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Recall sparse regression in generalized linear models (GLMs)

Problem (Sparse regression in GLM)
Our goal is to estimate x\ ∈ Rp given {bi}ni=1 and {ai}ni=1,
knowing that the likelihood function at yi given ai and x\ is given
by L(〈ai,x\〉, bi), and that x\ is sparse.

b A x\ w

Optimization formulation

min
x∈Rp

{
−

n∑
i=1

logL(〈ai,x\〉, bi)︸                               ︷︷                               ︸
f(x)

+ ρn‖x‖1︸    ︷︷    ︸
g(x)

}

where ρn > 0 is a parameter which controls the strength of sparsity regularization.

Theorem (cf. [13] for details)
Under some technical conditions, there exists {ρi}∞i=1 such that with high probability,∥∥x? − x\

∥∥2
2

= O
(
s log p
n

)
, supp x? = supp x\.

Recall ML:
∥∥xML − x\

∥∥2

2
= O (p/n).
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Composite convex minimization

Problem (Composite convex minimization)

F ? := min
x∈Rp

{F (x) := f(x) + g(x)} (1)

I f and g are both proper, closed, and convex.
I dom(F ) := dom(f) ∩ dom(g) , ∅ and −∞ < F ? < +∞.
I The solution set S? := {x? ∈ dom(F ) : F (x?) = F ?} is nonempty.

Remarks: ◦ Without loss of generality, f is smooth and g is non-smooth in the sequel.

◦ By Moreau-Rockafellar Theorem, we have ∂F = ∂(f + g) = ∂f + ∂g = ∇f + ∂g.

◦ Subgradient method attains a O
(
1/
√
T
)
rate.

◦ Without g, accelerated gradient method attains a O
(
1/T 2

)
rate.

Can we design algorithms that achieve a faster convergence rate for composite convex minimization?
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Designing algorithms for finding a solution x?

Quadratic majorizer for f
When f has L-Lipschitz continuous gradient, we have, ∀x,y ∈ Rp

f(x) ≤ f(y) +∇f(y)T (x− y) +
L

2
‖x− y‖22

Quadratic majorizer for f + g

When f has L-Lipschitz continuous gradient, we have, ∀x,y ∈ Rp

f(x) + g(x) ≤ f(y) +∇f(y)T (x− y) +
L

2
‖x− y‖22 + g(x) B PL(x,y)

Majorization-minimization for f + g

xk+1 = arg min
x∈Rp

PL(x,xk)

= arg min
x∈Rp

{
g(x) +

L

2

∥∥∥x−
(

xk −
1
L
∇f(xk)

)∥∥∥2
}
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Geometric illustration

xxk+1xk

SL(xk)

x?

xk

PL(x,xk) := f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2 + g(x)F (x)

F (x) = f(x) + g(x)

f(xk) + rf(xk)T (x � xk) + g(x)

Thursday, June 12, 14
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A short detour: Proximal-point operators

Definition (Proximal operator [17])
Let g ∈ F(Rp), x ∈ Rp and λ ≥ 0. The proximal operator (or prox-operator) of g is defined as:

proxλg(x) ≡ arg min
y∈Rp

{
g(y) +

1
2λ
‖y− x‖22

}
. (2)

Remarks: ◦ The proximal operator of 1
L
g evaluated at

(
xk − 1

L
∇f(xk)

)
is given by

prox 1
L
g

(
xk −

1
L
∇f(xk)

)
= arg min

x∈Rp

{
g(x) +

L

2

∥∥∥x−
(

xk −
1
L
∇f(xk)

)∥∥∥2
}
.

◦ This prox-operator minimizes the majorizing bound:

f(x) + g(x) ≤ f(xk) +∇f(xk)T (x− xk) +
L

2
‖x− xk‖22 + g(x)

◦ Rule of thumb: Replace gradient steps with proximal gradient steps!
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Tractable prox-operators

Processing non-smooth terms in (15)

I We handle the nonsmooth term g in (15) using its proximal operator.
I However, computing proximal operator proxg of a general convex function g

proxg(x) ≡ arg min
y∈Rp

{
g(y) + (1/2)‖y− x‖22

}
.

can be computationally demanding.

Definition (Tractable proximity)

I Given g ∈ F(Rp). We say that g is proximally tractable if proxg defined by (2) can be computed efficiently.
I ”efficiently" = {closed form solution, low-cost computation, polynomial time}.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 71



Tractable prox-operators

Example

I For separable functions, the prox-operator can be efficient. When g(x) := ‖x‖1 =
∑n

i=1 |xi|, we have

proxλg(x) = sign(x)⊗max{|x| − λ, 0}.

I Sometimes, we can compute the prox-operator via basic algebra. When g(x) := (1/2)‖Ax− b‖22, we have

proxλg(x) =
(
I+ λATA

)−1(
x + λAb

)
.

I For the indicator functions of simple sets, e.g., g(x) := δX (x), the prox-operator is the projection operator

proxλg(x) := πX (x),

where πX (x) denotes the projection of x onto X . For instance, when X = {x : ‖x‖1 ≤ λ}, the projection
can be obtained efficiently.
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Computational efficiency - Example

Proximal operator of quadratic function
The proximal operator of a quadratic function g(x) := 1

2‖Ax− b‖22 is defined as

proxλg(x) := arg min
y∈Rp

{1
2
‖Ay− b‖22 +

1
2λ
‖y− x‖22

}
. (3)

How do we compute proxλg(x)?

The derivation: ◦ The optimality condition implies that the solution of (3) should satisfy the following:

AT (Ay− b) + λ−1(y− x) = 0.

◦ Setting y = proxλg(x), we obtain

proxλg(x) =
(
I+ λATA

)−1
(x + λAb)

Remarks: ◦ The Woodbury matrix identity can be useful: (I+ λATA)−1 = I−AT (λ−1I+ AAT )−1A.
◦ When ATA is efficiently diagonalizable, i.e., ATA := UΛUT , such that
I U is a unitary matrix, i.e., UUT = UTU = I, and Λ is a diagonal matrix.
I proxλg(x) = U (I+ λΛ)−1 UT (x + λAb).
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A non-exhaustive list of proximal tractability functions

Name Function Proximal operator Complexity
`1-norm f(x) := ‖x‖1 proxλf (x) = sign(x)⊗ [|x| − λ]+ O(p)
`2-norm f(x) := ‖x‖2 proxλf (x) = [1− λ/‖x‖2]+x O(p)
Support function f(x) := maxy∈C xT y proxλf (x) = x− λπC(x)
Box indicator f(x) := δ[a,b](x) proxλf (x) = π[a,b](x) O(p)
Positive semidefinite
cone indicator

f(X) := δ
S
p
+

(X) proxλf (X) = U[Σ]+UT , where X =
UΣUT

O(p3)

Hyperplane indicator f(x) := δX (x), X :=
{x : aT x = b}

proxλf (x) = πX (x) = x +(
b−aT x
‖a‖2

)
a

O(p)

Simplex indicator f(x) = δX (x),X :=
{x : x ≥ 0, 1T x = 1}

proxλf (x) = (x−ν1) for some ν ∈ R,
which can be efficiently calculated

Õ(p)

Convex quadratic f(x) := (1/2)xTQx +
qT x

proxλf (x) = (λI + Q)−1x O(p log p)→
O(p3)

Square `2-norm f(x) := (1/2)‖x‖2
2 proxλf (x) = (1/(1 + λ))x O(p)

log-function f(x) := − log(x) proxλf (x) = ((x2 + 4λ)1/2 + x)/2 O(1)
log det-function f(x) := − log det(X) proxλf (X) is the log-function prox ap-

plied to the individual eigenvalues of X
O(p3)

Here: [x]+ := max{0,x} and δX is the indicator function of the convex set X , sign is the sign function, Sp+ is the cone of symmetric positive
semidefinite matrices.

For more functions, see [1, 15].
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Solution methods

Composite convex minimization

F ? := min
x∈Rp

{
F (x) := f(x) + g(x)

}
. (4)

Choice of numerical solution methods
◦ Solve (4) = Find xk ∈ Rp such that

F (xk)− F ? ≤ ε

for a given tolerance ε > 0.

◦ Oracles: We can use one of the following configurations (oracles):
1. ∂f(·) and ∂g(·) at any point x ∈ Rp.
2. ∇f(·) and proxλg(·) at any point x ∈ Rp.
3. proxλf and proxλg(·) at any point x ∈ Rp.

4. ∇f(·), inverse of ∇2f(·) and proxλg(·) at any point x ∈ Rp.

Using different oracle leads to different types of algorithms
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Proximal-gradient algorithm

Basic proximal-gradient scheme (ISTA)
1. Choose x0 ∈ dom (F ) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1 := proxαg
(
xk − α∇f(xk)

)
,

where α := 1
L
.

Theorem (Convergence of ISTA [3])
Let {xk} be generated by ISTA. Then:

F (xk)− F ? ≤
Lf‖x0 − x?‖22

2(k + 1)

The worst-case complexity to reach F (xk)− F ? ≤ ε of (ISTA) is O
(
LfR

2
0

ε

)
, where R0 := max

x?∈S?
‖x0 − x?‖2.

◦ Oracles: proxαg(·) and ∇f(·).

◦ Compared to the subgradient gradient method, the rate improves at the cost of prox-computation.
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Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)
1. Choose x0 ∈ dom (F ) arbitrarily as a starting point.
2. Set y0 := x0 and t0 := 1, α := L−1.
3. For k = 0, 1, . . ., generate two sequences {xk}k≥0 and {yk}k≥0 as:

xk+1 := proxαg
(
yk − α∇f(yk)

)
,

tk+1 := (1 +
√

4t2
k

+ 1)/2,
yk+1 := xk+1 + tk−1

tk+1
(xk+1 − xk).

Remark: From O
(
LfR

2
0

ε

)
to O

(
R0

√
Lf
ε

)
iterations at almost no additional cost!.

Complexity per iteration

I One gradient ∇f(yk) and one prox-operator of g;
I 8 arithmetic operations for tk+1 and γk+1;
I 2 more vector additions, and one scalar-vector multiplication.

The cost per iteration is almost the same as in gradient scheme if proximal operator of g is efficient.
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Example 1: `1-regularized least squares

Problem (`1-regularized least squares)
Given A ∈ Rn×p and b ∈ Rn, solve:

F ? := min
x∈Rp

{
F (x) :=

1
2
‖Ax− b‖22 + λ‖x‖1

}
, (5)

where λ > 0 is a regularization parameter.

Complexity per iterations
I Evaluating ∇f(xk) = AT (Axk − b) requires one Ax and one ATy.
I One soft-thresholding operator proxλg(x) = sign(x)⊗max{|x| − λ, 0}.
I Optional: Evaluating L = ‖ATA‖ (spectral norm) - via power iterations

Synthetic data generation
I A := randn(n, p) - standard Gaussian N (0, I).
I x? is a k-sparse vector generated randomly.
I b := Ax? +N (0, 10−3).
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Example 1: Theoretical bounds vs practical performance

Theoretical bounds
We have the following guarantees for FISTA := 2LfR2

0
(k+2)2 and for ISTA := LfR

2
0

2(k+2) .
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F
⋆
in

lo
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al
e

 

 

Theoretical bound
ISTA
FISTA

Remarks: ◦ `1-regularized least squares formulation has restricted strong convexity.
◦ The proximal-gradient method can automatically exploit this structure.
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Example 2: Sparse logistic regression

Problem (Sparse logistic regression)
Given A ∈ Rn×p and b ∈ {−1,+1}n, solve:

F ? := min
x,β

{
F (x) :=

1
n

n∑
j=1

log
(
1 + exp

(
−bj(aTj x + β)

))
+ ρ‖x‖1

}
.

Real data
I Real data: w8a with n = 49′749 data points, p = 300 features
I Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters
I ρ = 10−4.
I Number of iterations 5000, tolerance 10−7.
I Ground truth: Solve problem up to 10−9 accuracy by TFOCS to get a high accuracy approximation of x?

and F ?.
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Example 2: Sparse logistic regression - numerical results
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ISTA
Line Search ISTA
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FISTA with Restart
Line Search FISTA
Line Search FISTA with Restart

ISTA LS-ISTA FISTA FISTA-R LS-FISTA LS-FISTA-R

Number of iterations 5000 5000 4046 2423 447 317

CPU time (s) 26.975 61.506 21.859 18.444 10.683 6.228

Solution error (×10−7) 29370 2.774 1.000 0.998 0.961 0.985
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When f is strongly convex: Algorithms

Proximal-gradient scheme (ISTAµ)
1. Given x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1:=proxαkg
(
xk−αk∇f(xk)

)
,

where αk := 2/(Lf + µ) is the optimal step-size.

Fast proximal-gradient scheme (FISTAµ)
1. Given x0 ∈ Rp as a starting point. Set y0 := x0.
2. For k = 0, 1, · · · , generate sequences {xk}k≥0 and {yk}k≥0 as:xk+1 := proxαkg

(
yk − αk∇f(yk)

)
,

yk+1 := xk+1 +
( √

cf−1
√
cf+1

)
(xk+1 − xk),

where cf := Lf/µ and αk := L−1
f

is the optimal step-size.
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When f is strongly convex: Convergence

Assumption
f is strongly convex with parameter µ > 0, i.e., f ∈ F1,1

L,µ(Rp).

Condition number: cf := Lf
µ
≥ 0.

Theorem (ISTAµ [14])

F (xk)−F ? ≤ Lf
2

(
cf−1
cf+1

)2k
‖x0−x?‖22.

Convergence rate: Linear with contraction factor: ω :=
(
cf−1
cf+1

)2
=
(
Lf−µ
Lf+µ

)2
.

Theorem (FISTAµ [14])

F (xk)− F ? ≤ Lf+µ
2

(
1−

√
µ
Lf

)k
‖x0 − x?‖22.

Convergence rate: Linear with contraction factor: ωf =
√
Lf−

√
µ√

Lf
< ω.
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Summary of the worst-case complexities

Comparison
Complexity Proximal-gradient scheme Fast proximal-gradient

scheme
Complexity [µ = 0] O

(
R2

0(Lf/ε)
)

O
(
R0
√
Lf/ε

)
Per iteration 1-gradient, 1-prox, 1-sv, 1-

v+
1-gradient, 1-prox, 2-sv, 3-
v+

Complexity [µ > 0] O
(
κ log(ε−1)

)
O
(√

κ log(ε−1)
)

Per iteration 1-gradient, 1-prox, 1-sv, 1-
v+

1-gradient, 1-prox, 1-sv, 2-
v+

Here: sv = scalar-vector multiplication, v+=vector addition.
R0 := max

x?∈S?
‖x0 − x?‖ and κ = Lf/µf is the condition number.

Need alternatives when
I computing ∇f(x) is much costlier than computing proxg

Software
TFOCS is a good software package to learn about first order methods.

http://cvxr.com/tfocs/
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Composite minimization: Non-convex case

Problem (Unconstrained composite minimization)

F ? := min
x∈Rp

{F (x) := f(x) + g(x)} (CM)

I g: Rp → R ∪ {∞} is proper, closed, convex, and (possibly) nonsmooth.
I f : Rp → R is proper and closed, dom(f) is convex, and f is Lf−smooth.
I dom(F ) := dom(f) ∩ dom(g) , ∅ and −∞ < F ? < +∞.
I The solution set S? := {x? ∈ dom(F ) : F (x?) = F ?} is nonempty.
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A different quantification of convergence: Gradient mapping

Definition (Gradient mapping)
Let proxg denote the proximal operator of g and λ > 0 some real constant. Then, the gradient mapping
operator is defined as

Gλ(x) :=
1
λ

(
x− proxλg(x− λ∇f(x))

)
.

Properties [2]
I ‖Gλ(x)‖ = 0 ⇐⇒ x is a stationary point.

I Lipschitz continuity:
∥∥∥G 1

L
(x)− G 1

L
(y)
∥∥∥ ≤ (2L+ Lf ) ‖x− y‖

Why do we care about gradient mapping?

I It is the generalization of the gradient of f , ∇f(x)
I Recall prox-gradient update: xt+1 = proxλg(xt − λ∇f(xt)), which is equivalent to xt+1 = xt − λGλ(xt).
I In fact, when proxg = I, then, Gλ(x) = 1

λ
(x− (x− λ∇f(x))) = ∇f(x).
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Sufficient Decrease property for proximal-gradient

Assumption

I f is Lf -smooth.
I g is proper, closed, convex, and (possibly) nonsmooth. g is proximally tractable.

xk+1 := prox 1
L
g

(
xk −

1
L
∇f(xk)

)
Lemma (Sufficient decrease [2])
For any x ∈ int(dom(f)) and L ∈ (Lf2 ,∞), it holds that

F (xk+1) ≤ F (xk)− L−
Lf

2
L2

∥∥∥G 1
L

(xk)
∥∥∥2

2
, (6)

Corollary

F (xk+1) ≤ F (xk)−
1

2Lf

∥∥∥G 1
Lf

(xk)
∥∥∥2

2
, for L = Lf
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Non-convex case: Convergence

Basic proximal-gradient scheme
1. Choose x0 ∈ dom (F ) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1 := proxαg
(
xk − α∇f(xk)

)
,

where α :=
(

0, 2
Lf

)
.

Theorem (Convergence of proximal-gradient method: Non-convex [2])
Let {xk} be generated by proximal-gradient scheme above. Then, we have

min
i=0,1,··· ,k

‖Gα(xi)‖22 ≤
F (x0)− F (x?)
M(k + 1)

, where M := α2
( 1
α
−
Lf

2

)
I When α = 1

Lf
, M = 1

2Lf
.

I The worst-case complexity to reach mini=0,1,··· ,k ‖Gα(xi)‖22 ≤ ε is O
(

1
ε

)
.
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Stochastic convex composite minimization

Problem (Mathematical formulation)
Consider the following composite convex minimization problem:

F ? = min
x∈Rp

{
F (x) := Eθ[F (x, θ)] := Eθ[f(x, θ) + g(x, θ)]

}
I θ is a random vector whose probability distribution is supported on set Θ.
I The solution set S? := {x? ∈ dom (F ) : F (x?) = F ?} is nonempty.
I Oracles: (sub)gradient of f(·, θ), ∇f(x, θ), and stochastic prox operator of g(·, θ), proxg(·,θ)(x).

Remark
◦ In this setting, we replace ∇f(·) with its stochastic estimates.

◦ It is possible to replace proxg(·) with its stochastic estimate (advanced material).
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Stochastic proximal gradient method

Stochastic proximal gradient method (SPG)

1. Choose x0 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = proxγkg(·,θ)(x
k − γkG(xk, θk)).

Definitions:

◦ proxλg(·,θ) := arg miny∈Rp
{
g(y, θ) + 1

2λ ‖y− x‖2
}

◦ {θk}k=0,1,···: sequence of independent random variables.

◦ G(xk, θk) ∈ ∂f(xk, θk): an unbiased estimate of the deterministic (sub)gradient:

E[G(xk, θk)] ∈ ∂f(xk).

Remark
Cost of computing G(xk, θk) is usually much cheaper than ∇f(xk).
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Convergence analysis

Assumptions for the problem setting
I f(·, θ) and g(·, θ) are convex functions in the first argument, g is proximally-tractable.
I (Sub)gradients of F satisfy stochastic bounded gradient condition: ∃C ≥ 0, B ≥ 0 such that

Eθ[‖∂F (x, θ)‖2] ≤ B2 + C(F (x)− F (x?)).

I E[
∥∥xt − x?

∥∥2
] ≤ R2 for all t ≥ 0.

Implications of the assumptions

I None of the above assumptions enforce that f is smooth.
I Stochastic bounded gradient condition holds with C = 0 when both f(·, θ) and g(·, θ) are Lipschitz

continuous.
I The same condition holds when f(·, θ) is Lf -smooth and g(·, θ) is Lipschitz continuous.
I However, for the upcoming theorem, we will take C > 0, which rules out the case when both functions

are only Lipschitz continuous.
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Convergence analysis

Assumptions for the problem setting
I f(·, θ) and g(·, θ) are convex functions in the first argument, g is proximally-tractable.
I (Sub)gradients of F satisfy stochastic bounded gradient condition: ∃C ≥ 0, B ≥ 0 such that

Eθ[‖∂F (x, θ)‖2] ≤ B2 + C(F (x)− F (x?)).

I E[
∥∥xt − x?

∥∥2
] ≤ R2 for all t ≥ 0.

Theorem (Ergodic convergence [12])
I Assume the above assumptions hold with C > 0.
I Let the sequence {xk}k≥0 be generated by SPG.
I Set γk = 1/(C

√
k)

Conclusion:
I Define x̄k = 1

k

∑k−1
i=0 xi, then

E[F (x̄k)− F (x?)] ≤
1
√
k

(
R2C +

B2

C

)
, ∀k ≥ 1.
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Revisiting a special composite structure

A basic constrained problem setting

f? := min
x∈Rp

{
f(x) + δX (x)

}
:= min

x∈Rp

{
f(x) : x ∈ X

}
, (7)

Assumptions
I X is nonempty, convex and compact (closed and bounded) where δX is its indicator function.
I f ∈ F1,1

L (Rp) (i.e., convex with Lipschitz gradient).

Recall proximal gradient algorithm

Basic proximal-gradient scheme (ISTA)
1. Choose x0 ∈ dom (F ) arbitrarily as a starting point.
2. For k = 0, 1, · · · , generate a sequence {xk}k≥0 as:

xk+1 := proxαg
(
xk − α∇f(xk)

)
where α := 1/L.

I Prox-operator of indicator of X is projection onto X =⇒ ensures feasibility

How else can we ensure feasibility?
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Frank-Wolfe’s approach - I

f? := min
x∈Rp

{
f(x) : x ∈ X

}
,

Conditional gradient method (CGM, see [10] for review)
A plausible strategy which dates back to 1956 [6]. At iteration k:
1. Consider the linear approximation of f at xk

φk(x) := f(xk) +∇f(xk)T (x− xk)

2. Minimize this approximation within constraint set

x̂k ∈ min
x∈X

φk(x) = min
x∈X
∇f(xk)Tx

3. Take a step towards x̂k with step-size γk ∈ [0, 1]

xk+1 = xk + γk(x̂k − xk)

I xk+1 is feasible since it is convex combination of two other feasible points.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 71



Frank-Wolfe’s approach - II

X

{X : f(x) ≤ f(xk)}

−∇f(xk)

xk

x̂k

xk+1

f? := min
x∈Rp

{
f(x) : x ∈ X

}

Conditional gradient method (CGM)
1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := arg min
x∈X
∇f(xk)Tx

xk+1 := (1− γk)xk + γkx̂k,

where γk := 2
k+2 .
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On the linear minimization oracle

X

{X : f(x) ≤ f(xk)}
−∇f(xk)

xk

x̂k

xk+1

f? := min
x∈Rp

{
f(x) : x ∈ X

}

Definition (Linear minimization oracle)
Let X be a convex, closed and bounded set. Then, the linear minimization oracle of X (lmoX ) returns a vector
x̂ such that

lmoX (x) := x̂ ∈ arg min
y∈X

xTy (8)

I lmoX returns an extreme point of X .
I lmoX is arguably cheaper than projection.
I lmoX is not single valued, note ∈ in the definition.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 33/ 71



Convergence guarantees of CGM

Problem setting

f? := min
x∈Rp

{
f(x) : x ∈ X

}
,

Assumptions
I X is nonempty, convex, closed and bounded.
I f ∈ F1,1

L (Rp) (i.e., convex with Lipschitz gradient).

Theorem
Under assumptions listed above, CGM with step size γk = 2

k+2 satisfies

f(xk)− f(x?) ≤
4LD2

X
k + 1

(9)

where DX := maxx,y∈X ‖x− y‖2 is diameter of constraint set.
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Convergence guarantees of CGM: A faster rate

Problem setting

f? := min
x∈Rp

{
f(x) : x ∈ X

}
,

Assumptions
I X is nonempty, α-strongly convex, closed and bounded.
I f ∈ F1,1

L,µ(Rp) (i.e., strongly convex with Lipschitz gradient).

Definition (α-strongly convex set) [7]
A convex set X ∈ Rp×p is α-strongly convex with respect to ‖·‖ if for any x,y ∈ X , any γ ∈ [0, 1] and any
vector z ∈ Rp×p such that ‖z‖ = 1, it holds that

γx + (1− γ)y + γ(1− γ)
α

2
‖x− y‖2 z ∈ X

More clearly, for any x,y ∈ X , the ball centered at γx + (1− γ)y with radius γ(1− γ)α2 ‖x− y‖2 is contained
in X .
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CGM for strongly convex objective + strongly convex set

Conditional gradient method - CGM2
1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:

x̂k := arg min
x∈X
∇f(xk)Tx

γk := arg min
γ∈[0,1]

γ
〈

x̂k − xk, ∇f(xk)
〉

+ γ2L

2

∥∥x̂k − xk
∥∥2

xk+1 := (1− γk)xk + γkx̂k,

Theorem ([7])
Under assumptions listed previously, CGM2 satisfies

f(xk)− f(x?) = O
( 1
k2

)
(10)
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Example: lmo of nuclear-norm bal

Consider δX , the indicator of nuclear-norm ball X :=
{

X : X ∈ Rp×p, ‖X‖∗ ≤ α
}

lmo of nuclear-norm ball

lmoX (X) := X̂ ∈ arg min
Y∈X

〈Y,X〉

This can be computed as follows:
I Compute top singular vectors of X =⇒ (u1, σ1,v1) = svds(X, 1).
I Form the rank-1 output =⇒ X = −u1αvT1

We can efficiently approximate top singular vectors by power method!
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Proximal gradient vs. Frank-Wolfe

Definitions:
I Here: sv = scalar-vector multiplication, v+=vector addition.
I R0 := maxx?∈S? ‖x0 − x?‖ is the maximum initial distance.
I DX := maxx,y∈X ‖x− y‖2 is diameter of constraint set X .

Algorithm Proximal-gradient scheme Frank-Wolfe method
Rate O

(
(LfR2

0)/k
)

O
(
(LfD2

X )/k
)

Complexity O
(
R2

0(Lf/ε)
)

O
(
D2
X (Lf/ε)

)
Per iteration 1-gradient, 1-prox, 1-sv, 1-

v+
1-gradient, 1-lmo, 2-sv, 1-
v+

How do prox operator and lmo compare in practice?
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An example with matrices

Problem Definition

min
X∈Rp×p

f(X) + g(X)

I Define g(X) = δX (X), where X :=
{

X : X ∈ Rp×p, ‖X‖∗ ≤ α
}

is nuclear norm ball.
I This problem is equivalent to:

min
X∈X

f(X)

Observations
I proxg = πX . Projection requires full SVD, O(p3).
I lmo computes (approximately) top singular vectors, roughly in ≈ O(p2) with Lanczos algorithm.
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Example: Phase retrieval

Phase retrieval
Aim: Recover signal x\ ∈ Cp from the measurements b ∈ Rn:

bi =
∣∣〈ai,x\〉∣∣2 + ωi.

(ai ∈ Cp are known measurement vectors, ωi models noise).
• Non-linear measurements → non-convex maximum likelihood estimators.

PhaseLift [5]
Phase retrieval can be solved as a convex matrix completion problem, following a combination of
I semidefinite relaxation (x\x\H = X\)
I convex relaxation (rank→ ‖ · ‖∗)

albeit in terms of the lifted variable X ∈ Cp×p.
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Example: Phase retrieval - II

Problem formulation
We solve the following PhaseLift variant:

f? := min
X∈Cp×p

{1
2
‖A(X)− b‖22 : ‖X‖∗ ≤ κ, X ≥ 0

}
. (11)

Experimental setup [18]
Coded diffraction pattern measurements, b = [b1, . . . ,bL] with L = 20 different masks

b` = |fft(dH` � x\)|2

→ � denotes Hadamard product; | · |2 applies element-wise
→ d` are randomly generated octonary masks (distributions as proposed in [5])
→ Parametric choices: λ0 = 0n; ε = 10−2; κ = mean(b).
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Example: Phase retrieval - III

p
23 25 27 29 211 213 215

ti
m
e
(s
)

10−1

100

101

102

103

CGM (lmo)
FISTA (prox)

Test with synthetic data: Prox vs sharp
→ Synthetic data: x\ = randn(p, 1) + i · randn(p, 1).

→ Stopping criteria: ‖x
\−xk‖2
‖x\‖2

≤ 10−2.
→ Averaged over 10 Monte-Carlo iterations.

Note that the problem is p× p dimensional!
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A basic constrained non-convex problem

Problem setting

f? := min
x∈Rp

{
f(x) : x ∈ X

}
,

Assumptions
I X is nonempty, convex, closed and bounded.
I f has L-Lipschitz continuous gradients, but it is non-convex.

Stationary point
Due to constraints, ‖∇f(x?)‖ = 0 may not hold!

Frank-Wolfe gap: Following measure, known as FW-gap, generalizes the definition of stationary point for
constrained problems:

gFW (x) := max
y∈X

(x− y)T∇f(x)

I gFW (x) ≥ 0 for all x ∈ X .
I x ∈ X is a stationary point if and only if gFW (x) = 0.
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CGM for non-convex problems

CGM for non-convex problems
1. Choose x0 ∈ X , K > 0 total number of iterations.
2. For k = 0, 1, . . . ,K − 1 perform:{

x̂k := lmoX (∇f(xk))
xk+1 := (1− γk)xk + γkx̂k,

where γk := 1√
K+1 .

Theorem
Denote x̄ chosen uniformly random from {x1,x2, . . . ,xK}. Then, CGM satisfies

min
k=1,2,...,K

gFW (xk) ≤ E[gFW (x̄)] ≤
1
√
K

(
f(x0)− f? +

LD2

2

)
.

? There exist stochastic CGM methods for non-convex problems. See [16] for details.
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A basic constrained stochastic problem

Problem setting (Stochastic)

f? := min
x∈Rp

{
E[f(x, θ)] : x ∈ X

}
, (12)

Assumptions
I θ is a random vector whose probability distribution is supported on set Θ
I X is nonempty, convex, closed and bounded.
I f(·, θ) ∈ F1,1

L (Rp) for all θ (i.e., convex with Lipschitz gradient).

Example (Finite-sum model)

E[f(x, θ)] =
1
n

n∑
j=1

fj(x)

I j = θ is a drawn uniformly from Θ = {1, 2, . . . , n}
I fj ∈ F1,1

L (Rp) for all j (i.e., convex with Lipschitz gradient).
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Stochastic conditional gradient method

Stochastic conditional gradient method (SFW)
1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := lmoX (∇̃f(xk, θk))
xk+1 := (1− γk)xk + γkx̂k,

where γk := 2
k+2 , and ∇̃f is an unbiased estimator of ∇f .

Theorem [9]
Assume that the following variance condition holds

E
∥∥∇f(xk)− ∇̃f(xk, θk)

∥∥2
≤
(
LD

k + 1

)2
. ( ? )

Then, the iterates of SFW satisfies

E[f(xk, θ)]− f? ≤
4LD2

k + 1
.

( ? ) → SFW requires decreasing variance!
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Stochastic conditional gradient method
Stochastic conditional gradient method (SFW)

1. Choose x0 ∈ X .
2. For k = 0, 1, . . . perform:{

x̂k := lmoX (∇̃f(xk, θk))
xk+1 := (1− γk)xk + γkx̂k,

where γk := 2
k+2 , and ∇̃f is an unbiased estimator of ∇f .

Example (Finite-sum model)

E[f(x, θ)] =
1
n

n∑
j=1

fj(x)

Assume fj is G-Lipschitz continuous for all j. Suppose that Sk is a random sampling (with replacement) from
Θ = {1, 2, . . . , n}. Then,

∇̃f(xk, θk) :=
1
|Sk|

∑
j∈Sk

fj(xk) =⇒ E
∥∥∇f(x)− ∇̃f(x, θk)

∥∥2
≤

G2

|Sk|
.

Hence, by choosing |Sk| = (G(k+1)
LD

)2 we satisfy the variance condition for SFW.
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Wrap up!

◦ Monday is for trade-offs :)
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?Expanding on prox operator and optimality condition

Notes
I By definition, g(y) + 1

2λ ‖y− x‖2 attains its minimum when y = proxλg(x).
I One can see that g(y) + 1

2λ ‖y− x‖2 is convex, and prox operator computes its minimizer over Rp.
I As a result, subdifferential of g(y) + 1

2λ ‖y− x‖2 at the minimizer (y = proxλg(x)) should include 0.

I Hence, 0 ∈ ∂g(proxλg(x)) + 1
λ

(
proxλg(x)− x

)
.

I After rearranging the above inclusion we obtain: x ∈ λ∂g(proxλg(x)) + proxλg(x)
I We can rewrite the RHS as a single function: λ∂g(proxλg(x)) + proxλg(x) = (λ∂g + I)(proxλg(x))
I The inclusion becomes: x ∈ (λ∂g + I)(proxλg(x)).

I Finally, we compute the inverse of (λ∂g + I)(·) to conclude: proxλg(x) = (λ∂g + I)−1 (x).

◦ In the literature, (λ∂g + I)−1 is called the resolvent of the subdifferential of g with parameter λ.
◦ This is just a technical term that stands for proximal operator of λg, as we have defined in this course.
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?A short detour: Basic properties of prox-operator

Property (Basic properties of prox-operator)
1. proxg(x) is well-defined and single-valued (i.e., the prox-operator (2) has a unique solution since
g(·) + (1/2)‖ · −x‖22 is strongly convex).

2. Optimality condition:
x ∈ proxg(x) + ∂g(proxg(x)), x ∈ Rp.

3. x? is a fixed point of proxg(·):

0 ∈ ∂g(x?) ⇔ x? = proxg(x?).

4. Nonexpansiveness:
‖proxg(x)− proxg(x̃)‖2 ≤ ‖x− x̃‖2, ∀x, x̃ ∈ Rp.

Note: An operator is called non-expansive if it is L-Lipschitz continuous with L = 1.
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?Adaptive Restart

It is possible the preserve O(1/k2) convergence guarantee !
One needs to slightly modify the algorithm as below.

Generalized fast proximal-gradient scheme
1. Choose x0 = x−1 ∈ dom (F ) arbitrarily as a starting point.
2. Set θ0 = θ−1 = 1, λ := L−1

f

3. For k = 0, 1, . . ., generate two sequences {xk}k≥0 and {yk}k≥0 as:
yk := xk + θk(θ−1

k−1 − 1)(xk − xk−1)
xk+1 := proxλg

(
yk − λ∇f(yk)

)
,

if restart test holds
θk−1 = θk = 1
yk = xk

xk+1 := proxλg
(
yk − λ∇f(yk)

) (13)

θk is chosen so that it satisfies

θk+1 =

√
θ4
k

+ 4θ2
k
− θ2

k

2
<

2
k + 3
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?Adaptive Restart: Guarantee

Theorem (Global complexity [8])
The sequence {xk}k≥0 generated by the modified algorithm satisfies

F (xk)− F ? ≤
2Lf

(k + 2)2

(
R2

0 +
∑
ki≤k

(
‖x? − xki‖22 − ‖x

? − zki‖22
))
∀k ≥ 0. (14)

where R0 := min
x?∈S?

‖x0 − x?‖, zk = xk−1 + θ−1
k−1(xk − xk−1) and ki, i = 1... are the iterations for which the

restart test holds.

Various restarts tests that might coincide with ‖x∗ − xki‖2
2 ≤ ‖x∗ − zki‖2

2

I Exact non-monotonicity test: F (xk+1)− F (xk) > 0
I Non-monotonicity test: 〈(LF (yk−1 − xk),xk+1 − 1

2 (xk + yk−1)〉 > 0 (implies exact non-monotonicity
and it is advantageous when function evaluations are expensive)

I Gradient-mapping based test: 〈(Lf (yk − xk+1),xk+1 − xk〉 > 0
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?Recall: Composite convex minimization

Problem (Unconstrained composite convex minimization)

F ? := min
x∈Rp

{F (x) := f(x) + g(x)} (15)

I f and g are both proper, closed, and convex.
I dom(F ) := dom(f) ∩ dom(g) , ∅ and −∞ < F ? < +∞.
I The solution set S? := {x? ∈ dom(F ) : F (x?) = F ?} is nonempty.
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?Recall: Composite convex minimization guarantees

Proximal gradient method(ISTA) vs. fast proximal gradient method (FISTA)

Assumptions, step sizes and convergence rates
Proximal gradient method:

f ∈ F1,1
L , α =

1
L

F (xk)− F (x?) ≤ ε, O
(1
ε

)
.

Fast proximal gradient method:

f ∈ F1,1
L , α =

1
L

F (xk)− F (x?) ≤ ε, O
( 1
√
ε

)
.

◦ We require αk to be a function of L.

◦ It may not be possible to know exactly the Lipschitz constant.

Line-search ?

◦ Adaptation to local geometry → may lead to larger steps.
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?How can we better adapt to the local geometry?
Non-adaptive:

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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?How can we better adapt to the local geometry?
Line-search:

�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
Lk

2
kx � xkk2

2
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?How can we better adapt to the local geometry?
Variable metric:

�f(xk)

x1

x2
f(x)  f(xk) +rf(xk)T (x� x

k) +
L

2
kx� x

kk22

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

H�1
k

L is a global worst-case constant

krf(x)�rf(y)k  Lky � xk

f(x)

x

k+1 = argmin
x

⇢
f(xk) + hrf(xk),x� x

ki+ L

2
kx� x

kk22
�

f(xk)
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?The idea of the proximal-Newton method

Assumptions A.2
Assume that f ∈ F2,1

L,µ(Rp) and g ∈ Fprox(Rp).

?Proximal-Newton update

I Similar to classical newton, proximal-newton suggests the following update scheme using second order
Taylor series expansion near xk.

xk+1 := arg min
x∈Rp

{ 1
2

(x−xk)T∇2f(xk)(x−xk)+∇f(xk)T (x−xk)︸                                                                      ︷︷                                                                      ︸
2nd-order Taylor expansion near xk

+g(x)
}
. (16)
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?The proximal-Newton-type algorithm

Proximal-Newton algorithm (PNA)
1. Given x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , perform the following steps:
2.1. Evaluate an SDP matrix Hk ≈ ∇2f(xk) and ∇f(xk).

2.2. Compute dk := proxH−1
k
g

(
xk −H−1

k
∇f(xk)

)
− xk.

2.3. Update xk+1 := xk + αkdk.

Remark
I Hk ≡ ∇2f(xk) =⇒ proximal-Newton algorithm.
I Hk ≈ ∇2f(xk) =⇒ proximal-quasi-Newton algorithm.

I A generalized prox-operator: proxH−1
k
g

(
xk + H−1

k
∇f(xk)

)
.
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?Convergence analysis

Theorem (Global convergence [11])
Assume generalized-prox subproblem is solved exactly for the algorithm and there exists µ > 0 such that
Hk � µI for all k ≥ 0. Then;

{xk}k≥0 globally converges to a solution x? of (15).

Theorem (Local convergence [11])
Assume generalized-prox subproblem is solved exactly for the algorithm there exists 0 < µ ≤ L2 < +∞ such
that µI � Hk � L2I for all sufficiently large k. Then;
I If Hk ≡ ∇2f(xk), then αk = 1 for k sufficiently large (full-step).
I If Hk ≡ ∇2f(xk), then {xk} locally converges to x? at a quadratic rate.
I If Hk satisfies the Dennis-Moré condition:

lim
k→+∞

‖(Hk −∇2f(x?))(xk+1 − xk)‖
‖xk+1 − xk‖

= 0, (17)

then {xk} locally converges to x? at a super linear rate.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 59/ 71



?Convergence analysis

Theorem (Global convergence [11])
Assume generalized-prox subproblem is solved exactly for the algorithm and there exists µ > 0 such that
Hk � µI for all k ≥ 0. Then;

{xk}k≥0 globally converges to a solution x? of (15).

Theorem (Local convergence [11])
Assume generalized-prox subproblem is solved exactly for the algorithm there exists 0 < µ ≤ L2 < +∞ such
that µI � Hk � L2I for all sufficiently large k. Then;
I If Hk ≡ ∇2f(xk), then αk = 1 for k sufficiently large (full-step).
I If Hk ≡ ∇2f(xk), then {xk} locally converges to x? at a quadratic rate.
I If Hk satisfies the Dennis-Moré condition:

lim
k→+∞

‖(Hk −∇2f(x?))(xk+1 − xk)‖
‖xk+1 − xk‖

= 0, (17)

then {xk} locally converges to x? at a super linear rate.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 59/ 71



?How to compute the approximation Hk?

How to update Hk?
Matrix Hk can be updated by using low-rank updates.
I BFGS update: maintain the Dennis-Moré condition and Hk � 0.

Hk+1 := Hk +
ykyTk
sT
k

yk
−

HksksTkHk

sT
k

Hksk
, H0 := γI, (γ > 0).

where yk := ∇f(xk+1)−∇f(xk) and sk := xk+1 − xk.
I Diagonal+Rank-1 [4]: computing PN direction dk is in polynomial time, but it does not maintain the

Dennis-Moré condition:

Hk := Dk + ukuTk , uk := (sk −H0yk)/
√

(sk −H0yk)Tyk,

where Dk is a positive diagonal matrix.
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?Pros and cons

Pros
I Fast local convergence rate (super-linear or quadratic)
I Numerical robustness under the inexactness/noise ([11]).
I Well-suited for problems with many data points but few parameters. For example,

F ∗ := min
x∈Rp

{
n∑
j=1

`j(aTj x + bj) + g(x)

}
,

where `j is twice continuously differentiable and convex, g ∈ Fprox, p� n.

Cons
I Expensive iteration compared to proximal-gradient methods.
I Global convergence rate may be worse than accelerated proximal-gradient methods.
I Requires a good initial point to get fast local convergence.
I Requires strict conditions for global/local convergence analysis.
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?Example 1: Sparse logistic regression

Problem (Sparse logistic regression)
Given a sample vector a ∈ Rp and a binary class label vector b ∈ {−1,+1}n. The conditional probability of a
label b given a is defined as:

P(b|a,x, µ) = 1/(1 + e−b(xT a+µ)),

where x ∈ Rp is a weight vector, µ is called the intercept.
Goal: Find a sparse-weight vector x via the maximum likelihood principle.

Optimization formulation

min
x∈Rp

{ 1
n

n∑
i=1

L(bi(aTi x + µ))︸                             ︷︷                             ︸
f(x)

+ ρ‖x‖1︸  ︷︷  ︸
g(x)

}
, (18)

where ai is the i-th row of data matrix A in Rn×p, ρ > 0 is a regularization parameter, and ` is the logistic
loss function `(τ) := log(1 + e−τ ).
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?Example: Sparse logistic regression

Real data
I Real data: w2a with n = 3470 data points, p = 300 features
I Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters
I Tolerance 10−6.
I L-BFGS memory m = 50.
I Ground truth: Get a high accuracy approximation of x? and f? by TFOCS with tolerance 10−12.
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?Example: Sparse logistic regression-Numerical results
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?Example 2: `1-regularized least squares

Problem (`1-regularized least squares)
Given A ∈ Rn×p and b ∈ Rn, solve:

F ? := min
x∈Rp

{
F (x) :=

1
2
‖Ax− b‖22 + ρ‖x‖1

}
, (19)

where ρ > 0 is a regularization parameter.

Complexity per iterations

I Evaluating ∇f(xk) = AT (Axk − b) requires one Ax and one ATy.
I One soft-thresholding operator proxλg(x) = sign(x)⊗max{|x| − ρ, 0}.
I Optional: Evaluating L = ‖ATA‖ (spectral norm) - via power iterations (e.g., 20 iterations, each

iteration requires one Ax and one ATy).

Synthetic data generation

I A := randn(n, p) - standard Gaussian N (0, I).
I x? is a s-sparse vector generated randomly.
I b := Ax? +N (0, 10−3).
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?Example 2: `1-regularized least squares - Numerical results - Trial 1

Parameters: n = 750, p = 2000, s = 200, ρ = 1

0 500 1000 1500 2000
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Number of iterations

(F
(x

k
)
−

F
⋆
)/
F

⋆
in

lo
g
sc
al
e

 

 

Quasi-Newton with diagonal+rank1
Accelerated gradient method
AGD with restart
Line search AGD with restart

0 2 4 6 8 10 12
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Time (s)
(F

(x
k
)
−

F
⋆
)/
F

⋆
in

lo
g
sc
al
e

 

 

Quasi-Newton with diagonal+rank1
Accelerated gradient method
AGD with restart
Line search AGD with restart

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 66/ 71



?Example 2: `1-regularized least squares - Numerical results - Trial 2

Parameters: n = 750, p = 2000, s = 200, ρ = 1
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