Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 5: Introduction to Proximal Operators and Proximal Gradient methods

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2021)

License Information for Mathematics of Data Slides

- ▶ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - ▶ The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - ► The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- ▶ Share Alike
 - ► The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- ▶ Full Text of the License

Outline

- ► Composite minimization
- ► Proximal gradient methods
- ► Introduction to Frank-Wolfe method

Recall sparse regression in generalized linear models (GLMs)

Problem (Sparse regression in GLM)

Our goal is to estimate $\mathbf{x}^{\natural} \in \mathbb{R}^p$ given $\{b_i\}_{i=1}^n$ and $\{\mathbf{a}_i\}_{i=1}^n$, knowing that the likelihood function at y_i given \mathbf{a}_i and \mathbf{x}^{\natural} is given by $L(\langle \mathbf{a}_i, \mathbf{x}^{\natural} \rangle, b_i)$, and that \mathbf{x}^{\natural} is sparse.

$$\mathbf{b} \qquad \mathbf{A} \qquad \mathbf{x}^{\natural} \quad \mathbf{v}$$

Optimization formulation

$$\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \underbrace{-\sum_{i=1}^n \log L(\langle \mathbf{a}_i, \mathbf{x}^{\natural} \rangle, b_i)}_{f(\mathbf{x})} + \underbrace{\rho_n \|\mathbf{x}\|_1}_{g(\mathbf{x})} \right\}$$

where $\rho_n > 0$ is a parameter which controls the strength of sparsity regularization.

Theorem (cf. [13] for details)

Under some technical conditions, there exists $\{\rho_i\}_{i=1}^{\infty}$ such that with high probability,

$$\left\|\mathbf{x}^{\star}-\mathbf{x}^{\natural}\right\|_{2}^{2}=\mathcal{O}\left(\frac{s\log p}{n}\right),\quad \operatorname{supp}\mathbf{x}^{\star}=\operatorname{supp}\mathbf{x}^{\natural}.$$

$$\operatorname{Recall ML:}\left\|\mathbf{x}_{\mathit{ML}}-\mathbf{x}^{\natural}\right\|_{2}^{2}=\mathcal{O}\left(p/n\right).$$

Composite convex minimization

Problem (Composite convex minimization)

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$
 (1)

- ightharpoonup f and g are both proper, closed, and convex.
- ▶ The solution set $S^* := \{ \mathbf{x}^* \in \text{dom}(F) : F(\mathbf{x}^*) = F^* \}$ is nonempty.

Remarks:

- \circ Without loss of generality, f is smooth and g is non-smooth in the sequel.
- \circ By Moreau-Rockafellar Theorem, we have $\partial F = \partial (f+g) = \partial f + \partial g = \nabla f + \partial g$.
- o Subgradient method attains a $\mathcal{O}\left(1/\sqrt{T}\right)$ rate.
- \circ Without g, accelerated gradient method attains a $\mathcal{O}\left(1/T^2\right)$ rate.

Composite convex minimization

Problem (Composite convex minimization)

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$
 (1)

- ightharpoonup f and g are both proper, closed, and convex.
- ▶ The solution set $S^* := \{ \mathbf{x}^* \in \text{dom}(F) : F(\mathbf{x}^*) = F^* \}$ is nonempty.

Remarks:

- \circ Without loss of generality, f is smooth and g is non-smooth in the sequel.
- \circ By Moreau-Rockafellar Theorem, we have $\partial F = \partial (f+g) = \partial f + \partial g = \nabla f + \partial g$.
- o Subgradient method attains a $\mathcal{O}\left(1/\sqrt{T}\right)$ rate.
- \circ Without g, accelerated gradient method attains a $\mathcal{O}\left(1/T^2\right)$ rate.

Can we design algorithms that achieve a faster convergence rate for composite convex minimization?

Designing algorithms for finding a solution \mathbf{x}^{\star}

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$

$$f(\mathbf{x}) \leq f(\mathbf{y}) + \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y}) + \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|_2^2$$

Designing algorithms for finding a solution \mathbf{x}^{\star}

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$

$$f(\mathbf{x}) \le f(\mathbf{y}) + \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||_2^2$$

Quadratic majorizer for f + g

When f has L-Lipschitz continuous gradient, we have, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$

$$f(\mathbf{x}) + g(\mathbf{x}) \le f(\mathbf{y}) + \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||_2^2 + g(\mathbf{x}) := P_L(\mathbf{x}, \mathbf{y})$$

Designing algorithms for finding a solution \mathbf{x}^{\star}

Quadratic majorizer for f

When f has L-Lipschitz continuous gradient, we have, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$

$$f(\mathbf{x}) \le f(\mathbf{y}) + \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||_2^2$$

Quadratic majorizer for f + g

When f has L-Lipschitz continuous gradient, we have, $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^p$

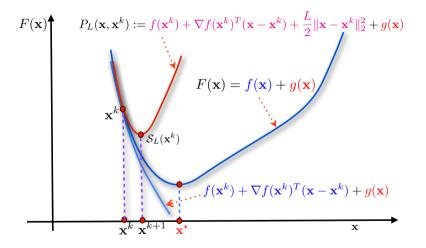
$$f(\mathbf{x}) + g(\mathbf{x}) \le f(\mathbf{y}) + \nabla f(\mathbf{y})^T (\mathbf{x} - \mathbf{y}) + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||_2^2 + g(\mathbf{x}) := P_L(\mathbf{x}, \mathbf{y})$$

Majorization-minimization for f + g

$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x} \in \mathbb{R}^p} P_L(\mathbf{x}, \mathbf{x}^k)$$

$$= \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ g(\mathbf{x}) + \frac{L}{2} \left\| \mathbf{x} - \left(\mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k) \right) \right\|^2 \right\}$$

Geometric illustration



A short detour: Proximal-point operators

Definition (Proximal operator [17])

Let $g \in \mathcal{F}(\mathbb{R}^p)$, $\mathbf{x} \in \mathbb{R}^p$ and $\lambda \geq 0$. The proximal operator (or prox-operator) of g is defined as:

$$\operatorname{prox}_{\lambda g}(\mathbf{x}) \equiv \arg \min_{\mathbf{y} \in \mathbb{R}^p} \left\{ g(\mathbf{y}) + \frac{1}{2\lambda} \|\mathbf{y} - \mathbf{x}\|_2^2 \right\}.$$
 (2)

A short detour: Proximal-point operators

Definition (Proximal operator [17])

Let $g \in \mathcal{F}(\mathbb{R}^p)$, $\mathbf{x} \in \mathbb{R}^p$ and $\lambda \geq 0$. The proximal operator (or prox-operator) of g is defined as:

$$prox_{\lambda g}(\mathbf{x}) \equiv \arg\min_{\mathbf{y} \in \mathbb{R}^p} \left\{ g(\mathbf{y}) + \frac{1}{2\lambda} ||\mathbf{y} - \mathbf{x}||_2^2 \right\}.$$
 (2)

Remarks:

 \circ The $\it proximal\ operator$ of $\frac{1}{L}g$ evaluated at $\left({\bf x}^k - \frac{1}{L}\nabla f({\bf x}^k)\right)$ is given by

$$\operatorname{prox}_{\frac{1}{L}g}\left(\mathbf{x}^{k} - \frac{1}{L}\nabla f(\mathbf{x}^{k})\right) = \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \left\{ g(\mathbf{x}) + \frac{L}{2} \left\| \mathbf{x} - \left(\mathbf{x}^{k} - \frac{1}{L}\nabla f(\mathbf{x}^{k})\right) \right\|^{2} \right\}.$$

o This prox-operator minimizes the majorizing bound:

$$f(\mathbf{x}) + g(\mathbf{x}) \le f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T (\mathbf{x} - \mathbf{x}^k) + \frac{L}{2} ||\mathbf{x} - \mathbf{x}^k||_2^2 + g(\mathbf{x})$$

o Rule of thumb: Replace gradient steps with proximal gradient steps!

Tractable prox-operators

Processing non-smooth terms in (15)

- \blacktriangleright We handle the nonsmooth term g in (15) using its proximal operator.
- ightharpoonup However, computing proximal operator $prox_q$ of a general convex function g

$$\operatorname{prox}_{g}(\mathbf{x}) \equiv \arg\min_{\mathbf{y} \in \mathbb{R}^{p}} \left\{ g(\mathbf{y}) + (1/2) \|\mathbf{y} - \mathbf{x}\|_{2}^{2} \right\}.$$

can be computationally demanding.

Definition (Tractable proximity)

- ▶ Given $g \in \mathcal{F}(\mathbb{R}^p)$. We say that g is proximally tractable if prox_g defined by (2) can be computed efficiently.
- "efficiently" = {closed form solution, low-cost computation, polynomial time}.

Tractable prox-operators

Example

For separable functions, the prox-operator can be efficient. When $g(\mathbf{x}) := \|\mathbf{x}\|_1 = \sum_{i=1}^n |\mathbf{x}_i|$, we have

$$\operatorname{prox}_{\lambda g}(\mathbf{x}) = \operatorname{sign}(\mathbf{x}) \otimes \max\{|\mathbf{x}| - \lambda, 0\}.$$

Sometimes, we can compute the prox-operator via basic algebra. When $g(\mathbf{x}) := (1/2) \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, we have

$$\operatorname{prox}_{\lambda g}(\mathbf{x}) = \left(\mathbb{I} + \lambda \mathbf{A}^T \mathbf{A}\right)^{-1} \left(\mathbf{x} + \lambda \mathbf{A} \mathbf{b}\right).$$

ightharpoonup For the indicator functions of simple sets, e.g., $g(\mathbf{x}) := \delta_{\mathcal{X}}(\mathbf{x})$, the prox-operator is the projection operator

$$\operatorname{prox}_{\lambda g}(\mathbf{x}) := \pi_{\mathcal{X}}(\mathbf{x}),$$

where $\pi_{\mathcal{X}}(\mathbf{x})$ denotes the projection of \mathbf{x} onto \mathcal{X} . For instance, when $\mathcal{X} = \{\mathbf{x} : \|\mathbf{x}\|_1 \leq \lambda\}$, the projection can be obtained efficiently.

Computational efficiency - Example

Proximal operator of quadratic function

The **proximal operator** of a quadratic function $g(\mathbf{x}) := \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ is defined as

$$\operatorname{prox}_{\lambda g}(\mathbf{x}) := \arg \min_{\mathbf{y} \in \mathbb{R}^p} \left\{ \frac{1}{2} \|\mathbf{A}\mathbf{y} - \mathbf{b}\|_2^2 + \frac{1}{2\lambda} \|\mathbf{y} - \mathbf{x}\|_2^2 \right\}.$$
(3)

How do we compute $\operatorname{prox}_{\lambda g}(\mathbf{x})$?

The derivation: • The optimality condition implies that the solution of (3) should satisfy the following:

$$\mathbf{A}^{T}(\mathbf{A}\mathbf{y} - \mathbf{b}) + \lambda^{-1}(\mathbf{y} - \mathbf{x}) = 0.$$

• Setting $\mathbf{y} = \operatorname{prox}_{\lambda_{\mathcal{A}}}(\mathbf{x})$, we obtain

$$\operatorname{prox}_{\lambda q}(\mathbf{x}) = (\mathbb{I} + \lambda \mathbf{A}^T \mathbf{A})^{-1} (\mathbf{x} + \lambda \mathbf{A} \mathbf{b})$$

Remarks:

- \circ The Woodbury matrix identity can be useful: $(\mathbb{I} + \lambda \mathbf{A}^T \mathbf{A})^{-1} = \mathbb{I} \mathbf{A}^T (\lambda^{-1} \mathbb{I} + \mathbf{A} \mathbf{A}^T)^{-1} \mathbf{A}$.
- \circ When $\mathbf{A}^T\mathbf{A}$ is efficiently diagonalizable, i.e., $\mathbf{A}^T\mathbf{A}:=\mathbf{U}\mathbf{\Lambda}\mathbf{U}^T$, such that
 - $lackbox{f U}$ is a unitary matrix, i.e., ${f U}{f U}^T={f U}^T{f U}=\mathbb{I}$, and ${f \Lambda}$ is a diagonal matrix.

A non-exhaustive list of proximal tractability functions

Name	Function	Proximal operator	Complexity
ℓ_1 -norm	$f(\mathbf{x}) := \ \mathbf{x}\ _1$	$\operatorname{prox}_{\lambda f}(\mathbf{x}) = \operatorname{sign}(\mathbf{x}) \otimes [\mathbf{x} - \lambda]_{+}$	$\mathcal{O}(p)$
ℓ_2 -norm	$f(\mathbf{x}) := \ \mathbf{x}\ _2$	$\operatorname{prox}_{\lambda f}(\mathbf{x}) = [1 - \lambda / \ \mathbf{x}\ _2]_{+}\mathbf{x}$	$\mathcal{O}(p)$
Support function	$f(\mathbf{x}) := \max_{\mathbf{y} \in \mathcal{C}} \mathbf{x}^T \mathbf{y}$	$\operatorname{prox}_{\lambda f}(\mathbf{x}) = \mathbf{x} - \lambda \pi_{\mathcal{C}}(\mathbf{x})$	
Box indicator	$f(\mathbf{x}) := \delta_{[\mathbf{a}, \mathbf{b}]}(\mathbf{x})$	$\operatorname{prox}_{\lambda f}(\mathbf{x}) = \pi_{[\mathbf{a}, \mathbf{b}]}(\mathbf{x})$	$\mathcal{O}(p)$
Positive semidefinite	$f(\mathbf{X}) := \delta_{\mathbb{S}^P}(\mathbf{X})$	$\mathrm{prox}_{\lambda f}(\mathbf{X}) = \mathbf{U}[\Sigma]_{+}\mathbf{U}^{T}$, where $\mathbf{X} =$	$\mathcal{O}(p^3)$
cone indicator	-+	$\mathbf{U}\Sigma\mathbf{U}^T$	
Hyperplane indicator	$f(\mathbf{x}) := \delta_{\mathcal{X}}(\mathbf{x}), \ \mathcal{X} :=$	$\operatorname{prox}_{\lambda f}(\mathbf{x}) = \pi_{\mathcal{X}}(\mathbf{x}) = \mathbf{x} +$	$\mathcal{O}(p)$
	$\{\mathbf{x} : \mathbf{a}^T \mathbf{x} = b\}$	$\left(\frac{b-\mathbf{a}^T\mathbf{x}}{\ \mathbf{a}\ _2}\right)\mathbf{a}$	
Simplex indicator	$f(\mathbf{x}) = \delta_{\mathcal{X}}(\mathbf{x}), \mathcal{X} :=$	$\operatorname{prox}_{\lambda f}(\mathbf{x}) = (\mathbf{x} - \nu 1) \text{ for some } \nu \in \mathbb{R},$	$ ilde{\mathcal{O}}(p)$
	$\{\mathbf{x} : \mathbf{x} \ge 0, 1^T \mathbf{x} = 1\}$	which can be efficiently calculated	
Convex quadratic	$f(\mathbf{x}) := (1/2)\mathbf{x}^T\mathbf{Q}\mathbf{x} +$	$\operatorname{prox}_{\lambda f}(\mathbf{x}) = (\lambda \mathbb{I} + \mathbf{Q})^{-1} \mathbf{x}$	$\mathcal{O}(p \log p)$
	$\mathbf{q}^T \mathbf{x}$	•	$\mathcal{O}(p^3)$
Square ℓ_2 -norm	$f(\mathbf{x}) := (1/2) \ \mathbf{x}\ _2^2$	$\operatorname{prox}_{\lambda f}(\mathbf{x}) = (1/(1+\lambda))\mathbf{x}$	$\mathcal{O}(p)$
log-function	$f(\mathbf{x}) := -\log(x)$	$\operatorname{prox}_{\lambda f}(x) = ((x^2 + 4\lambda)^{1/2} + x)/2$	$\mathcal{O}(1)$
log det-function	$f(\mathbf{x}) := -\log \det(\mathbf{X})$	$\operatorname{prox}_{\lambda f}(\mathbf{X})$ is the log-function prox applied to the individual eigenvalues of \mathbf{X}	$\mathcal{O}(p^3)$

Here: $[\mathbf{x}]_+ := \max\{0, \mathbf{x}\}$ and $\delta_{\mathcal{X}}$ is the indicator function of the convex set \mathcal{X} , sign is the sign function, \S_+^p is the cone of symmetric positive semidefinite matrices.

For more functions, see [1, 15].

Solution methods

Composite convex minimization

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}. \tag{4}$$

Choice of numerical solution methods

 \circ Solve (4) = Find $\mathbf{x}^k \in \mathbb{R}^p$ such that

$$F(\mathbf{x}^k) - F^\star \le \varepsilon$$

for a given tolerance $\varepsilon > 0$.

- o Oracles: We can use one of the following configurations (oracles):
 - 1. $\partial f(\cdot)$ and $\partial g(\cdot)$ at any point $\mathbf{x} \in \mathbb{R}^p$.
 - 2. $\nabla f(\cdot)$ and $\operatorname{prox}_{\lambda q}(\cdot)$ at any point $\mathbf{x} \in \mathbb{R}^p$.
 - 3. $\operatorname{prox}_{\lambda f}$ and $\operatorname{prox}_{\lambda g}(\cdot)$ at any point $\mathbf{x} \in \mathbb{R}^p$.
 - 4. $\nabla f(\cdot)$, inverse of $\nabla^2 f(\cdot)$ and $\operatorname{prox}_{\lambda q}(\cdot)$ at any point $\mathbf{x} \in \mathbb{R}^p$.

Using different oracle leads to different types of algorithms

Proximal-gradient algorithm

Basic proximal-gradient scheme (ISTA)

- **1.** Choose $\mathbf{x}^0 \in \text{dom}(F)$ arbitrarily as a starting point.
- **2.** For $k = 0, 1, \dots$, generate a sequence $\{\mathbf{x}^k\}_{k \ge 0}$ as:

$$\mathbf{x}^{k+1} := \operatorname{prox}_{\alpha g} \left(\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k) \right),$$

where $\alpha := \frac{1}{L}$.

Proximal-gradient algorithm

Basic proximal-gradient scheme (ISTA)

- **1.** Choose $\mathbf{x}^0 \in \text{dom}(F)$ arbitrarily as a starting point.
- 2. For $k=0,1,\cdots$, generate a sequence $\{\mathbf{x}^k\}_{k\geq 0}$ as:

$$\mathbf{x}^{k+1} := \operatorname{prox}_{\alpha g} \left(\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k) \right),$$

where $\alpha := \frac{1}{L}$.

Theorem (Convergence of ISTA [3])

Let $\{\mathbf{x}^k\}$ be generated by ISTA. Then:

$$F(\mathbf{x}^k) - F^* \le \frac{L_f \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2}{2(k+1)}$$

The worst-case complexity to reach $F(\mathbf{x}^k) - F^\star \leq \varepsilon$ of (ISTA) is $\mathcal{O}\left(\frac{L_f R_0^2}{\varepsilon}\right)$, where $R_0 := \max_{\mathbf{x}^\star \in \mathcal{S}^\star} \|\mathbf{x}^0 - \mathbf{x}^\star\|_2$.

- \circ Oracles: $\operatorname{prox}_{\alpha q}(\cdot)$ and $\nabla f(\cdot)$.
- \circ Compared to the subgradient gradient method, the rate improves at the cost of prox-computation.

Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)

- **1.** Choose $\mathbf{x}^0 \in \text{dom}(F)$ arbitrarily as a starting point.
- **2.** Set $\mathbf{y}^0 := \mathbf{x}^0$ and $t_0 := 1$, $\alpha := L^{-1}$.
- 3. For $k=0,1,\ldots$, generate two sequences $\{\mathbf{x}^k\}_{k\geq 0}$ and $\{\mathbf{y}^k\}_{k\geq 0}$ as:

$$\left\{ \begin{array}{ll} \mathbf{x}^{k+1} & := \operatorname{prox}_{\alpha g} \left(\mathbf{y}^k - \alpha \nabla f(\mathbf{y}^k) \right), \\ t_{k+1} & := (1 + \sqrt{4t_k^2 + 1})/2, \\ \mathbf{y}^{k+1} & := \mathbf{x}^{k+1} + \frac{t_k - 1}{t_{k+1}} (\mathbf{x}^{k+1} - \mathbf{x}^k). \end{array} \right.$$

Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)

- **1.** Choose $\mathbf{x}^0 \in \text{dom}(F)$ arbitrarily as a starting point.
- **2.** Set $\mathbf{y}^0 := \mathbf{x}^0$ and $t_0 := 1$, $\alpha := L^{-1}$.
- **3.** For $k=0,1,\ldots$, generate two sequences $\{\mathbf{x}^k\}_{k\geq 0}$ and $\{\mathbf{y}^k\}_{k\geq 0}$ as:

$$\left\{ \begin{array}{ll} \mathbf{x}^{k+1} & := \operatorname{prox}_{\alpha g} \left(\mathbf{y}^k - \alpha \nabla f(\mathbf{y}^k) \right), \\ t_{k+1} & := (1 + \sqrt{4t_k^2 + 1})/2, \\ \mathbf{y}^{k+1} & := \mathbf{x}^{k+1} + \frac{t_k - 1}{t_{k+1}} (\mathbf{x}^{k+1} - \mathbf{x}^k). \end{array} \right.$$

Theorem (Convergence of FISTA [3])

Let $\{\mathbf{x}^k\}$ be generated by FISTA. Then:

$$F(\mathbf{x}^k) - F^* \le \frac{2L_f \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2}{(k+1)^2}$$

The worst-case complexity to reach $F(\mathbf{x}^k) - F^* \leq \varepsilon$ of (FISTA) is $\mathcal{O}\left(R_0\sqrt{\frac{L_f}{\varepsilon}}\right)$, $R_0 := \max_{\mathbf{x}^* \in \mathcal{S}^*} \|\mathbf{x}^0 - \mathbf{x}^*\|_2$.

Fast proximal-gradient algorithm

Fast proximal-gradient scheme (FISTA)

- **1.** Choose $\mathbf{x}^0 \in \text{dom}(F)$ arbitrarily as a starting point.
- **2.** Set $\mathbf{y}^0 := \mathbf{x}^0$ and $t_0 := 1$, $\alpha := L^{-1}$.
- 3. For $k=0,1,\ldots$, generate two sequences $\{\mathbf{x}^k\}_{k\geq 0}$ and $\{\mathbf{y}^k\}_{k\geq 0}$ as:

$$\left\{ \begin{array}{ll} \mathbf{x}^{k+1} & := \operatorname{prox}_{\alpha g} \left(\mathbf{y}^k - \alpha \nabla f(\mathbf{y}^k) \right), \\ t_{k+1} & := (1 + \sqrt{4t_k^2 + 1})/2, \\ \mathbf{y}^{k+1} & := \mathbf{x}^{k+1} + \frac{t_k - 1}{t_{k+1}} (\mathbf{x}^{k+1} - \mathbf{x}^k). \end{array} \right.$$

Remark:

From
$$\mathcal{O}\left(\frac{L_f R_0^2}{\epsilon}\right)$$
 to $\mathcal{O}\left(R_0 \sqrt{\frac{L_f}{\epsilon}}\right)$ iterations at almost no additional cost!.

Complexity per iteration

- ▶ One gradient $\nabla f(\mathbf{y}^k)$ and one prox-operator of g;
- ▶ 8 arithmetic operations for t_{k+1} and γ_{k+1} ;
- ▶ 2 more vector additions, and **one** scalar-vector multiplication.

The cost per iteration is almost the same as in gradient scheme if proximal operator of q is efficient.

Example 1: ℓ_1 -regularized least squares

Problem (ℓ_1 -regularized least squares)

Given $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^n$, solve:

$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \lambda \|\mathbf{x}\|_1 \right\},\tag{5}$$

where $\lambda > 0$ is a regularization parameter.

Complexity per iterations

- ► Evaluating $\nabla f(\mathbf{x}^k) = \mathbf{A}^T(\mathbf{A}\mathbf{x}^k \mathbf{b})$ requires one $\mathbf{A}\mathbf{x}$ and one $\mathbf{A}^T\mathbf{y}$.
- ▶ One soft-thresholding operator $\operatorname{prox}_{\lambda a}(\mathbf{x}) = \operatorname{sign}(\mathbf{x}) \otimes \max\{|\mathbf{x}| \lambda, 0\}.$
- ▶ Optional: Evaluating $L = \|\mathbf{A}^T\mathbf{A}\|$ (spectral norm) via power iterations

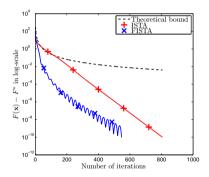
Synthetic data generation

- $ightharpoonup \mathbf{A} := \operatorname{randn}(n, p)$ standard Gaussian $\mathcal{N}(0, \mathbb{I})$.
- $ightharpoonup \mathbf{x}^{\star}$ is a k-sparse vector generated randomly.
- $\mathbf{b} := \mathbf{A} \mathbf{x}^* + \mathcal{N}(0.10^{-3}).$

Example 1: Theoretical bounds vs practical performance

Theoretical bounds

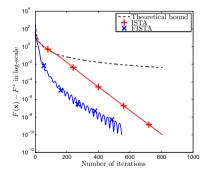
We have the following guarantees for FISTA := $\frac{2L_fR_0^2}{(k+2)^2}$ and for ISTA := $\frac{L_fR_0^2}{2(k+2)}$.

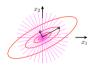


Example 1: Theoretical bounds vs practical performance

Theoretical bounds

We have the following guarantees for **FISTA** := $\frac{2L_fR_0^2}{(k+2)^2}$ and for **ISTA** := $\frac{L_fR_0^2}{2(k+2)}$.





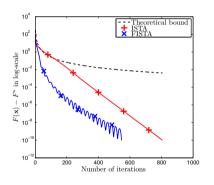
descent directions

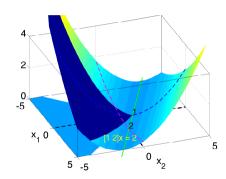
restricted descent directions

Example 1: Theoretical bounds vs practical performance

Theoretical bounds

We have the following guarantees for **FISTA** := $\frac{2L_fR_0^2}{(k+2)^2}$ and for **ISTA** := $\frac{L_fR_0^2}{2(k+2)}$.





Remarks:

- \circ $\ell_1\text{-regularized}$ least squares formulation has restricted strong convexity.
- o The proximal-gradient method can automatically exploit this structure.

Example 2: Sparse logistic regression

Problem (Sparse logistic regression)

Given $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \{-1, +1\}^n$, solve:

$$F^{\star} := \min_{\mathbf{x}, \beta} \left\{ F(\mathbf{x}) := \frac{1}{n} \sum_{j=1}^{n} \log \left(1 + \exp \left(-\mathbf{b}_{j} (\mathbf{a}_{j}^{T} \mathbf{x} + \beta) \right) \right) + \rho \|\mathbf{x}\|_{1} \right\}.$$

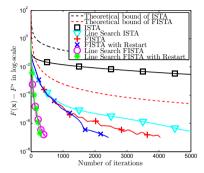
Real data

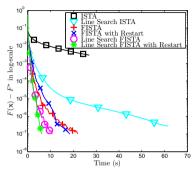
- ▶ Real data: w8a with n = 49'749 data points, p = 300 features
- Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters

- $\rho = 10^{-4}$.
- Number of iterations 5000, tolerance 10^{-7} .
- ▶ Ground truth: Solve problem up to 10^{-9} accuracy by TFOCS to get a high accuracy approximation of \mathbf{x}^* and F^* .

Example 2: Sparse logistic regression - numerical results





	ISTA	LS-ISTA	FISTA	FISTA-R	LS-FISTA	LS-FISTA-R
Number of iterations	5000	5000	4046	2423	447	317
CPU time (s)	26.975	61.506	21.859	18.444	10.683	6.228
Solution error $(\times 10^{-7})$	29370	2.774	1.000	0.998	0.961	0.985

When f is strongly convex: Algorithms

Proximal-gradient scheme (ISTA $_{\mu}$)

- 1. Given $\mathbf{x}^0 \in \mathbb{R}^p$ as a starting point.
- **2.** For $k=0,1,\cdots$, generate a sequence $\{\mathbf{x}^k\}_{k\geq 0}$ as:

$$\mathbf{x}^{k\!+\!1}\!:=\!\mathrm{prox}_{\alpha_kg}\!\!\left(\!\mathbf{x}^k\!-\!\alpha_k\nabla\!f(\mathbf{x}^k)\!\right)\!,$$

where $\alpha_k := 2/(L_f + \mu)$ is the optimal step-size.

Fast proximal-gradient scheme (FISTA₁₁)

- **1.** Given $\mathbf{x}^0 \in \mathbb{R}^p$ as a starting point. Set $\mathbf{y}^0 := \mathbf{x}^0$.
- **2.** For $k=0,1,\cdots$, generate sequences $\{\mathbf{x}^k\}_{k\geq 0}$ and $\{\mathbf{y}^k\}_{k\geq 0}$ as:

$$\begin{cases} \mathbf{x}^{k\!+\!1} := \operatorname{prox}_{\alpha_k g} \! \left(\mathbf{y}^k - \alpha_k \nabla f(\mathbf{y}^k) \right) \!, \\ \mathbf{y}^{k\!+\!1} := \mathbf{x}^{k+1} + \left(\frac{\sqrt{c_f} - 1}{\sqrt{c_f} + 1} \right) \! (\mathbf{x}^{k\!+\!1} - \mathbf{x}^k) , \end{cases}$$

where $c_f:=L_f/\mu$ and $\alpha_k:=L_f^{-1}$ is the optimal step-size.

When f is strongly convex: Convergence

Assumption

f is strongly convex with parameter $\mu > 0$, i.e., $f \in \mathcal{F}^{1,1}_{L,\mu}(\mathbb{R}^p)$.

Condition number: $c_f := \frac{L_f}{\mu} \geq 0.$

Theorem (ISTA $_{\mu}$ [14])

$$F(\mathbf{x}^k) - F^* \le \frac{L_f}{2} \left(\frac{c_f - 1}{c_f + 1} \right)^{2k} \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2.$$

Convergence rate: Linear with contraction factor: $\omega := \left(\frac{c_f-1}{c_f+1}\right)^2 = \left(\frac{L_f-\mu}{L_f+\mu}\right)^2$.

Theorem (**FISTA** $_{\mu}$ [14])

$$F(\mathbf{x}^k) - F^* \le \frac{L_f + \mu}{2} \left(1 - \sqrt{\frac{\mu}{L_f}} \right)^k \|\mathbf{x}^0 - \mathbf{x}^*\|_2^2.$$

Convergence rate: Linear with contraction factor: $\omega_f = \frac{\sqrt{L_f} - \sqrt{\mu}}{\sqrt{L_f}} < \omega$.

Summary of the worst-case complexities

Comparison

Complexity	Proximal-gradient scheme	Fast proximal-gradient scheme
Complexity $[\mu = 0]$	$\mathcal{O}\left(R_0^2(L_f/\varepsilon)\right)$	$\mathcal{O}\left(R_0\sqrt{L_f/\varepsilon}\right)$
Per iteration		1-gradient, 1-prox, 2- sv , 3- $v+$
Complexity $[\mu > 0]$	$\mathcal{O}\left(\kappa\log(\varepsilon^{-1})\right)$	$\mathcal{O}\left(\sqrt{\kappa}\log(\varepsilon^{-1})\right)$
Per iteration	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-gradient, 1-prox, 1- sv , 2- $v+$

Here: sv = scalar-vector multiplication, v+= vector addition. $R_0 := \max_{\mathbf{x}^\star \in \mathcal{S}^\star} \|\mathbf{x}^0 - \mathbf{x}^\star\|$ and $\kappa = L_f/\mu_f$ is the condition number.

Summary of the worst-case complexities

Comparison

Complexity	Proximal-gradient scheme	Fast proximal-gradient
		scheme
Complexity $[\mu=0]$	$\mathcal{O}\left(R_0^2(L_f/\varepsilon)\right)$	$\mathcal{O}\left(R_0\sqrt{L_f/arepsilon} ight)$
Per iteration	1-gradient, 1-prox, 1-sv, 1-	1-gradient, 1-prox, 2-sv, 3-
	v+	v+
Complexity $[\mu > 0]$	$\mathcal{O}\left(\kappa\log(\varepsilon^{-1})\right)$	$\mathcal{O}\left(\sqrt{\kappa}\log(\varepsilon^{-1})\right)$
Per iteration	1-gradient, 1-prox, 1-sv, 1-	1-gradient, 1-prox, 1-sv, 2-
	v+	v+

Here: sv = scalar-vector multiplication, v+= vector addition. $R_0 := \max_{\mathbf{x}^\star \in \mathcal{S}^\star} \|\mathbf{x}^0 - \mathbf{x}^\star\|$ and $\kappa = L_f/\mu_f$ is the condition number.

Need alternatives when

• computing $\nabla f(\mathbf{x})$ is much costlier than computing prox_q

Summary of the worst-case complexities

Comparison

Complexity	Proximal-gradient scheme	Fast proximal-gradient
		scheme
Complexity $[\mu=0]$	$\mathcal{O}\left(R_0^2(L_f/arepsilon)\right)$	$\mathcal{O}\left(R_0\sqrt{L_f/arepsilon} ight)$
Per iteration	1-gradient, 1-prox, 1- sv , 1-	1-gradient, 1-prox, 2- sv , 3-
	v+	v+
Complexity $[\mu > 0]$	$\mathcal{O}\left(\kappa\log(\varepsilon^{-1})\right)$	$\mathcal{O}\left(\sqrt{\kappa}\log(\varepsilon^{-1})\right)$
Per iteration	1-gradient, 1-prox, 1- sv , 1-	1-gradient, 1-prox, 1- sv , 2-
	v+	v+

Here: sv = scalar-vector multiplication, v+= vector addition. $R_0 := \max_{\mathbf{x}^\star \in \mathcal{S}^\star} \|\mathbf{x}^0 - \mathbf{x}^\star\|$ and $\kappa = L_f/\mu_f$ is the condition number.

Need alternatives when

• computing $\nabla f(\mathbf{x})$ is much costlier than computing prox_q

Software

TFOCS is a good software package to learn about first order methods.

http://cvxr.com/tfocs/

Composite minimization: Non-convex case

Problem (Unconstrained composite minimization)

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$
 (CM)

- ▶ $g: \mathbb{R}^p \to \mathbb{R} \cup \{\infty\}$ is proper, closed, convex, and (possibly) nonsmooth.
- $f: \mathbb{R}^p \to \mathbb{R}$ is proper and closed, dom(f) is convex, and f is L_f -smooth.
- $ightharpoonup \operatorname{dom}(F) := \operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset \text{ and } -\infty < F^{\star} < +\infty.$
- ▶ The solution set $S^* := \{ \mathbf{x}^* \in \text{dom}(F) : F(\mathbf{x}^*) = F^* \}$ is nonempty.

A different quantification of convergence: Gradient mapping

Definition (Gradient mapping)

Let prox_g denote the proximal operator of g and $\lambda>0$ some real constant. Then, the gradient mapping operator is defined as

$$\mathcal{G}_{\lambda}(\mathbf{x}) := \frac{1}{\lambda} \left(\mathbf{x} - \operatorname{prox}_{\lambda g}(\mathbf{x} - \lambda \nabla f(\mathbf{x})) \right).$$

Properties [2]

- $\|\mathcal{G}_{\lambda}(\mathbf{x})\| = 0 \iff \mathbf{x} \text{ is a stationary point.}$
- $\qquad \qquad \text{Lipschitz continuity: } \left\| \mathcal{G}_{\frac{1}{L}}(\mathbf{x}) \mathcal{G}_{\frac{1}{L}}(\mathbf{y}) \right\| \leq (2L + L_f) \left\| \mathbf{x} \mathbf{y} \right\|$

Why do we care about gradient mapping?

- ▶ It is the generalization of the gradient of f, $\nabla f(\mathbf{x})$
- ► Recall prox-gradient update: $\mathbf{x}^{t+1} = \text{prox}_{\lambda g}(\mathbf{x}^t \lambda \nabla f(\mathbf{x}^t))$, which is equivalent to $\mathbf{x}^{t+1} = \mathbf{x}^t \lambda \mathcal{G}_{\lambda}(\mathbf{x}^t)$.
- ▶ In fact, when $\text{prox}_q = \mathbb{I}$, then, $\mathcal{G}_{\lambda}(\mathbf{x}) = \frac{1}{\lambda} (\mathbf{x} (\mathbf{x} \lambda \nabla f(\mathbf{x}))) = \nabla f(\mathbf{x})$.

Sufficient Decrease property for proximal-gradient

Assumption

- f is L_f -smooth.
- ▶ g is proper, closed, convex, and (possibly) nonsmooth. g is proximally tractable.

$$\mathbf{x}^{k+1} := \operatorname{prox}_{\frac{1}{L}g} \left(\mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k) \right)$$

Lemma (Sufficient decrease [2])

For any $\mathbf{x} \in \operatorname{int}(\operatorname{dom}(f))$ and $L \in (\frac{L_f}{2}, \infty)$, it holds that

$$F(\mathbf{x}^{k+1}) \le F(\mathbf{x}^k) - \frac{L - \frac{L_f}{2}}{L^2} \left\| \mathcal{G}_{\frac{1}{L}}(\mathbf{x}^k) \right\|_2^2, \tag{6}$$

Corollary

$$F(\mathbf{x}^{k+1}) \le F(\mathbf{x}^k) - \frac{1}{2L_f} \left\| \mathcal{G}_{\frac{1}{L_f}}(\mathbf{x}^k) \right\|_2^2, \quad \text{for } L = L_f$$

Non-convex case: Convergence

Basic proximal-gradient scheme

- **1.** Choose $\mathbf{x}^0 \in \text{dom}(F)$ arbitrarily as a starting point.
- 2. For $k=0,1,\cdots$, generate a sequence $\{\mathbf{x}^k\}_{k\geq 0}$ as:

$$\mathbf{x}^{k+1} := \operatorname{prox}_{\alpha g} \left(\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k) \right),$$

where $\alpha := \left(0, \frac{2}{L_f}\right)$.

Theorem (Convergence of proximal-gradient method: Non-convex [2])

Let $\{\mathbf{x}^k\}$ be generated by proximal-gradient scheme above. Then, we have

$$\min_{i=0,1,\cdots,k} \|\mathcal{G}_{\alpha}(\mathbf{x}^i)\|_2^2 \leq \frac{F(\mathbf{x}^0) - F(\mathbf{x}^\star)}{M(k+1)}, \qquad \qquad \text{where } M := \alpha^2 \left(\frac{1}{\alpha} - \frac{L_f}{2}\right)$$

- When $\alpha = \frac{1}{L_f}$, $M = \frac{1}{2L_f}$.
- ► The worst-case complexity to reach $\min_{i=0,1,\cdots,k} \|\mathcal{G}_{\alpha}(\mathbf{x}^i)\|_2^2 \leq \varepsilon$ is $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$.

Stochastic convex composite minimization

Problem (Mathematical formulation)

Consider the following composite convex minimization problem:

$$F^{\star} = \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := \mathbb{E}_{\theta}[F(\mathbf{x}, \theta)] := \mathbb{E}_{\theta}[f(\mathbf{x}, \theta) + g(\mathbf{x}, \theta)] \right\}$$

- \triangleright θ is a random vector whose probability distribution is supported on set Θ .
- ▶ The solution set $S^* := \{ \mathbf{x}^* \in \text{dom}(F) : F(\mathbf{x}^*) = F^* \}$ is nonempty.
- ▶ Oracles: (sub)gradient of $f(\cdot, \theta)$, $\nabla f(\mathbf{x}, \theta)$, and stochastic prox operator of $g(\cdot, \theta)$, $\operatorname{prox}_{q(\cdot, \theta)}(\mathbf{x})$.

Remark

- \circ In this setting, we replace $\nabla f(\cdot)$ with its stochastic estimates.
- \circ It is possible to replace $\text{prox}_a(\cdot)$ with its stochastic estimate (advanced material).

Stochastic proximal gradient method

Stochastic proximal gradient method (SPG)

- **1.** Choose $\mathbf{x}^0 \in \mathbb{R}^p$ and $(\gamma_k)_{k \in \mathbb{N}} \in]0, +\infty[^{\mathbb{N}}]$.
- **2.** For k = 0, 1, ... perform:

$$\mathbf{x}^{k+1} = \mathbf{prox}_{\gamma_k g(\cdot, \theta)}(\mathbf{x}^k - \gamma_k G(\mathbf{x}^k, \theta_k)).$$

Definitions:

- $\circ \ \mathbf{prox}_{\boldsymbol{\lambda}g(\cdot,\boldsymbol{\theta})} := \arg \min_{\mathbf{y} \in \mathbb{R}^p} \left\{ g(\mathbf{y},\boldsymbol{\theta}) + \frac{1}{2\lambda} \|\mathbf{y} \mathbf{x}\|^2 \right\}$
- $\circ \{\theta_k\}_{k=0,1,\dots}$: sequence of independent random variables.
- $\circ G(\mathbf{x}^k, \theta_k) \in \partial f(\mathbf{x}^k, \theta_k)$: an unbiased estimate of the deterministic (sub)gradient:

$$\mathbb{E}[G(\mathbf{x}^k, \theta_k)] \in \partial f(\mathbf{x}^k).$$

Stochastic proximal gradient method

Stochastic proximal gradient method (SPG)

- **1.** Choose $\mathbf{x}^0 \in \mathbb{R}^p$ and $(\gamma_k)_{k \in \mathbb{N}} \in]0, +\infty[^{\mathbb{N}}]$.
- **2.** For $k = 0, 1, \ldots$ perform:

$$\mathbf{x}^{k+1} = \operatorname{prox}_{\gamma_k g(\cdot, \theta)}(\mathbf{x}^k - \gamma_k G(\mathbf{x}^k, \theta_k)).$$

Definitions:

- $\circ \operatorname{prox}_{\lambda q(\cdot, \theta)} := \arg \min_{\mathbf{y} \in \mathbb{R}^p} \left\{ g(\mathbf{y}, \theta) + \frac{1}{2\lambda} \|\mathbf{y} \mathbf{x}\|^2 \right\}$
- $\circ \{\theta_k\}_{k=0,1,\dots}$: sequence of independent random variables.
- $\circ G(\mathbf{x}^k, \theta_k) \in \partial f(\mathbf{x}^k, \theta_k)$: an unbiased estimate of the deterministic (sub)gradient:

$$\mathbb{E}[G(\mathbf{x}^k, \theta_k)] \in \partial f(\mathbf{x}^k).$$

Remark

Cost of computing $G(\mathbf{x}^k, \theta_k)$ is usually much cheaper than $\nabla f(\mathbf{x}^k)$.

Convergence analysis

Assumptions for the problem setting

- $f(\cdot, \theta)$ and $g(\cdot, \theta)$ are convex functions in the first argument, g is proximally-tractable.
- ▶ (Sub)gradients of F satisfy stochastic bounded gradient condition: $\exists C \geq 0, B \geq 0$ such that

$$\mathbb{E}_{\theta}[\|\partial F(\mathbf{x}, \theta)\|^2] \le B^2 + C(F(\mathbf{x}) - F(\mathbf{x}^*)).$$

 $ightharpoonup \mathbb{E}[\left\|\mathbf{x}^t - \mathbf{x}^\star\right\|^2] \le R^2 \text{ for all } t \ge 0.$

Implications of the assumptions

- None of the above assumptions enforce that f is smooth.
- ▶ Stochastic bounded gradient condition holds with C = 0 when both $f(\cdot, \theta)$ and $g(\cdot, \theta)$ are Lipschitz continuous.
- ▶ The same condition holds when $f(\cdot,\theta)$ is L_f -smooth and $g(\cdot,\theta)$ is Lipschitz continuous.
- ▶ However, for the upcoming theorem, we will take C > 0, which rules out the case when both functions are only Lipschitz continuous.

Convergence analysis

Assumptions for the problem setting

- $ightharpoonup f(\cdot, \theta)$ and $g(\cdot, \theta)$ are convex functions in the first argument, g is proximally-tractable.
- (Sub)gradients of F satisfy stochastic bounded gradient condition: $\exists C \geq 0, B \geq 0$ such that

$$\mathbb{E}_{\theta}[\|\partial F(\mathbf{x}, \theta)\|^2] \le B^2 + C(F(\mathbf{x}) - F(\mathbf{x}^*)).$$

 $ightharpoonup \mathbb{E}[\left\|\mathbf{x}^t - \mathbf{x}^\star\right\|^2] \le R^2 \text{ for all } t \ge 0.$

Theorem (Ergodic convergence [12])

- Assume the above assumptions hold with C > 0.
- Let the sequence $\{\mathbf{x}^k\}_{k>0}$ be generated by SPG.
- Set $\gamma_k = 1/(C\sqrt{k})$

Conclusion:

• Define $\bar{\mathbf{x}}^k = \frac{1}{k} \sum_{i=0}^{k-1} \mathbf{x}^i$, then

$$\mathbb{E}[F(\bar{\mathbf{x}}^k) - F(\mathbf{x}^*)] \le \frac{1}{\sqrt{k}} \left(R^2 C + \frac{B^2}{C} \right), \quad \forall k \ge 1.$$

Revisiting a special composite structure

A basic constrained problem setting

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) + \delta_{\mathcal{X}}(\mathbf{x}) \right\} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{X} \right\}, \tag{7}$$

Assumptions

- \triangleright \mathcal{X} is nonempty, convex and compact (closed and bounded) where $\delta_{\mathcal{X}}$ is its indicator function.
- $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$ (i.e., convex with Lipschitz gradient).

Recall proximal gradient algorithm

Basic proximal-gradient scheme (ISTA)

- **1.** Choose $\mathbf{x}^0 \in \text{dom}(F)$ arbitrarily as a starting point.
- **2.** For $k=0,1,\cdots$, generate a sequence $\{\mathbf{x}^k\}_{k\geq 0}$ as:

$$\mathbf{x}^{k+1} := \operatorname{prox}_{\alpha g} \left(\mathbf{x}^k - \alpha \nabla f(\mathbf{x}^k) \right)$$

where $\alpha := 1/L$.

ightharpoonup Prox-operator of indicator of \mathcal{X} is projection onto \mathcal{X} \Longrightarrow ensures feasibility

How else can we ensure feasibility?

Frank-Wolfe's approach - I

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \bigg\{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{X} \bigg\},$$

Conditional gradient method (CGM, see [10] for review)

A plausible strategy which dates back to 1956 [6]. At iteration k:

1. Consider the linear approximation of f at \mathbf{x}^k

$$\phi_k(\mathbf{x}) := f(\mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T (\mathbf{x} - \mathbf{x}^k)$$

2. Minimize this approximation within constraint set

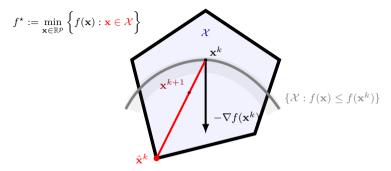
$$\hat{\mathbf{x}}^k \in \min_{\mathbf{x} \in \mathcal{X}} \phi_k(\mathbf{x}) = \min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x}$$

3. Take a step towards $\hat{\mathbf{x}}^k$ with step-size $\gamma_k \in [0,1]$

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \gamma_k (\hat{\mathbf{x}}^k - \mathbf{x}^k)$$

 \mathbf{x}^{k+1} is feasible since it is convex combination of two other feasible points.

Frank-Wolfe's approach - II



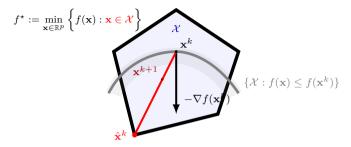
Conditional gradient method (CGM)

- 1. Choose $\mathbf{x}^0 \in \mathcal{X}$.
- **2.** For k = 0, 1, ... perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x} \\ \mathbf{x}^{k+1} &:= (1-\gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where $\gamma_k := \frac{2}{k+2}$.

On the linear minimization oracle



Definition (Linear minimization oracle)

Let \mathcal{X} be a convex, closed and bounded set. Then, the linear minimization oracle of \mathcal{X} ($lmo_{\mathcal{X}}$) returns a vector $\hat{\mathbf{x}}$ such that

$$\operatorname{lmo}_{\mathcal{X}}(\mathbf{x}) := \hat{\mathbf{x}} \in \arg\min_{\mathbf{y} \in \mathcal{X}} \mathbf{x}^{T} \mathbf{y}$$
(8)

- $ightharpoonup \operatorname{lmo}_{\mathcal{X}}$ returns an extreme point of \mathcal{X} .
- ▶ $lmo_{\mathcal{X}}$ is arguably cheaper than projection.
- $ightharpoonup \operatorname{lmo}_{\mathcal{X}}$ is not single valued, note \in in the definition.

Convergence guarantees of CGM

Problem setting

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{X} \right\},$$

Assumptions

- \triangleright \mathcal{X} is nonempty, convex, closed and bounded.
- $f \in \mathcal{F}^{1,1}_L(\mathbb{R}^p)$ (i.e., convex with Lipschitz gradient).

Theorem

Under assumptions listed above, CGM with step size $\gamma_k = \frac{2}{k+2}$ satisfies

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) \le \frac{4LD_{\mathcal{X}}^2}{k+1}$$
 (9)

where $D_{\mathcal{X}} := \max_{\mathbf{x}, \mathbf{y} \in \mathcal{X}} \|\mathbf{x} - \mathbf{y}\|_2$ is diameter of constraint set.

Convergence guarantees of CGM: A faster rate

Problem setting

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \bigg\{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{X} \bigg\},$$

Assumptions

- \triangleright \mathcal{X} is nonempty, α -strongly convex, closed and bounded.
- $f \in \mathcal{F}^{1,1}_{L,\mu}(\mathbb{R}^p)$ (i.e., strongly convex with Lipschitz gradient).

Definition (α -strongly convex set) [7]

A convex set $\mathcal{X} \in \mathbb{R}^{p \times p}$ is α -strongly convex with respect to $\|\cdot\|$ if for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, any $\gamma \in [0,1]$ and any vector $\mathbf{z} \in \mathbb{R}^{p \times p}$ such that $\|\mathbf{z}\| = 1$, it holds that

$$\gamma \mathbf{x} + (1 - \gamma)\mathbf{y} + \gamma(1 - \gamma)\frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|^2 \mathbf{z} \in \mathcal{X}$$

More clearly, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$, the ball centered at $\gamma \mathbf{x} + (1 - \gamma) \mathbf{y}$ with radius $\gamma (1 - \gamma) \frac{\alpha}{2} \|\mathbf{x} - \mathbf{y}\|^2$ is contained in \mathcal{X} .

CGM for strongly convex objective + strongly convex set

Conditional gradient method - CGM2

- 1. Choose $\mathbf{x}^0 \in \mathcal{X}$.
- **2.** For $k = 0, 1, \ldots$ perform:

$$\begin{cases} \hat{\mathbf{x}}^k & := \arg\min_{\mathbf{x} \in \mathcal{X}} \nabla f(\mathbf{x}^k)^T \mathbf{x} \\ \gamma_k & := \arg\min_{\gamma \in [0,1]} \gamma \left\langle \hat{\mathbf{x}}^k - \mathbf{x}^k, \nabla f(\mathbf{x}^k) \right\rangle + \gamma^2 \frac{L}{2} \left\| \hat{\mathbf{x}}^k - \mathbf{x}^k \right\|^2 \\ \mathbf{x}^{k+1} & := (1 - \gamma_k) \mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

Theorem ([7])

Under assumptions listed previously, CGM2 satisfies

$$f(\mathbf{x}^k) - f(\mathbf{x}^*) = \mathcal{O}\left(\frac{1}{k^2}\right)$$
(10)

Example: lmo of nuclear-norm bal

$$\text{Consider }\delta_{\mathcal{X}}, \text{ the indicator of nuclear-norm ball }\mathcal{X}:=\left\{\mathbf{X}:\mathbf{X}\in\mathbb{R}^{p\times p}, \ \left\|\mathbf{X}\right\|_{*}\leq\alpha\right\}$$

lmo of nuclear-norm ball

$$\mathrm{lmo}_{\mathcal{X}}(\mathbf{X}) := \hat{\mathbf{X}} \in \mathrm{arg} \min_{\mathbf{Y} \in \mathcal{X}} \ \langle \mathbf{Y}, \mathbf{X} \rangle$$

This can be computed as follows:

- ightharpoonup Compute top singular vectors of \mathbf{X} \implies $(\mathbf{u}_1, \sigma_1, \mathbf{v}_1) = \mathtt{svds}(\mathbf{X}, 1)$.
- Form the rank-1 output \implies $\mathbf{X} = -\mathbf{u}_1 lpha \mathbf{v}_1^T$

We can efficiently approximate top singular vectors by power method!

EPFL

Proximal gradient vs. Frank-Wolfe

Definitions:

- ightharpoonup Here: sv = scalar-vector multiplication, v+=vector addition.
- $ightharpoonup R_0 := \max_{\mathbf{x}^* \in \mathcal{S}^*} \|\mathbf{x}^0 \mathbf{x}^*\|$ is the maximum initial distance.
- $D_{\mathcal{X}} := \max_{\mathbf{x}, \mathbf{y} \in \mathcal{X}} \|\mathbf{x} \mathbf{y}\|_2$ is diameter of constraint set \mathcal{X} .

Algorithm	Proximal-gradient scheme	Frank-Wolfe method
Rate	$\int \mathcal{O}\left((L_f R_0^2)/k\right)$	$\mathcal{O}\left((L_f D_{\mathcal{X}}^2)/k\right)$
Complexity	$\mathcal{O}\left(R_0^2(L_f/arepsilon)\right)$	$\mathcal{O}\left(D_{\mathcal{X}}^2(L_f/arepsilon) ight)$
Per iteration	1-gradient, 1 -prox, 1 - sv , 1 -	1-gradient, 1-lmo, 2- sv , 1-
	v+	v+

How do prox operator and lmo compare in practice?

An example with matrices

Problem Definition

$$\min_{\mathbf{X} \in \mathbb{R}^{p \times p}} f(\mathbf{X}) + g(\mathbf{X})$$

- $\blacktriangleright \ \, \mathsf{Define} \,\, g(\mathbf{X}) = \delta_{\mathcal{X}}(\mathbf{X}) \mathsf{,} \,\, \mathsf{where} \,\, \mathcal{X} := \left\{ \mathbf{X} : \mathbf{X} \in \mathbb{R}^{p \times p}, \,\, \left\| \mathbf{X} \right\|_* \leq \alpha \right\} \,\, \mathsf{is} \,\, \mathsf{nuclear} \,\, \mathsf{norm} \,\, \mathsf{ball}.$
- ► This problem is equivalent to:

$$\min_{\mathbf{X} \in \mathcal{X}} f(\mathbf{X})$$

Observations

- $\operatorname{prox}_{q} = \pi_{\mathcal{X}}$. Projection requires full SVD, $\mathcal{O}(p^{3})$.
- \blacktriangleright lmo computes (approximately) top singular vectors, roughly in $\approx \mathcal{O}(p^2)$ with Lanczos algorithm.

Example: Phase retrieval

Phase retrieval

Aim: Recover signal $\mathbf{x}^{\natural} \in \mathbb{C}^p$ from the measurements $\mathbf{b} \in \mathbb{R}^n$:

$$b_i = \left| \langle \mathbf{a}_i, \mathbf{x}^{\dagger} \rangle \right|^2 + \omega_i.$$

 $(\mathbf{a}_i \in \mathbb{C}^p \text{ are known measurement vectors, } \omega_i \text{ models noise}).$

ullet Non-linear measurements o **non-convex** maximum likelihood estimators.

PhaseLift [5]

Phase retrieval can be solved as a convex matrix completion problem, following a combination of

- ightharpoonup semidefinite relaxation $(\mathbf{x}^{\natural}\mathbf{x}^{\natural}^{H}=\mathbf{X}^{\natural})$
- ightharpoonup convex relaxation $(\mathtt{rank} o \| \cdot \|_*)$

albeit in terms of the lifted variable $\mathbf{X} \in \mathbb{C}^{p \times p}$.

Example: Phase retrieval - II

Problem formulation

We solve the following PhaseLift variant:

$$f^* := \min_{\mathbf{X} \in \mathbb{C}^{p \times p}} \left\{ \frac{1}{2} \| \mathcal{A}(\mathbf{X}) - \mathbf{b} \|_2^2 : \| \mathbf{X} \|_* \le \kappa, \quad \mathbf{X} \ge 0 \right\}.$$
 (11)

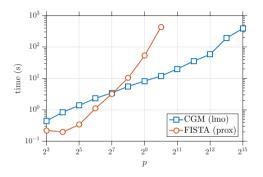
Experimental setup [18]

Coded diffraction pattern measurements, $\mathbf{b} = [\mathbf{b}_1, \dots, \mathbf{b}_L]$ with L = 20 different masks

$$\mathbf{b}_\ell = |\mathtt{fft}(\mathbf{d}_\ell^H \odot \mathbf{x}^{
atural})|^2$$

- $ightarrow \odot$ denotes Hadamard product; $|\cdot|^2$ applies element-wise
- ightarrow \mathbf{d}_ℓ are randomly generated octonary masks (distributions as proposed in [5])
- \rightarrow Parametric choices: $\lambda^0 = \mathbf{0}^n$; $\epsilon = 10^{-2}$; $\kappa = \text{mean}(\mathbf{b})$.

Example: Phase retrieval - III



Test with synthetic data: Prox vs sharp

- ightarrow Synthetic data: $\mathbf{x}^{\natural} = \mathtt{randn}(p,1) + i \cdot \mathtt{randn}(p,1)$.
- ightarrow Stopping criteria: $\frac{\|\mathbf{x}^{\natural} \mathbf{x}^{k}\|_{2}}{\|\mathbf{x}^{\natural}\|_{2}} \leq 10^{-2}$.
- \rightarrow Averaged over 10 Monte-Carlo iterations.

Note that the problem is $p \times p$ dimensional!

A basic constrained non-convex problem

Problem setting

$$f^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ f(\mathbf{x}) : \mathbf{x} \in \mathcal{X} \right\},$$

Assumptions

- \triangleright \mathcal{X} is nonempty, convex, closed and bounded.
- ▶ f has *L*-Lipschitz continuous gradients, but it is **non-convex**.

Stationary point

Due to constraints, $\|\nabla f(\mathbf{x}^*)\| = 0$ may not hold!

Frank-Wolfe gap: Following measure, known as FW-gap, generalizes the definition of stationary point for constrained problems:

$$g_{FW}(\mathbf{x}) := \max_{\mathbf{y} \in \mathcal{X}} (\mathbf{x} - \mathbf{y})^T \nabla f(\mathbf{x})$$

- $ightharpoonup g_{FW}(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in \mathcal{X}$.
- $\mathbf{x} \in \mathcal{X}$ is a stationary point if and only if $g_{FW}(\mathbf{x}) = 0$.

CGM for non-convex problems

CGM for non-convex problems

- **1.** Choose $\mathbf{x}^0 \in \mathcal{X}$, K > 0 total number of iterations.
- **2.** For k = 0, 1, ..., K 1 perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \text{Imo}_{\mathcal{X}}(\nabla f(\mathbf{x}^k)) \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k)\mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where $\gamma_k := \frac{1}{\sqrt{K+1}}$.

Theorem

Denote $\bar{\mathbf{x}}$ chosen uniformly random from $\{\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^K\}$. Then, CGM satisfies

$$\min_{k=1,2,\ldots,K} g_{FW}(\mathbf{x}^k) \leq \mathbb{E}[g_{FW}(\bar{\mathbf{x}})] \leq \frac{1}{\sqrt{K}} \left(f(\mathbf{x}^0) - f^* + \frac{LD^2}{2} \right).$$

* There exist stochastic CGM methods for non-convex problems. See [16] for details.

A basic constrained stochastic problem

Problem setting (Stochastic)

$$f^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \mathbb{E}[f(\mathbf{x}, \theta)] : \mathbf{x} \in \mathcal{X} \right\}, \tag{12}$$

Assumptions

- ightharpoonup heta is a random vector whose probability distribution is supported on set Θ
- $\triangleright \mathcal{X}$ is nonempty, convex, closed and bounded.
- $f(\cdot,\theta) \in \mathcal{F}_L^{1,1}(\mathbb{R}^p)$ for all θ (i.e., convex with Lipschitz gradient).

Example (Finite-sum model)

$$\mathbb{E}[f(\mathbf{x}, \theta)] = \frac{1}{n} \sum_{j=1}^{n} f_j(\mathbf{x})$$

- $i = \theta$ is a drawn uniformly from $\Theta = \{1, 2, \dots, n\}$
- $f_j \in \mathcal{F}_I^{1,1}(\mathbb{R}^p)$ for all j (i.e., convex with Lipschitz gradient).

Stochastic conditional gradient method

Stochastic conditional gradient method (SFW)

- 1. Choose $\mathbf{x}^0 \in \mathcal{X}$.
- **2.** For $k = 0, 1, \ldots$ perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \text{lmo}_{\mathcal{X}}(\tilde{\nabla}f(\mathbf{x}^k, \theta_k)) \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k)\mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where $\gamma_k := \frac{2}{k+2}$, and $\tilde{\nabla} f$ is an unbiased estimator of ∇f .

Theorem [9]

Assume that the following variance condition holds

$$\mathbb{E}\left\|\nabla f(\mathbf{x}^k) - \tilde{\nabla} f(\mathbf{x}^k, \theta_k)\right\|^2 \le \left(\frac{LD}{k+1}\right)^2. \tag{*}$$

EPFL

Then, the iterates of SFW satisfies

$$\mathbb{E}[f(\mathbf{x}^k, \theta)] - f^* \le \frac{4LD^2}{k+1}.$$

 $(\star) \rightarrow SFW$ requires decreasing variance!

Stochastic conditional gradient method

Stochastic conditional gradient method (SFW)

- 1. Choose $\mathbf{x}^0 \in \mathcal{X}$.
- **2.** For k = 0, 1, ... perform:

$$\begin{cases} \hat{\mathbf{x}}^k &:= \text{lmo}_{\mathcal{X}}(\tilde{\nabla}f(\mathbf{x}^k, \theta_k)) \\ \mathbf{x}^{k+1} &:= (1 - \gamma_k)\mathbf{x}^k + \gamma_k \hat{\mathbf{x}}^k, \end{cases}$$

where $\gamma_k:=\frac{2}{k+2}$, and $\tilde{\nabla} f$ is an unbiased estimator of ∇f .

Example (Finite-sum model)

$$\mathbb{E}[f(\mathbf{x}, \theta)] = \frac{1}{n} \sum_{j=1}^{n} f_j(\mathbf{x})$$

Assume f_j is G-Lipschitz continuous for all j. Suppose that \mathcal{S}_k is a random sampling (with replacement) from $\Theta = \{1, 2, \dots, n\}$. Then,

$$\tilde{\nabla} f(\mathbf{x}^k, \theta_k) := \frac{1}{|\mathcal{S}_k|} \sum_{j \in \mathcal{S}_k} f_j(\mathbf{x}^k) \quad \Longrightarrow \quad \mathbb{E} \left\| \nabla f(\mathbf{x}) - \tilde{\nabla} f(\mathbf{x}, \theta_k) \right\|^2 \le \frac{G^2}{|\mathcal{S}_k|}.$$

Hence, by choosing $|S_k| = (\frac{G(k+1)}{LD})^2$ we satisfy the variance condition for SFW.

Wrap up!

o Monday is for trade-offs :)

*Expanding on prox operator and optimality condition

Notes

- ▶ By definition, $g(\mathbf{y}) + \frac{1}{2\lambda} \|\mathbf{y} \mathbf{x}\|^2$ attains its minimum when $\mathbf{y} = \text{prox}_{\lambda g}(\mathbf{x})$.
- One can see that $g(y) + \frac{1}{2\lambda} \|y x\|^2$ is convex, and prox operator computes its minimizer over \mathbb{R}^p .
- As a result, subdifferential of $g(\mathbf{y}) + \frac{1}{2\lambda} \|\mathbf{y} \mathbf{x}\|^2$ at the minimizer $(\mathbf{y} = \text{prox}_{\lambda g}(\mathbf{x}))$ should include 0.
- ▶ Hence, $0 \in \partial g(\operatorname{prox}_{\lambda g}(\mathbf{x})) + \frac{1}{\lambda} \left(\operatorname{prox}_{\lambda g}(\mathbf{x}) \mathbf{x}\right)$.
- After rearranging the above inclusion we obtain: $\mathbf{x} \in \lambda \partial g(\operatorname{prox}_{\lambda g}(\mathbf{x})) + \operatorname{prox}_{\lambda g}(\mathbf{x})$
- ▶ We can rewrite the RHS as a single function: $\lambda \partial g(\operatorname{prox}_{\lambda g}(\mathbf{x})) + \operatorname{prox}_{\lambda g}(\mathbf{x}) = (\lambda \partial g + \mathbb{I})(\operatorname{prox}_{\lambda g}(\mathbf{x}))$
- ► The inclusion becomes: $\mathbf{x} \in (\lambda \partial g + \mathbb{I})(\text{prox}_{\lambda g}(\mathbf{x}))$.
- Finally, we compute the inverse of $(\lambda \partial g + \mathbb{I})(\cdot)$ to conclude: $\operatorname{prox}_{\lambda g}(\mathbf{x}) = (\lambda \partial g + \mathbb{I})^{-1}(\mathbf{x})$.
- o In the literature, $(\lambda \partial q + 1)^{-1}$ is called the resolvent of the subdifferential of q with parameter λ .
- o This is just a technical term that stands for proximal operator of λg , as we have defined in this course.

*A short detour: Basic properties of prox-operator

Property (Basic properties of prox-operator)

- 1. $\operatorname{prox}_g(\mathbf{x})$ is well-defined and single-valued (i.e., the prox-operator (2) has a unique solution since $g(\cdot) + (1/2) \|\cdot \mathbf{x}\|_2^2$ is strongly convex).
- 2. Optimality condition:

$$\mathbf{x} \in \operatorname{prox}_g(\mathbf{x}) + \partial g(\operatorname{prox}_g(\mathbf{x})), \ \mathbf{x} \in \mathbb{R}^p.$$

3. \mathbf{x}^* is a fixed point of $\operatorname{prox}_q(\cdot)$:

$$0 \in \partial g(\mathbf{x}^*) \Leftrightarrow \mathbf{x}^* = \operatorname{prox}_q(\mathbf{x}^*).$$

4. Nonexpansiveness:

$$\|\operatorname{prox}_g(\mathbf{x}) - \operatorname{prox}_g(\tilde{\mathbf{x}})\|_2 \le \|\mathbf{x} - \tilde{\mathbf{x}}\|_2, \ \ \forall \mathbf{x}, \tilde{\mathbf{x}} \in \mathbb{R}^p.$$

Note: An operator is called *non-expansive* if it is L-Lipschitz continuous with L=1.

*Adaptive Restart

It is possible the preserve $\mathcal{O}(1/k^2)$ convergence guarantee!

One needs to slightly modify the algorithm as below.

Generalized fast proximal-gradient scheme

- **1.** Choose $\mathbf{x}^0 = \mathbf{x}^{-1} \in \text{dom}(F)$ arbitrarily as a starting point.
- **2.** Set $\theta_0 = \theta_{-1} = 1$, $\lambda := L_f^{-1}$
- 3. For $k=0,1,\ldots$, generate two sequences $\{\mathbf{x}^k\}_{k\geq 0}$ and $\{\mathbf{y}^k\}_{k\geq 0}$ as:

$$\begin{cases} \mathbf{y}^{k} := \mathbf{x}^{k} + \theta_{k}(\theta_{k-1}^{-1} - 1)(\mathbf{x}^{k} - \mathbf{x}^{k-1}) \\ \mathbf{x}^{k+1} := \operatorname{prox}_{\lambda g} \left(\mathbf{y}^{k} - \lambda \nabla f(\mathbf{y}^{k}) \right), \\ \text{if restart test holds} \\ \theta_{k-1} = \theta_{k} = 1 \\ \mathbf{y}^{k} = \mathbf{x}^{k} \\ \mathbf{x}^{k+1} := \operatorname{prox}_{\lambda g} \left(\mathbf{y}^{k} - \lambda \nabla f(\mathbf{y}^{k}) \right) \end{cases}$$
(13)

θ_k is chosen so that it satisfies

$$\theta_{k+1} = \frac{\sqrt{\theta_k^4 + 4\theta_k^2} - \theta_k^2}{2} < \frac{2}{k+3}$$

*Adaptive Restart: Guarantee

Theorem (Global complexity [8])

The sequence $\{\mathbf{x}^k\}_{k>0}$ generated by the modified algorithm satisfies

$$F(\mathbf{x}^k) - F^* \le \frac{2L_f}{(k+2)^2} \left(R_0^2 + \sum_{k_i \le k} \left(\|\mathbf{x}^* - \mathbf{x}^{k_i}\|_2^2 - \|\mathbf{x}^* - \mathbf{z}^{k_i}\|_2^2 \right) \right) \ \forall k \ge 0.$$
 (14)

where $R_0 := \min_{\mathbf{x}^{\star} \in \mathcal{S}^{\star}} \|\mathbf{x}^0 - \mathbf{x}^{\star}\|$, $\mathbf{z}^k = \mathbf{x}^{k-1} + \theta_{k-1}^{-1}(\mathbf{x}^k - \mathbf{x}^{k-1})$ and $k_i, i = 1...$ are the iterations for which the restart test holds.

Various restarts tests that might coincide with $\|\mathbf{x}^* - \mathbf{x}^{k_i}\|_2^2 \leq \|\mathbf{x}^* - \mathbf{z}^{k_i}\|_2^2$

- Exact non-monotonicity test: $F(\mathbf{x}^{k+1}) F(\mathbf{x}^k) > 0$
- Non-monotonicity test: $\langle (L_F(\mathbf{y}^{k-1} \mathbf{x}^k), \mathbf{x}^{k+1} \frac{1}{2}(\mathbf{x}^k + y^{k-1}) \rangle > 0$ (implies exact non-monotonicity and it is advantageous when function evaluations are expensive)
- ▶ Gradient-mapping based test: $\langle (L_f(\mathbf{y}^k \mathbf{x}^{k+1}), \mathbf{x}^{k+1} \mathbf{x}^k) > 0$

*Recall: Composite convex minimization

Problem (Unconstrained composite convex minimization)

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$
 (15)

- ightharpoonup f and g are both proper, closed, and convex.
- $ightharpoonup \operatorname{dom}(F) := \operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset \text{ and } -\infty < F^{\star} < +\infty.$
- ▶ The solution set $S^* := \{ \mathbf{x}^* \in \text{dom}(F) : F(\mathbf{x}^*) = F^* \}$ is nonempty.

*Recall: Composite convex minimization guarantees

Proximal gradient method(ISTA) vs. fast proximal gradient method (FISTA)

Assumptions, step sizes and convergence rates

Proximal gradient method:

$$f \in \mathcal{F}_L^{1,1}, \quad \alpha = \frac{1}{L} \qquad \qquad F(\mathbf{x}^k) - F(\mathbf{x}^\star) \leq \epsilon, \quad \mathcal{O}\Big(\frac{1}{\epsilon}\Big).$$

Fast proximal gradient method:

$$f \in \mathcal{F}_L^{1,1}, \quad \alpha = \frac{1}{L}$$

$$F(\mathbf{x}^k) - F(\mathbf{x}^\star) \le \epsilon, \quad \mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right).$$

*Recall: Composite convex minimization guarantees

Proximal gradient method(ISTA) vs. fast proximal gradient method (FISTA)

Assumptions, step sizes and convergence rates

Proximal gradient method:

$$f \in \mathcal{F}_L^{1,1}, \quad \alpha = \frac{1}{L} \qquad \qquad F(\mathbf{x}^k) - F(\mathbf{x}^\star) \leq \epsilon, \quad \mathcal{O}\Big(\frac{1}{\epsilon}\Big).$$

Fast proximal gradient method:

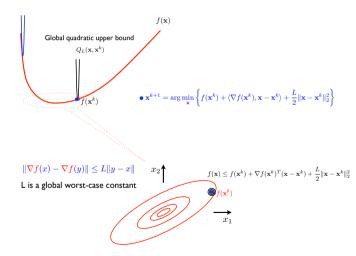
$$f \in \mathcal{F}_L^{1,1}, \quad \alpha = \frac{1}{L}$$

$$F(\mathbf{x}^k) - F(\mathbf{x}^\star) \le \epsilon, \quad \mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right).$$

- \circ We require α_k to be a function of L.
- o It may not be possible to know exactly the Lipschitz constant. Line-search ?
- \circ Adaptation to local geometry \rightarrow may lead to larger steps.

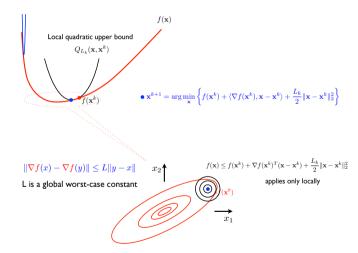
*How can we better adapt to the local geometry?

Non-adaptive:



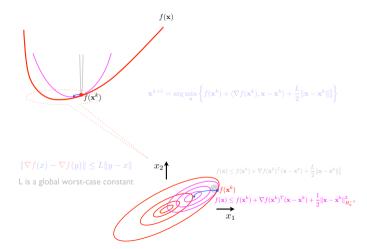
*How can we better adapt to the local geometry?

Line-search:



*How can we better adapt to the local geometry?

Variable metric:



*The idea of the proximal-Newton method

Assumptions A.2

Assume that $f \in \mathcal{F}^{2,1}_{L,\mu}(\mathbb{R}^p)$ and $g \in \mathcal{F}_{prox}(\mathbb{R}^p)$.

*Proximal-Newton update

ightharpoonup Similar to classical newton, proximal-newton suggests the following update scheme using second order Taylor series expansion near \mathbf{x}_k .

$$\mathbf{x}^{k+1} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \underbrace{\frac{1}{2} (\mathbf{x} - \mathbf{x}^k)^T \nabla^2 f(\mathbf{x}^k) (\mathbf{x} - \mathbf{x}^k) + \nabla f(\mathbf{x}^k)^T (\mathbf{x} - \mathbf{x}^k)}_{\text{2nd-order Taylor expansion near } \mathbf{x}^k} + g(\mathbf{x}) \right\}. \tag{16}$$

*The proximal-Newton-type algorithm

Proximal-Newton algorithm (PNA)

- 1. Given $\mathbf{x}^0 \in \mathbb{R}^p$ as a starting point.
- **2.** For $k = 0, 1, \dots$, perform the following steps:
- 2.1. Evaluate an SDP matrix $\mathbf{H}_k \approx \nabla^2 f(\mathbf{x}^k)$ and $\nabla f(\mathbf{x}^k)$.
- 2.2. Compute $\mathbf{d}^k := \underset{\mathbf{k}}{\operatorname{prox}}_{\mathbf{H}_k^{-1}g} \bigg(\mathbf{x}^k \mathbf{H}_k^{-1} \nabla f(\mathbf{x}^k) \bigg) \mathbf{x}^k$.

 2.3. Update $\mathbf{x}^{k+1} := \mathbf{x}^k + \alpha_k \mathbf{d}^k$.

*The proximal-Newton-type algorithm

Proximal-Newton algorithm (PNA)

- **1.** Given $\mathbf{x}^0 \in \mathbb{R}^p$ as a starting point.
- 2. For $k=0,1,\cdots$, perform the following steps:
- 2.1. Evaluate an SDP matrix $\mathbf{H}_k \approx \nabla^2 f(\mathbf{x}^k)$ and $\nabla f(\mathbf{x}^k)$.
- $\text{2.2. Compute } \mathbf{d}^k := \underset{\mathbf{H}_k^{-1}g}{\operatorname{prox}}_{\mathbf{H}_k^{-1}g} \bigg(\mathbf{x}^k \mathbf{H}_k^{-1} \nabla f(\mathbf{x}^k) \bigg) \mathbf{x}^k.$
- 2.3. Update $\mathbf{x}^{k+1} := \mathbf{x}^k + \alpha_k \mathbf{d}^k$.

Remark

- $ightharpoonup \mathbf{H}_k \equiv
 abla^2 f(\mathbf{x}^k) \Longrightarrow \mathsf{proximal-Newton} \; \mathsf{algorithm}.$
- $ightharpoonup \mathbf{H}_k pprox
 abla^2 f(\mathbf{x}^k) \Longrightarrow \mathsf{proximal}$ -quasi-Newton algorithm.
- A generalized prox-operator: $\operatorname{prox}_{\mathbf{H}_k^{-1}g}\Big(\mathbf{x}^k + \mathbf{H}_k^{-1}\nabla f(\mathbf{x}^k)\Big).$

*Convergence analysis

Theorem (Global convergence [11])

Assume generalized-prox subproblem is solved exactly for the algorithm and there exists $\mu>0$ such that $\mathbf{H}_k\succeq\mu\mathbb{I}$ for all $k\geq0$. Then;

 $\{\mathbf{x}^k\}_{k\geq 0}$ globally converges to a solution \mathbf{x}^* of (15).

*Convergence analysis

Theorem (Global convergence [11])

Assume generalized-prox subproblem is solved exactly for the algorithm and there exists $\mu > 0$ such that $\mathbf{H}_k \succeq \mu \mathbb{I}$ for all $k \geq 0$. Then;

$$\{\mathbf{x}^k\}_{k\geq 0}$$
 globally converges to a solution \mathbf{x}^* of (15).

Theorem (Local convergence [11])

Assume generalized-prox subproblem is solved exactly for the algorithm there exists $0 < \mu \le L_2 < +\infty$ such that $\mu \mathbb{I} \preceq \mathbf{H}_k \preceq L_2 \mathbb{I}$ for all sufficiently large k. Then;

- If $\mathbf{H}_k \equiv \nabla^2 f(\mathbf{x}^k)$, then $\alpha_k = 1$ for k sufficiently large (full-step).
- ▶ If $\mathbf{H}_k \equiv \nabla^2 f(\mathbf{x}^k)$, then $\{\mathbf{x}^k\}$ locally converges to \mathbf{x}^* at a quadratic rate.
- ► If **H**_k satisfies the Dennis-Moré condition:

$$\lim_{k \to +\infty} \frac{\|(\mathbf{H}_k - \nabla^2 f(\mathbf{x}^*))(\mathbf{x}^{k+1} - \mathbf{x}^k)\|}{\|\mathbf{x}^{k+1} - \mathbf{x}^k\|} = 0,$$
(17)

then $\{x^k\}$ locally converges to x^* at a super linear rate.

*How to compute the approximation H_k ?

How to update \mathbf{H}_k ?

Matrix \mathbf{H}_k can be updated by using low-rank updates.

▶ BFGS update: maintain the Dennis-Moré condition and $\mathbf{H}_k \succ 0$.

$$\mathbf{H}_{k+1} := \mathbf{H}_k + \frac{\mathbf{y}_k \mathbf{y}_k^T}{\mathbf{s}_k^T \mathbf{y}_k} - \frac{\mathbf{H}_k \mathbf{s}_k \mathbf{s}_k^T \mathbf{H}_k}{\mathbf{s}_k^T \mathbf{H}_k \mathbf{s}_k}, \quad \mathbf{H}_0 := \gamma \mathbb{I}, \ (\gamma > 0).$$

where $\mathbf{y}_k := \nabla f(\mathbf{x}^{k+1}) - \nabla f(\mathbf{x}^k)$ and $\mathbf{s}_k := \mathbf{x}^{k+1} - \mathbf{x}^k$.

Diagonal+Rank-1 [4]: computing PN direction d^k is in polynomial time, but it does not maintain the Dennis-Moré condition:

$$\mathbf{H}_k := \mathbf{D}_k + \mathbf{u}_k \mathbf{u}_k^T, \quad \mathbf{u}_k := (\mathbf{s}_k - \mathbf{H}_0 \mathbf{y}_k) / \sqrt{(\mathbf{s}_k - \mathbf{H}_0 \mathbf{y}_k)^T \mathbf{y}_k},$$

where \mathbf{D}_k is a positive diagonal matrix.

*Pros and cons

Pros

- ► Fast local convergence rate (super-linear or quadratic)
- Numerical robustness under the inexactness/noise ([11]).
- ▶ Well-suited for problems with many data points but few parameters. For example,

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \sum_{j=1}^n \ell_j(\mathbf{a}_j^T \mathbf{x} + b_j) + g(\mathbf{x}) \right\},\,$$

where ℓ_j is twice continuously differentiable and convex, $g \in \mathcal{F}_{prox}$, $p \ll n$.

*Pros and cons

Pros

- ► Fast local convergence rate (super-linear or quadratic)
- Numerical robustness under the inexactness/noise ([11]).
- ▶ Well-suited for problems with many data points but few parameters. For example,

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \sum_{j=1}^n \ell_j(\mathbf{a}_j^T \mathbf{x} + b_j) + g(\mathbf{x}) \right\},\,$$

where ℓ_i is twice continuously differentiable and convex, $g \in \mathcal{F}_{prox}$, $p \ll n$.

Cons

- Expensive iteration compared to proximal-gradient methods.
- Global convergence rate may be worse than accelerated proximal-gradient methods.
- Requires a good initial point to get fast local convergence.
- Requires strict conditions for global/local convergence analysis.

*Example 1: Sparse logistic regression

Problem (Sparse logistic regression)

Given a sample vector $\mathbf{a} \in \mathbb{R}^p$ and a binary class label vector $\mathbf{b} \in \{-1, +1\}^n$. The conditional probability of a label b given \mathbf{a} is defined as:

$$\mathbb{P}(b|\mathbf{a}, \mathbf{x}, \mu) = 1/(1 + e^{-b(\mathbf{x}^T \mathbf{a} + \mu)}),$$

where $\mathbf{x} \in \mathbb{R}^p$ is a weight vector, μ is called the intercept.

Goal: Find a sparse-weight vector x via the maximum likelihood principle.

Optimization formulation

$$\min_{\mathbf{x} \in \mathbb{R}^p} \left\{ \underbrace{\frac{1}{n} \sum_{i=1}^n L(b_i(\mathbf{a}_i^T \mathbf{x} + \mu))}_{f(\mathbf{x})} + \underbrace{\rho \| \mathbf{x} \|_1}_{g(\mathbf{x})} \right\}, \tag{18}$$

where \mathbf{a}_i is the *i*-th row of data matrix \mathbf{A} in $\mathbb{R}^{n\times p}$, $\rho>0$ is a regularization parameter, and ℓ is the logistic loss function $\ell(\tau):=\log(1+e^{-\tau})$.

*Example: Sparse logistic regression

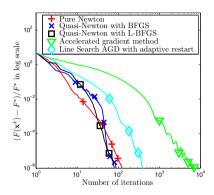
Real data

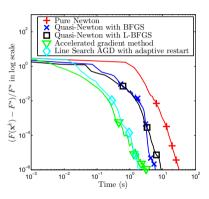
- ▶ Real data: w2a with n = 3470 data points, p = 300 features
- ► Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

Parameters

- ▶ Tolerance 10^{-6} .
- ▶ L-BFGS memory m = 50.
- Ground truth: Get a high accuracy approximation of \mathbf{x}^* and f^* by TFOCS with tolerance 10^{-12} .

*Example: Sparse logistic regression-Numerical results





*Example 2: ℓ_1 -regularized least squares

Problem (ℓ_1 -regularized least squares)

Given $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{b} \in \mathbb{R}^n$, solve:

$$F^* := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \rho \|\mathbf{x}\|_1 \right\},\tag{19}$$

where $\rho > 0$ is a regularization parameter.

Complexity per iterations

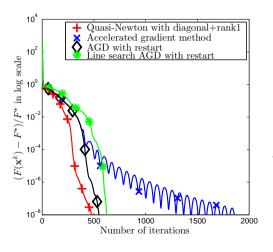
- ightharpoonup Evaluating $\nabla f(\mathbf{x}^k) = \mathbf{A}^T (\mathbf{A}\mathbf{x}^k \mathbf{b})$ requires one $\mathbf{A}\mathbf{x}$ and one $\mathbf{A}^T \mathbf{y}$.
- One soft-thresholding operator $\operatorname{prox}_{\lambda g}(\mathbf{x}) = \operatorname{sign}(\mathbf{x}) \otimes \max\{|\mathbf{x}| \rho, 0\}.$
- ▶ Optional: Evaluating $L = \|\mathbf{A}^T \mathbf{A}\|$ (spectral norm) via power iterations (e.g., 20 iterations, each iteration requires one $\mathbf{A}\mathbf{x}$ and one $\mathbf{A}^T \mathbf{y}$).

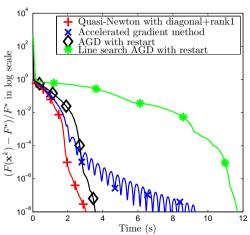
Synthetic data generation

- $ightharpoonup \mathbf{A} := \operatorname{randn}(n,p)$ standard Gaussian $\mathcal{N}(0,\mathbb{I})$.
- \mathbf{x}^* is a s-sparse vector generated randomly.
- $\mathbf{b} := \mathbf{A} \mathbf{x}^* + \mathcal{N}(0, 10^{-3}).$

*Example 2: ℓ_1 -regularized least squares - Numerical results - Trial 1

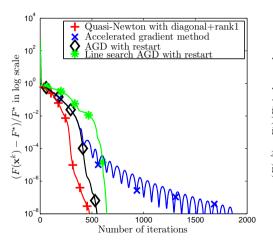
Parameters: $n = 750, p = 2000, s = 200, \rho = 1$

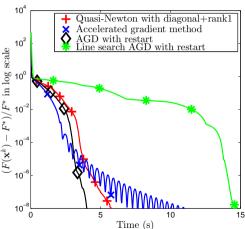




*Example 2: ℓ_1 -regularized least squares - Numerical results - Trial 2

Parameters: $n = 750, p = 2000, s = 200, \rho = 1$





References |

[1] Heinz H Bauschke, Regina Burachik, Patrick L Combettes, Veit Elser, D Russell Luke, and Henry Wolkowicz.

Fixed-point algorithms for inverse problems in science and engineering, volume 49. Springer Science & Business Media, 2011.

[2] Amir Beck.

First-order methods in optimization, volume 25. SIAM, 2017.

[3] Amir Beck and Marc Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM journal on imaging sciences*, 2(1):183–202, 2009.

[4] S. Becker and M. J. Fadili.

A quasi-newton proximal splitting method.

In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, NIPS'12, page 2618–2626, Red Hook, NY, USA, 2012. Curran Associates Inc.

[5] Emmanuel J Candes, T. Strohmer, and V. Voroninski. Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. IEEE Trans. Signal Processing, 60(5):2422–2432, 2012.

References II

[6] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Res. Logis. Quart., 3:95–110, 1956.

[7] Dan Garber and Elad Hazan.

Faster rates for the frank-wolfe method over strongly-convex sets.

In Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, ICML'15, page 541–549. JMLR.org, 2015.

[8] Pontus Giselsson and Stephen Boyd.

Monotonicity and restart in fast gradient methods.

In Decision and Control (CDC), 2014 IEEE 53rd Annual Conference on, pages 5058-5063. IEEE, 2014.

[9] E. Hazan and H. Luo.

Variance-reduced and projection-free stochastic optimization.

In Proc. 33rd Int. Conf. Machine Learning, 2016.

[10] Martin Jaggi.

Revisiting Frank-Wolfe: Projection-free sparse convex optimization.

In Proceedings of the 30th International Conference on International Conference on Machine Learning - Volume 28, ICML'13, 2013.

References III

[11] Jason D Lee, Yuekai Sun, and Michael Saunders.

Proximal newton-type methods for convex optimization.

In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems 25*, pages 827–835. Curran Associates, Inc., 2012.

[12] Ion Necoara.

General convergence analysis of stochastic first order methods for composite optimization, 2020.

- [13] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. Stat. Sci., 27(4):538–557, 2012.
- [14] Yurii Nesterov.

Introductory lectures on convex optimization: A basic course, volume 87. Springer Science & Business Media. 2013.

[15] Neal Parikh, Stephen Boyd, et al.

Proximal algorithms.

Foundations and Trends® in Optimization, 1(3):127–239, 2014.

References IV

- [16] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic frank-wolfe methods for nonconvex optimization. arXiv preprint arXiv:1607.08254, 2016.
- [17] R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on control and optimization, 14(5):877-898, 1976.
- [18] Alp Yurtsever, Ya-Ping Hsieh, and Volkan Cevher. Scalable convex methods for phase retrieval. In 6th IEEE Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2015.