k u_k^T, \quad u_k := (s_k - H_0 y_k) / \sqrt{(s_k - H_0 y_k)^T y_k},$$

where D_k is a positive diagonal matrix.
Pros and cons

Pros

- **Fast local convergence rate** (super-linear or quadratic)
- **Numerical robustness** under the inexactness/noise ([11]).
- Well-suited for problems with many data points but few parameters. For example,

\[
F^* := \min_{x \in \mathbb{R}^p} \left\{ \sum_{j=1}^{n} \ell_j(a_j^T x + b_j) + g(x) \right\},
\]

where \(\ell_j \) is twice continuously differentiable and convex, \(g \in \mathcal{F}_{\text{prox}}, p \ll n. \)
Pros and cons

Pros

- Fast local convergence rate (super-linear or quadratic)
- Numerical robustness under the inexactness/noise ([11]).
- Well-suited for problems with many data points but few parameters. For example,

\[
F^* := \min_{x \in \mathbb{R}^p} \left\{ \sum_{j=1}^{n} \ell_j(a_j^T x + b_j) + g(x) \right\},
\]

where \(\ell_j\) is twice continuously differentiable and convex, \(g \in \mathcal{F}_{\text{prox}}\), \(p \ll n\).

Cons

- Expensive iteration compared to proximal-gradient methods.
- Global convergence rate may be worse than accelerated proximal-gradient methods.
- Requires a good initial point to get fast local convergence.
- Requires strict conditions for global/local convergence analysis.
Example 1: Sparse logistic regression

Problem (Sparse logistic regression)

*Given a sample vector \(a \in \mathbb{R}^p \) and a binary class label vector \(b \in \{-1, +1\}^n \). The conditional probability of a label \(b \) given \(a \) is defined as:

\[
P(b|a, x, \mu) = \frac{1}{1 + e^{-b(x^T a + \mu)}},
\]

where \(x \in \mathbb{R}^p \) is a weight vector, \(\mu \) is called the intercept.*

Goal: Find a sparse-weight vector \(x \) via the maximum likelihood principle.

Optimization formulation

\[
\min_{x \in \mathbb{R}^p} \left\{ \frac{1}{n} \sum_{i=1}^{n} L(b_i (a_i^T x + \mu)) + \rho \|x\|_1 \right\},
\]

where \(a_i \) is the \(i \)-th row of data matrix \(A \) in \(\mathbb{R}^{n \times p} \), \(\rho > 0 \) is a regularization parameter, and \(\ell \) is the logistic loss function \(\ell(\tau) := \log(1 + e^{-\tau}) \).
Example: Sparse logistic regression

Real data

- Real data: w2a with \(n = 3470 \) data points, \(p = 300 \) features

Parameters

- Tolerance \(10^{-6} \).
- L-BFGS memory \(m = 50 \).
- Ground truth: Get a high accuracy approximation of \(x^* \) and \(f^* \) by TFOCS with tolerance \(10^{-12} \).
Example: Sparse logistic regression—Numerical results

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch

Example: Sparse logistic regression—Numerical results
*Example 2: ℓ_1-regularized least squares

Problem (ℓ_1-regularized least squares)

Given $A \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^n$, solve:

$$F^* := \min_{x \in \mathbb{R}^p} \left\{ F(x) := \frac{1}{2} \|Ax - b\|_2^2 + \rho \|x\|_1 \right\},$$

where $\rho > 0$ is a regularization parameter.

Complexity per iterations

- Evaluating $\nabla f(x^k) = A^T(Ax^k - b)$ requires one Ax and one $A^T y$.
- One soft-thresholding operator $\text{prox}_\lambda g(x) = \text{sign}(x) \otimes \max\{|x| - \rho, 0\}$.
- **Optional**: Evaluating $L = \|A^T A\|$ (spectral norm) - via power iterations (e.g., 20 iterations, each iteration requires one Ax and one $A^T y$).

Synthetic data generation

- $A := \text{randn}(n, p)$ - standard Gaussian $\mathcal{N}(0, I)$.
- x^* is a s-sparse vector generated randomly.
- $b := Ax^* + \mathcal{N}(0, 10^{-3})$.
*Example 2: ℓ_1-regularized least squares - Numerical results - Trial 1

Parameters: $n = 750, p = 2000, s = 200, \rho = 1$
Example 2: ℓ_1-regularized least squares - Numerical results - Trial 2

Parameters: $n = 750, p = 2000, s = 200, \rho = 1$
References

A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

A quasi-newton proximal splitting method.

Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming.
References II

An algorithm for quadratic programming.

Faster rates for the frank-wolfe method over strongly-convex sets.

Monotonicity and restart in fast gradient methods.

Variance-reduced and projection-free stochastic optimization.

Revisiting Frank-Wolfe: Projection-free sparse convex optimization.
References III

Proximal newton-type methods for convex optimization.

[12] Ion Necoara.

Introductory lectures on convex optimization: A basic course, volume 87.

Proximal algorithms.
[16] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola.
Stochastic frank-wolfe methods for nonconvex optimization.

Monotone operators and the proximal point algorithm.

Scalable convex methods for phase retrieval.