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I Deficiency of smooth models
I Sparsity and compressive sensing
I Atomic norms
I Non-smooth minimization via Subgradient descent
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Non-smooth minimization: A simple example

What if we simultaneously want f1(x), f2(x), . . . , fk(x) to be small?
A natural approach in some cases: Minimize f(x) = max{f1(x), . . . , fk(x)}
I The good news: If each fi(x) is convex, then f(x) is convex
I The bad (!) news: Even if each fi(x) is smooth, f(x) may be non-smooth

I e.g., f(x) = max{x, x2}

x

f(x) = max{f1(x), f2(x)}

f2(x) =
1

2
x2

f1(x) = x

Figure: Maximum of two smooth convex functions.
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A statistical learning motivation for non-smooth optimization

Linear Regression
Consider the classical linear regression problem:

b = Ax\ + w

with b ∈ Rn, A ∈ Rn×p are known, x\ is unknown, and w is noise. Assume for now that n ≥ p (more later).

◦ Standard approach: Least squares: x?LS ∈ arg minx ‖b−Ax‖22
I Convex, smooth, and an explicit solution: x?LS = (ATA)−1ATb = A†b

◦ Alternative approach: Least absolute value deviation: x? ∈ arg minx ‖b−Ax‖1
I The advantage: Improved robustness against outliers (i.e., less sensitive to high noise values)
I The bad (!) news: A non-differentiable objective function

Our main motivating example this lecture: The case n� p
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Deficiency of smooth models

Recall the practical performance of an estimator x?.

Practical performance
Denote the numerical approximation at time t by xt. The practical performance is determined by∥∥xt − x\

∥∥
2
≤
∥∥xt − x?

∥∥
2︸            ︷︷            ︸

numerical error

+
∥∥x? − x\

∥∥
2︸            ︷︷            ︸

statistical error

.

Remarks: ◦ Non-smooth estimators of x\ can help reduce the statistical error.
◦ This improvement may require higher computational costs.
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Example: Least-squares estimation in the linear model

◦ Recall the linear model and the LS estimator.

LS estimation in the linear model
Let x\ ∈ Rp and A ∈ Rn×p. The samples are given by b = Ax\ + w, where w denotes the unknown noise.
The LS estimator for x\ given A and b is defined as

x?LS ∈ arg min
x∈Rp

{
‖b−Ax‖22

}
.

Remarks: ◦ If A has full column rank, x?LS = A†b is uniquely defined.

◦ When n < p, A cannot have full column rank, and hence x?LS ∈
{

A†b + h : h ∈ null (A)
}
.

Observation: ◦ The estimation error
∥∥x?LS − x\

∥∥
2
can be arbitrarily large!
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A candidate solution
Continuing the LS example:
I There exist infinitely many x’s such that b = Ax
I Suppose that w = 0 (i.e. no noise). Let us just choose the one x̂candidate with the smallest norm ‖x‖2.

x\ + h, h 2 null(A)

x̂candidate

x\

Observation: ◦ Unfortunately, this still fails when n < p
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A candidate solution contd.

Proposition ([7])
Suppose that A ∈ Rn×p is a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have

(1− ε)
(

1−
n

p

)∥∥x\
∥∥2

2
≤
∥∥x̂candidate − x\

∥∥2
2
≤ (1− ε)−1

(
1−

n

p

)∥∥x\
∥∥2

2

with probability at least 1− 2 exp
[
−(1/4)(p− n)ε2

]
− 2 exp

[
−(1/4)pε2

]
, for all ε > 0 and x\ ∈ Rp.
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Summarizing the findings so far

The message so far:
I Even in the absence of noise, we cannot recover x\ from the observations b = Ax\ unless n ≥ p
I But in applications, p might be thousands, millions, billions...
I Can we get away with n� p under some further assumptions on x?
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A natural signal model

Definition (s-sparse vector)
A vector x ∈ Rp is s-sparse if it has at most s
non-zero entries.

Rp

x\

Sparse representations
x\: sparse transform coefficients

I Basis representations Ψ ∈ Rp×p
I Wavelets, DCT, ...

I Frame representations Ψ ∈ Rm×p, m > p
I Gabor, curvelets, shearlets, ...

I Other dictionary representations...

=y\ x\ 
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Sparse representations strike back!

b Ã y\

I b ∈ Rn, Ã ∈ Rn×p, and n < p

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x\ if we knew the location of the non-zero entries of x\.
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I b ∈ Rn, Ã ∈ Rn×p, and n < p

I Ψ ∈ Rp×p, x\ ∈ Rp, and ‖x\‖0 ≤ s < n

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x\ if we knew the location of the non-zero entries of x\.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 45



Sparse representations strike back!

b A x\

I b ∈ Rn, A ∈ Rn×p, and x\ ∈ Rp, and ‖x\‖0 ≤ s < n < p

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x\ if we knew the location of the non-zero entries of x\.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 45



Sparse representations strike back!

b A x\

n× 1 n× s s× 1

Observations: ◦ The matrix A effectively becomes overcomplete.
◦ We could solve for x\ if we knew the location of the non-zero entries of x\.
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Compressible signals
◦ Real signals may not be exactly sparse, but approximately sparse, or compressible.

Definition (Compressible signals)
Roughly speaking, a vector x := (x1, . . . , xp)T ∈ Rp is compressible if the number of its significant components
(i.e., entries larger than some ε > 0: |{k : |xk| ≥ ε, 1 ≤ k ≤ p}|) is small.

I Cameraman@MIT.
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I Solid curve: Sorted wavelet coefficients of the cameraman image.
I Dashed curve: Expected order statistics of generalized Pareto
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A different tale of the linear model b = Ax + w

A realistic linear model
Let b := Ãy\ + w̃ ∈ Rn.
I Let y\ := Ψxreal ∈ Rm that admits a compressible representation xreal.
I Let xreal ∈ Rp that is compressible and let x\ be its best s-term approximation.
I Let w̃ ∈ Rn denote the possibly nonzero noise term.
I Assume that Ψ ∈ Rm×p and Ã ∈ Rn×m are known.

Then we have

b = ÃΨ
(
x\ + xreal − x\

)
+ w̃.

:=
(
ÃΨ
)︸   ︷︷   ︸

A

x\ +
[
w̃ + ÃΨ

(
xreal − x\

)]︸                             ︷︷                             ︸
w

,

equivalently, b = Ax\ + w.
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Peeling the onion

◦ The realistic linear model uncovers yet another level of difficulty

Practical performance
The practical performance at time t is determined by∥∥xt − xreal

∥∥
2
≤
∥∥xt − x?

∥∥
2︸            ︷︷            ︸

numerical error

+
∥∥x? − x\

∥∥
2︸            ︷︷            ︸

statistical error

+
∥∥xreal − x\

∥∥
2︸              ︷︷              ︸

model error

.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 45



Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating x\ from b = Ax\ + w
We may search over all

(
p
s

)
subsets S ⊂ {1, . . . , p} of cardinality s, solve the restricted least least-squared

problem minxS ‖b−ASxS‖22, and return the resulting x corresponding to the smallest error, putting zeros in
the entries of x outside S.

◦ Stable and robust recovery of any s-sparse signal is possible using just n = 2s measurements.

Issues
I
(
p
s

)
is a huge number - too many to search!

I s is not known in practice
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The `1-norm heuristic

Heuristic: The `1-ball with radius c∞ is an “approximation” of the set of sparse vectors
x̂ ∈
{

x : ‖x‖0 ≤ s, ‖x‖∞ ≤ c∞
}

parameterized by their sparsity s and maximum amplitude c∞.

x̂ ∈
{

x : ‖x‖1 ≤ c∞
}

with some c∞ > 0.

The set
{

x : ‖x‖0 ≤ 1, ‖x‖∞ ≤ 1,x ∈ R3
} The unit `1-norm ball{

x : ‖x‖1 ≤ 1,x ∈ R3
}

Remark: ◦ This heuristic leads to the so-called Lasso optimization problem.
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Sparse recovery via the Lasso

Definition (Least absolute shrinkage and selection operator (Lasso))

x?Lasso := arg min
x∈Rp

‖b−Ax‖22 + ρ ‖x‖1

with some ρ ≥ 0.

◦ The second term in the objective function is called the regularizer.

◦ The parameter ρ is called the regularization parameter. It is used to trade off the objectives:
I Minimize ‖b−Ax‖22, so that the solution is consistent with the observations
I Minimize ‖x‖1, so that the solution has the desired sparsity structure

Remark: ◦ The Lasso has a convex but non-smooth objective function
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Performance of the Lasso

Theorem (Existence of a stable solution in polynomial time [10])
This Lasso convex formulation is a second order cone program, which can be solved in polynomial time in terms
of the inputs n and p. Surprisingly, if the signal x\ is s-sparse and the noise w is sub-Gaussian (e.g., Gaussian

or bounded) with parameter σ, then choosing ρ =
√

16σ2 log p
n

yields an error of

∥∥x?Lasso − x\
∥∥

2
≤

8σ
κ(A)

√
s ln p
n

,

with probability at least 1− c1 exp(−c2nρ2), where c1 and c2 are absolute constants, and κ(A) > 0 encodes
the difficulty of the problem.

Remark: ◦ The number of measurements is O
(
s ln p

)
– this may be much smaller than p!
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Other models with simplicity

pixels 
large 
wavelet 
coefficients 
 

(blue = 0) 

sparse 
signals 

low-rank 
matrices 

Information  
level: 

nonlinear 
models 

p
s ⌧ p

Rp Rp

x\
x\

There are many models extending far beyond sparsity, coming with other non-smooth regularizers.
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Generalization via simple representations

Definition (Atomic sets & atoms [3])
An atomic set A is a set of vectors in Rp. An atom is an element in an atomic set.

Terminology (Simple representation [3])
A parameter x\ ∈ Rp admits a simple representation with respect to an atomic set A ⊆ Rp, if it can be
represented as a non-negative combination of few atoms, i.e., x\ =

∑k

i=1 ciai, ai ∈ A, ci ≥ 0.

Example (Sparse parameter)
Let x\ be s-sparse. Then x\ can be represented as the non-negative combination of s elements in A, with
A := {±e1, . . . ,±ep}, where ei := (δ1,i, δ2,i, . . . , δp,i) for all i.

Example (Sparse parameter with a dictionary)
Let Ψ ∈ Rm×p, and let y\ := Ψx\ for some s-sparse x\. Then y\ can be represented as the non-negative
combination of s elements in A, with A := {±ψ1, . . . ,±ψp}, where ψk denotes the kth column of Ψ.
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Atomic norms

◦ Recall the Lasso problem
x?Lasso := arg min

x∈Rp
‖b−Ax‖22 + ρ ‖x‖1

Observations: ◦ `1-norm is the atomic norm associated with the atomic set A := {±e1, . . . ,±ep}.
◦ The norm is closely tied with the convex hull of the set.
◦ We can extend the same principle for a wide range of regularizers

A :=
{[

1
0

]
,

[
0
1

]
,

[
−1

0

]
,

[
0
−1

]}
.

C := conv (A) .

C
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Gauge functions and atomic norms

Definition (Gauge function)
Let C be a convex set in Rp, the gauge function associated with C is given by

gC(x) := inf {t > 0 : x = tc for some c ∈ C} .

Definition (Atomic norm)
Let A be a symmetric atomic set in Rp such that if a ∈ A then −a ∈ A for all a ∈ A. Then, the atomic norm
associated with a symmetric atomic set A is given by

‖x‖A := gconv(A)(x), ∀x ∈ Rp,

where conv(A) denotes the convex hull of A.

A generalization of the Lasso
Given an atomic set A, solve the following regularized least-squares problem:

x? = arg min
x∈Rp

‖b−Ax‖22 + ρ ‖x‖A (1)
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Pop quiz
Let A :=

{
(1, 0)T , (0, 1)T , (−1, 0)T , (0,−1)T

}
, and let x := (− 1

5 , 1)T . What is ‖x‖A?

ANS: ‖x‖A = 6
5 .

x =


� 1

5
1

�

conv(A)

x1

x2
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Pop quiz 2

What is the expression of ‖x‖A for any x := (x1, x2, x3)T ∈ R3?

ANS: ‖x‖A = |x1|+
∥∥(x2, x3)T

∥∥
2
.
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Application: Multi-knapsack feasibility problem

Problem formulation [9]
Let x\ ∈ Rp which is a convex combination of k vectors in A := {−1,+1}p, and let A ∈ Rn×p. How can we
recover x\ given A and b = Ax\?

The answer: ◦ We can use the `∞-norm, ‖·‖∞ as ‖·‖A. The regularized estimator is given by

x? ∈ arg min
x∈Rp

‖b−Ax‖22 + ρ ‖x‖∞ , ρ > 0.

The derivation: ◦ In this case, we have conv(A) = [−1, 1]p and

gconv(A)(x) = inf {t > 0 : x = tc for some c such that |ci| ≤ 1 ∀i} .

◦ We also have, ∀x ∈ Rp, c ∈ conv(A), t > 0,

x = tc⇒ ∀i, |xi| = |tci| ≤ t
⇒ gconv(A)(x) ≥ max

i
|xi|.

◦ Let x , 0, let j ∈ arg maxi |xi| and choose t = maxi |xi|, ci = xi/t ∈ [−1, 1]p.

◦ Then, x = tc, and so gconv(A)(x) ≤ maxi |xi|.
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Application: Matrix completion

Problem formulation [2, 5]
Let X\ ∈ Rp×p with rank(X\) = r, and let A1, . . . ,An be matrices in Rp×p. How do we estimate X\ given
A1, . . . ,An and bi = Tr

(
AiX\

)
+ wi, i = 1, . . . , n, where w := (w1, . . . , wn)T denotes unknown noise?

The answer: ◦ We can use the nuclear norm, ‖·‖∗ as ‖·‖A. The regularized estimator is given by

x? ∈ arg min
X∈Rp×p

n∑
i=1

(bi − Tr (AiX))2 + ρ ‖X‖∗ , ρ > 0.

The derivation: ◦ Let us use the following atomic set A =
{

X : rank (X) = 1, ‖X‖F = 1,X ∈ Rp×p
}
.

◦ Let ∀X ∈ Rp×p,C =
∑

i
λiCi ∈ conv(A),

∑
i
λi = 1,Ci ∈ A, t > 0. Then, we have

X = t
∑
i

λiCi ⇒ ‖X‖∗ = t

∥∥∥∥∥∑
i

λiCi

∥∥∥∥∥
∗

≤ t
∑
i

λi ‖Ci‖∗ ≤ t⇒ gconv(A)(X) ≥ ‖X‖∗ .

◦ Let X , 0, let X =
∑

i
σiuivti be its SVD decomposition, where σi’s are its singular values.

◦ Let t = ‖X‖∗ =
∑

i
|σi|, Ci = uivTi ∈ A, ∀i. Then, X = t

∑
i
λiCi, λi = |σi|

t
.

◦ Since t is feasible and
∑

i
λi = 1, it follows that gconv(A)(X) ≤ ‖X‖∗.
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Structured Sparsity
There exist many more structures that we have not covered here, each of which is handled using different
non-smooth regularizers. Some examples [1, 8]:
I Group Sparsity: Many signals are not only sparse, but the non-zero entries tend to cluster according to

known patterns.
I Tree Sparsity: When natural images are transformed to the Wavelet domain, their significant entries form

a rooted connected tree.

 

 

Figure: (Left panel) Natural image in the Wavelet domain. (Right panel) Rooted connected tree containing the significant
coefficients.
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Selection of the Parameters

In all of these problems, there remain the issues of how to design A and how to choose ρ.

Design of A:
I Sometimes A is given “by nature”, whereas sometimes it can be designed
I For the latter case, i.i.d. Gaussian designs provide good theoretical guarantees, whereas in practice we must

resort to structured matrices permitting more efficient storage and computation
I See [6] for an extensive study in the context of compressive sensing

Selection of ρ:
I Theoretical bounds provide some insight, but usually the direct use of the theoretical choice does not suffice
I In practice, a common approach is cross-validation [4], which involves searching for a parameter that

performs well on a set of known training signals
I Other approaches include covariance penalty [4] and upper bound heuristic [13]
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Non-smooth unconstrained convex minimization

Problem (Mathematical formulation)
How can we find an optimal solution to the following optimization problem?

F ? := min
x∈Rp

f(x) (2)

where f is proper, closed, convex, but not everywhere differentiable.
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Subdifferentials: A generalization of the gradient

Definition
Let f : Q → R ∪ {+∞} be a convex function. The subdifferential of f at a point x ∈ Q is defined by the set:

∂f(x) = {v ∈ Rp : f(y) ≥ f(x) + 〈v, y− x〉 for all y ∈ Q} .

Each element v of ∂f(x) is called subgradient of f at x.

Lemma
Let f : Q → R ∪ {+∞} be a differentiable convex function. Then, the subdifferential of f at a point x ∈ Q
contains only the gradient, i.e., ∂f(x) = {∇f(x)}.

f(x)

x
...

f(x) + hv1,y � xi

f(x) + hv2,y � xi

f(y)

y

Tuesday, May 27, 14

f(x)

xf(x) + hrf(y),y � xi

f(y)

y

Tuesday, May 27, 14

Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.
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(Sub)gradients in convex functions

Example
f(x) = |x| −→ ∂|x| = {sgn(x)} , if x , 0, but [−1, 1], if x = 0.

x

f(x)

f(x) = |x|

�11

o
[�1, 1]

Tuesday, May 27, 14

Figure: Subgradients of f(x) = |x| in R.
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Subdifferentials: Two basic results
Lemma (Necessary and sufficient condition)

x? ∈ dom (F ) is a globally optimal solution to (2) iff 0 ∈ ∂F (x?).

Sketch of the proof.
◦ ⇐: For any x ∈ Rp, by definition of ∂F (x?):

F (x)− F (x?) ≥ 0T (x− x?) = 0,

that is, x? is a global solution to (2).

◦ ⇒: If x? is a global of (2) then for every x ∈ dom (F ), F (x) ≥ F (x?) and hence

F (x)− F (x?) ≥ 0T (x− x?), ∀x ∈ Rp,

which leads to 0 ∈ ∂F (x?). �

Theorem (Moreau-Rockafellar’s theorem [11])
Let ∂f and ∂g be the subdiffierential of f and g, respectively. If f, g ∈ F(Rp) and dom (f)∩ dom (g) , ∅, then:

∂(f + g) = ∂f + ∂g.
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Non-smooth unconstrained convex minimization

Problem (Non-smooth convex minimization)

F ? := min
x∈Rp

f(x) (3)

Subgradient method
The subgradient method relies on the fact that even though f is non-smooth, we can still compute its
subgradients, informing of the local descent directions.

Subgradient method
1. Choose x0 ∈ Rp as a starting point.
2. For k = 0, 1, · · · , perform:{

xk+1 = xk − αkdk, (4)

where dk ∈ ∂f(xk) and αk ∈ (0, 1] is a given step size.
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Convergence of the subgradient method

Theorem
Assume that the following conditions are satisfied:
1. ‖g‖2 ≤ G for all g ∈ ∂f(x) for any x ∈ Rp.
2. ‖x0 − x?‖2 ≤ R

Let the stepsize be chosen as
αk =

R

G
√
k

then the iterates generated by the subgradient method satisfy

min
0≤i≤k

f(xi)− f? ≤
RG
√
k
.

Remarks
I Condition (1) holds, for example, when f is G-Lipschitz.
I The convergence rate of O(1/

√
k) is the slowest we have seen so far!
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Stochastic subgradient methods
◦ An unbiased stochastic subgradient

E[G(x)|x] ∈ ∂f(x).
◦ Stochastic gradient methods using unbiased subgradients instead of unbiased gradients work

The classic stochastic subgradient methods (SG)
1. Choose x1 ∈ Rp and (γk)k∈N ∈ ]0,+∞[N.
2. For k = 1, . . . perform:

xk+1 = xk − γkG(xk).

Theorem (Convergence in expectation [12])
Suppose that:
1. E[‖G(xk)‖2] ≤M2,
2. γk = γ0/

√
k.

Then,

E[f(xk)− f(x?)] ≤
(
D2

γ0
+ γ0M

2
)

2 + log k
√
k

.

Remark: ◦ The rate is O(log k/
√
k) instead of O(1/

√
k) for the deterministic algorithm.
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Composite convex minimization
Problem (Unconstrained composite convex minimization)

F ? := min
x∈Rp

{F (x) := f(x) + g(x)} (5)

I f and g are both proper, closed, and convex.
I dom(F ) := dom(f) ∩ dom(g) , ∅ and −∞ < F ? < +∞.
I The solution set S? := {x? ∈ dom(F ) : F (x?) = F ?} is nonempty.

Two remarks
I Nonsmoothness: At least one of the two functions f and g is nonsmooth

I General nonsmooth convex optimization methods (e.g., classical subgradient methods, level, or bundle methods) lack
efficiency and numerical robustness.
I Require O(ε−2) iterations to reach a point x?ε such that F (x?ε )− F? ≤ ε. Hence, to reach x?0.01 such that
F (x?0.01)− F? ≤ 0.01, we need O(104) iterations.

I Generality: it covers a wider range of problems than smooth unconstrained problems, e.g., when handling
regularized M -estimation,
I f is a loss function, a data fidelity, or negative log-likelihood function.
I g is a regularizer, encouraging structure and/or constraints in the solution.
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Example 1: Sparse regression in generalized linear models (GLMs)

Problem (Sparse regression in GLM)
Our goal is to estimate x\ ∈ Rp given {bi}ni=1 and {ai}ni=1,
knowing that the likelihood function at yi given ai and x\ is given
by L(〈ai,x\〉, bi), and that x\ is sparse.

b A x\ w

Optimization formulation

min
x∈Rp

{
−

n∑
i=1

logL(〈ai,x\〉, bi)︸                               ︷︷                               ︸
f(x)

+ ρn‖x‖1︸    ︷︷    ︸
g(x)

}

where ρn > 0 is a parameter which controls the strength of sparsity regularization.

Theorem (cf. [10] for details)
Under some technical conditions, there exists {ρi}∞i=1 such that with high probability,∥∥x? − x\

∥∥2
2

= O
(
s log p
n

)
, supp x? = supp x\.

Recall ML:
∥∥xML − x\

∥∥2

2
= O (p/n).
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Example 2: Image processing

Problem (Imaging denoising/deblurring)
Our goal is to obtain a clean image x given “dirty” observations b ∈ Rn×1 via b = A(x) + w, where A is a
linear operator, which, e.g., captures camera blur as well as image subsampling, and w models perturbations,
such as Gaussian or Poisson noise.

Optimization formulation

Gaussian : min
x∈Rn×p

{
(1/2)‖A(x)− b‖22︸                      ︷︷                      ︸

f(x)

+ ρ‖x‖TV︸     ︷︷     ︸
g(x)

}

Poisson : min
x∈Rn×p

{ 1
n

n∑
i=1

[〈ai,x〉 − bi ln (〈ai,x〉)]︸                                         ︷︷                                         ︸
f(x)

+ ρ‖x‖TV︸     ︷︷     ︸
g(x)

}

where ρ > 0 is a regularization parameter and ‖ · ‖TV is the total variation (TV) norm:

‖x‖TV :=
{∑

i,j
|xi,j+1 − xi,j |+ |xi+1,j − xi,j | anisotropic case,∑

i,j

√
|xi,j+1 − xi,j |2 + |xi+1,j − xi,j |2 isotropic case
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Example 3: Confocal microscopy with camera blur and Poisson observations

Original image x\ Observed image b Estimate x?original image input: Noise image output: Denoise image
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Example 4: Sparse inverse covariance estimation
Problem (Graphical model selection)
Given a data set D := {x1, · · · ,xN}, where xi is a Gaussian random variable. Let Σ be the covariance matrix
corresponding to the graphical model of the Gaussian Markov random field. Our goal is to learn a sparse
precision matrix Θ (i.e., the inverse covariance matrix Σ−1) that captures the Markov random field structure..

Example: Log-determinant for LMIs
• Application: Graphical model selection

Given a data set D := {x1, . . . ,xN}, where xi is a Gaussian random variable.
Let ⌃ be the covariance matrix corresponding to the graphical model of
the Gausian Markov random field. The aim is to learn a sparse matrix ⇥ that
approximates the inverse ⌃�1.

Optimization problem

min
⇥�0

8
><
>:
� log det(⇥) + trace(⌃⇥)| {z }

f(x)

+ ⇢kvec(⇥)k1| {z }
g(x)

9
>=
>;

x2

x3

x4x5

x1

x1 x2 x3 x4 x5

x1

x2

x3

x4

x5

⇥ =

Thursday, June 12, 14

Optimization formulation

min
Θ�0

{
tr(ΣΘ)− log det(Θ)︸                         ︷︷                         ︸

f(x)

+λ‖vec(Θ)‖1︸           ︷︷           ︸
g(x)

}
(6)

where Θ � 0 means that Θ is symmetric and positive definite and λ > 0 is a regularization parameter and vec is
the vectorization operator.
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Wrap up!

◦ Three supplementary lectures to take a look once the course is over!
I One on compressive sensing (Math of Data Lecture 4 from 2014):

https://archive-wp.epfl.ch/lions/wp-content/uploads/2019/01/lecture-4-2014.pdf
I One on source separation (Math of Data Lecture 6 from 2014)

https://archive-wp.epfl.ch/lions/wp-content/uploads/2019/01/lecture-6-2014.pdf
I One on convexification of structured sparsity models (research presentation)

https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/volkan-TU-view-web.pdf
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