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> Deficiency of smooth models
> Sparsity and compressive sensing
> Atomic norms

> Non-smooth minimization via Subgradient descent
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Non-smooth minimization: A simple example

What if we simultaneously want fi(x), fa(x), ..., fr(z) to be small?

A natural approach in some cases: Minimize f(z) = max{fi(z),..., fx(z)}

> The good news: If each f;(x) is convex, then f(z) is convex
> The bad (!) news: Even if each f;(x) is smooth, f(z) may be non-smooth

> eg., f(z) = max{z, 2%}

Fla) = max{ (), fole)}

v
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A statistical learning motivation for non-smooth optimization

Linear Regression

Consider the classical linear regression problem:
b=Ax"+w

with b € R, A € R™X? are known, x is unknown, and w is noise. Assume for now that n > p (more later).
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A statistical learning motivation for non-smooth optimization

Linear Regression
Consider the classical linear regression problem:
b=Ax"+w

with b € R, A € R™X? are known, x is unknown, and w is noise. Assume for now that n > p (more later).

o Standard approach: Least squares: X}'s € argminx ||b — Ax||3
> Convex, smooth, and an explicit solution: XES = (ATA)_lATb =A'b

o Alternative approach: Least absolute value deviation: x* € argminy ||b — Ax||1
> The advantage: Improved robustness against outliers (i.e., less sensitive to high noise values)

> The bad (!) news: A non-differentiable objective function

Our main motivating example this lecture: The case n < p
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Deficiency of smooth models

Recall the practical performance of an estimator x*.

Practical performance

Denote the numerical approximation at time ¢ by x*. The practical performance is determined by

et =]l < [J* —

o

2 2

numerical error statistical error

Remarks: o Non-smooth estimators of x can help reduce the statistical error.

o This improvement may require higher computational costs.
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Example: Least-squares estimation in the linear model

o Recall the linear model and the LS estimator.

LS estimation in the linear model
Let x! € R? and A € R™*P. The samples are given by b = Ax + w, where w denotes the unknown noise.

The LS estimator for x% given A and b is defined as

: 2
iy € g i {IIb — Ax|3} .

Remarks: o If A has full column rank, x¢ = A'b is uniquely defined.

o When n < p, A cannot have full column rank, and hence x}'¢ € {ATb +h:h € null (A)}

Observation: o The estimation error HXES — H2 can be arbitrarily large!
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A candidate solution

Continuing the LS example:
> There exist infinitely many x's such that b = Ax

> Suppose that w = 0 (i.e. no noise). Let us just choose the one Xcandidate With the smallest norm [|x|,.

x! + h, h € null(A)

Observation: o Unfortunately, this still fails when n < p
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A candidate solution contd.

Proposition ([7])

Suppose that A € R™"*P s a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have
n 2 2 n 2
_ _ i 5 . _xh — =L _ i
=0 (1= 2) [} < e ~ 2 < =071 (1= 2) [

with probability at least 1 — 2 exp [7(1/4)(29 — n)62] — 2exp [7(1/4)pe2], for all e > 0 and x% € RP.
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Summarizing the findings so far

The message so far:
> Even in the absence of noise, we cannot recover x% from the observations b = Ax! unless n > p
> But in applications, p might be thousands, millions, billions...

> Can we get away with n < p under some further assumptions on x?
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A natural signal model

Definition (s-sparse vector)

A vector x € RP is s-sparse if it has at most s
non-zero entries.

RP

<

Sparse representations

xU: sparse transform coefficients

> Basis representations W € RPXP
> Wavelets, DCT, ...

> Frame representations ¥ € R™*P, m > p
> Gabor, curvelets, shearlets, ...

> Other dictionary representations...
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Sparse representations strike back!

b A yt
>»beR” AcR" P, andn <p

IHHGT]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfi.ch Slide 12/ 45 EPFL



Sparse representations strike back!
b A

»beR" AcR"P andn <p
> U cRPXP, xB € RP, and ||xf|lo <s<n

x_ﬂ_

NN EEEEE EENEEE
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Sparse representations strike back!

1

» bcR”, AcR"P, and x! €RP, and ||xf|p <s<n<p

x_ﬂ_

[HEE EEEEE EESEEE
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Sparse representations strike back!

n X1 nxs sx1

Observations: o The matrix A effectively becomes overcomplete.

o We could solve for x% if we knew the location of the non-zero entries of x".
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Compressible signals

o Real signals may not be exactly sparse, but approximately sparse, or compressible.

Definition (Compressible signals)

Roughly speaking, a vector x := (z1,..., xp)T € RP is compressible if the number of its significant components
(i.e., entries larger than some € > 0: |[{k : |zx| > €,1 < k < p}|) is small.

amplitude [log]

g 7

10" 10 10°  10° 10
sorted index [log]
> Cameraman@MIT.
> Solid curve: Sorted wavelet coefficients of the cameraman image.
> Dashed curve: Expected order statistics of generalized Pareto
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A different tale of the linear model b = Ax +w

A realistic linear model
Let b:= Ayf + W € R™.
> Let yh := WX,y € R™ that admits a compressible representation Xie).
> Let X,a € RP that is compressible and let x5 be its best s-term approximation.
> Let w € R™ denote the possibly nonzero noise term.
> Assume that U € R™*P and A € R"%"™ are known.

Then we have
b=AV (xu + Xreal — xh) + w.
= (A\I!) x1 + [\7v + AT (xrea| — xh)],

N~
A w

equivalently, b = Ax + w.
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Peeling the onion

o The realistic linear model uncovers yet another level of difficulty

Practical performance
The practical performance at time t is determined by

t

HX — Xreal +erea\*XJH

2 2"

< [ =l + [ -l
~—~———

2 2

numerical error statistical error model error
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Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating x” from b = Ax! + w

We may search over all (’;) subsets S C {1,...,p} of cardinality s, solve the restricted least least-squared

problem minyg ||b — ASXSHgv and return the resulting x corresponding to the smallest error, putting zeros in
the entries of x outside S.

o Stable and robust recovery of any s-sparse signal is possible using just n = 2s measurements.
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Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating x” from b = Ax! + w

We may search over all (’;) subsets S C {1,...,p} of cardinality s, solve the restricted least least-squared

problem minyg ||b — ASXSHgv and return the resulting x corresponding to the smallest error, putting zeros in
the entries of x outside S.

o Stable and robust recovery of any s-sparse signal is possible using just n = 2s measurements.
Issues

> (7;’) is a huge number - too many to search!

> s is not known in practice
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The /;-norm heuristic

Heuristic: The /1 -ball with radius co is an “approximation” of the set of sparse vectors
x € {x Hxllp <55 1%l o £ coo} parameterized by their sparsity s and maximum amplitude coo.

X € {x x|y < coo} with some coo > 0.

The unit ¢1-norm ball

The set {x: [|x||o < 1, [|x[|, < 1,x €R*} [x:Ixll, <1,x €k}

Remark: o This heuristic leads to the so-called Lasso optimization problem.
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Sparse recovery via the Lasso

Definition (Least absolute shrinkage and selection operator (Lasso))

g 2
x’Lkasso = a’rgirelanp ”b - AXH2 +p HXHI

with some p > 0.

o The second term in the objective function is called the regularizer.

o The parameter p is called the regularization parameter. It is used to trade off the objectives:
> Minimize ||b — Ax]|

> Minimize ||x||1, so that the solution has the desired sparsity structure

%, so that the solution is consistent with the observations

Remark: o The Lasso has a convex but non-smooth objective function
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Performance of the Lasso

Theorem (Existence of a stable solution in polynomial time [10])

This Lasso convex formulation is a second order cone program, which can be solved in polynomial time in terms
of the inputs n and p. Surprisingly, if the signal X! is s-sparse and the noise w is sub-Gaussian (e.g., Gaussian

2
or bounded) with parameter o, then choosing p = 1/ w yields an error of

8o slnp
< b
2~ k(A) n

* i
”xLassa =2 ||

with probability at least 1 — ¢y exp(fCan2), where c1 and ca are absolute constants, and k(A) > 0 encodes
the difficulty of the problem.

Remark: o The number of measurements is O(slnp) — this may be much smaller than p!
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Other models with simplicity

Information
level:

s p
large
wavelet
coefficients
(blue = 0)

X" X!
sparse low-rank nonlinear
signals matrices models
There are many models extending far beyond sparsity, coming with other non-smooth regularizers.
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Generalization via simple representations

Definition (Atomic sets & atoms [3])
An atomic set A is a set of vectors in RP. An atom is an element in an atomic set.

Terminology (Simple representation [3])
A parameter x € RP admits a simple representation with respect to an atomic set A C RP, if it can be

represented as a non-negative combination of few atoms, i.e., x = Z ca;, a; €A ¢;>0.

i=1

Example (Sparse parameter)

Let x be s-sparse. Then x! can be represented as the non-negative combination of s elements in A, with
A :={+£e1,...,*+ep}, where e; := (01,;,02,4,...,0p,) for all 7.

Example (Sparse parameter with a dictionary)

Let ¥ € R™*P, and let y% := Ux! for some s-sparse x%. Then y% can be represented as the non-negative
combination of s elements in A, with A := {£4¢1,...,+¢p}, where ¢, denotes the kth column of .
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Atomic norms

o Recall the Lasso problem
* : 2
X := arg min ||b — Ax||5 + p||x
Lasso ngRP ” H2 P H Hl
Observations: o ¢1-norm is the atomic norm associated with the atomic set A := {£e1,...,tep}.
o The norm is closely tied with the convex hull of the set.

o We can extend the same principle for a wide range of regularizers
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Gauge functions and atomic norms
Definition (Gauge function)
Let C be a convex set in RP, the gauge function associated with C is given by

gc(x) :=inf {t > 0 : x = tc for some c € C}.

Definition (Atomic norm)

Let A be a symmetric atomic set in RP such that if a € A then —a € A for all a € A. Then, the atomic norm
associated with a symmetric atomic set A is given by

”x”A *= Gconv(A) (X), Vx € va
where conv(.A) denotes the convex hull of A.
A generalization of the Lasso

Given an atomic set A, solve the following regularized least-squares problem:

*

x* = arg min [[b— Ax] + p x|L m
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Pop quiz
Let A:={(1,0)7,(0, )7, (=1,0)7,(0,—1)T }, and let x := (=%, 1)7. What is ||x]| ,?
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Pop quiz
Let A:={(1,0)7,(0, )7, (=1,0)7,(0,—1)T }, and let x := (=%, 1)7. What is ||x]| ,?

ANS: x| 4 = £.
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Pop quiz 2

What is the expression of ||x|| 4 for any x := (x1,22,23)T € R3?
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Pop quiz 2
What is the expression of ||x|| 4 for any x := (w1, 2,23)T € R3?

ANS: x| 4 = |@1| + || (@2, 22)T |-
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Application: Multi-knapsack feasibility problem

Problem formulation [9]

Let x% € RP which is a convex combination of k vectors in A := {—1,+1}?, and let A € R"*?. How can we
recover x% given A and b = Ax%?

The answer: o We can use the {oo-norm, ||-||, as ||-|| 4. The regularized estimator is given by

x* € arg min [[b— Ax|2 + p|[x]|. . p > 0.
xERP
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Application: Multi-knapsack feasibility problem

Problem formulation [9]
Let x% € RP which is a convex combination of k vectors in A := {—1,+1}?, and let A € R"*?. How can we
recover x% given A and b = Ax%?

The answer: o We can use the {oo-norm, ||-||, as ||-|| 4. The regularized estimator is given by
x* € arg min [b— Ax|2+ p[x]lc ,p > 0.
xERP
The derivation: o In this case, we have conv(A) = [—1,1]? and
Geonv(A) (X) = inf {t > 0 : x = tc for some c such that |c;| < 1 Vi}.
o We also have, Vx € RP,c € conv(A),t > 0,
x =tc = Vi, |x;| = |te;| <t
= Geonv(A)(X) > max 4.
o Let x #0, let j € arg max; |x;| and choose t = max; |z;|, ¢; = z;/t € [—1,1]P.

o Then, x = tc, and 50 geony(4)(X) < max; |z;].
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Application: Matrix completion

Problem formulation [2, 5]
Let X8 € RPXP with rank(Xh) =7, and let A1,..., A, be matrices in RPXP. How do we estimate X" given
Ai,...,A, and b; =Tr (AiXh) +w;, i =1,...,n, where w := (wq,..., wn)T denotes unknown noise?

The answer: o We can use the nuclear norm, ||-||, as ||-|| 4. The regularized estimator is given by

n

x* € arg min E (bi = Tr (A; X))+ p||IX]|, , 0 > 0.
X ERPXP
i=1
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Application:

Matrix completion

Problem formulation [2, 5]
Let X8 € RPXP with rank(X") =7, and let A1,..., Ay be matrices in RPXP. How do we estimate X given
Ai,...,A, and b; = Tr (AiXh) +w;, i =1,...,n, where w := (wq,..., wn)T denotes unknown noise?

The answer:

The derivation:

o We can use the nuclear norm, ||-||, as ||-|| 4. The regularized estimator is given by

n

x* € arg min E (bi = Tr (A; X))+ p||IX]|, , 0 > 0.
X ERPXP
i=1

o Let us use the following atomic set A = {X irank (X) =1, [X||p=1,X € RPX”}.
o Let VX € RP*P C = Zl AiC; € conv(A), ZZ Ai =1,C; € A,t > 0. Then, we have

X =ty NC= X, =t D NG| <> NICi <t = geani(X) 2 X, -
i i « i

olet X#0,let X = Zl aiuivﬁ be its SVD decomposition, where o;'s are its singular values.
olett=|X|, =3, loil, C; = u;v’ € A, Vi. Then, X =t 3, A;Cs, A = 1%
o Since t is feasible and Zl Ai = 1, it follows that geony(a)(X) < [IX],.
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Structured Sparsity

There exist many more structures that we have not covered here, each of which is handled using different
non-smooth regularizers. Some examples [1, 8]:

> Group Sparsity: Many signals are not only sparse, but the non-zero entries tend to cluster according to
known patterns.

> Tree Sparsity: When natural images are transformed to the Wavelet domain, their significant entries form
a rooted connected tree.

Figure: (Left panel) Natural image in the Wavelet domain. (Right panel) Rooted connected tree containing the significant
coefficients.
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Selection of the Parameters

In all of these problems, there remain the issues of how to design A and how to choose p.

Design of A:
> Sometimes A is given “by nature”, whereas sometimes it can be designed

> For the latter case, i.i.d. Gaussian designs provide good theoretical guarantees, whereas in practice we must
resort to structured matrices permitting more efficient storage and computation

> See [6] for an extensive study in the context of compressive sensing

Selection of p:
> Theoretical bounds provide some insight, but usually the direct use of the theoretical choice does not suffice

> In practice, a common approach is cross-validation [4], which involves searching for a parameter that
performs well on a set of known training signals

> Other approaches include covariance penalty [4] and upper bound heuristic [13]
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Non-smooth unconstrained convex minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

F* := min f(x) (2)

where f is proper, closed, convex, but not everywhere differentiable.
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Subdifferentials: A generalization of the gradient

Definition

Let f: Q@ - RU {400} be a convex function. The subdifferential of f at a point x € Q is defined by the set:
0f(x) = {v ER? : f(y) > f(x)+ (v, y—x) for all y € O} .

Each element v of 0f(x) is called subgradient of f at x.

Lemma

Let f: Q — RU{+oo} be a differentiable convex function. Then, the subdifferential of f at a point x € Q
contains only the gradient, i.e., 0f(x) = {V f(x)}.

)

eI+ vy %) X

y IRy -x) X

Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.
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(Sub)gradients in convex functions

Example
f(z) = |z] —  Olz| = {sgn(=z)}, if z #0, but [-1,1], if z = 0.

V(@)
‘ f) =

Figure: Subgradients of f(x) = |z| in R.
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Subdifferentials: Two basic results

Lemma (Necessary and sufficient condition)

x* € dom (F) is a globally optimal solution to (2) iff 0 € OF(x").
Sketch of the proof.
o <= For any x € RP, by definition of OF(x*):
F(x) — F(x*) > 0" (x —x*) =0,
that is, x* is a global solution to (2).
o = If x* is a global of (2) then for every x € dom (F'), F(x) > F(x*) and hence
F(x) = F(x*) > 07 (x — x*), Vx € R,

which leads to 0 € OF (x*). o

Theorem (Moreau-Rockafellar's theorem [11])
Let &f and Og be the subdiffierential of f and g, respectively. If f,g € F(RP) and dom (f) Ndom (g) # 0, then:

[0(f +9) = 0f +0g.

ICLGHEI{N  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 33/ 45

EP



Non-smooth unconstrained convex minimization

Problem (Non-smooth convex minimization)
F* := min f(x) 3)

Subgradient method

The subgradient method relies on the fact that even though f is non-smooth, we can still compute its
subgradients, informing of the local descent directions.

Subgradient method
1. Choose xV € RP as a starting point.
2. For k=0,1,---, perform:

{ xkt1 = xk — o d¥, (4)

where d* € 9f(x*) and ay, € (0,1] is a given step size.

ILGHEI{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 45



Convergence of the subgradient method

Theorem

Assume that the following conditions are satisfied:
1. |lgll2 < G for all g € 0f(x) for any x € RP.
2. X0 —x*|2 <R

Let the stepsize be chosen as

R
ay = ——
GVk
then the iterates generated by the subgradient method satisfy
; RG
min f(x') — f* < —.
Jmin, SO — 1 <

Remarks

> Condition (1) holds, for example, when f is G-Lipschitz.

> The convergence rate of O(1/ k) is the slowest we have seen so far!
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Stochastic subgradient methods

o An unbiased stochastic subgradient
E[G(x)|x] € 0f(x).
o Stochastic gradient methods using unbiased subgradients instead of unbiased gradients work

The classic stochastic subgradient methods (SG)
1. Choose x;1 € RP and (vx)ren € ]0, +ool.
2. For k=1,... perform:

Xpt1 = Xp — TG (Xk)-

Theorem (Convergence in expectation [12])
Suppose that:
L E[|GF))?] < M2,

2. vk =0/ Vk.
Then,
D? 2 +logk
EB[f(xF) — f(x*)] < | =— +yoM? | ==,
[F(x7) = F(xT)] - T
Remark: o The rate is O(log k/ Vk) instead of O(1//k) for the deterministic algorithm.
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Composite convex minimization

Problem (Unconstrained composite convex minimization)

F* := min {F(x) := f(x) + g(x)} ®)
xXERP

> f and g are both proper, closed, and convex.
> dom(F) := dom(f) Ndom(g) # 0 and —co < F* < +o0.
> The solution set S* := {x* € dom(F) : F(x*) = F*} is nonempty.

Two remarks

> Nonsmoothness: At least one of the two functions f and g is nonsmooth

> General nonsmooth convex optimization methods (e.g., classical subgradient methods, level, or bundle methods) lack
efficiency and numerical robustness.

> Require 0(672) iterations to reach a point x: such that F(x:) — F* < e. Hence, to reach xS_Ol such that
F(x5.091) — F* < 0.01, we need ©(10%) iterations.

> Generality: it covers a wider range of problems than smooth unconstrained problems, e.g., when handling
regularized M-estimation,

> fis a loss function, a data fidelity, or negative log-likelihood function.
> g is a regularizer, encouraging structure and/or constraints in the solution.
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Example 1: Sparse regression in generalized linear models (GLMs)

b A xi w
Problem (Sparse regression in GLM)
— 'm +
Our goal is to estimate x% € RP given {b;}!"_, and {a;}7_,, H :ﬂ EFE- H

knowing that the likelihood function at y; given a; and X% is given
by L({a;,x"),b;), and that x! is sparse.

Optimization formulation

n
min { = tog L({as 8,00+ g [ }
i=1 9(x)

F(x)

where p, > 0 is a parameter which controls the strength of sparsity regularization.

Theorem (cf. [10] for details)

Under some technical conditions, there exists {p;};2, such that with high probability,

Hx* _thz -0 (sl;gp) , suppx* = suppx".

2
Recall ML: ||xML — xf || = 0O (p/n).
2
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Example 2: Image processing

Problem (Imaging denoising/deblurring)

Our goal is to obtain a clean image x given “dirty” observations b € R"*1 via b = A(x) + w, where A is a
linear operator, which, e.g., captures camera blur as well as image subsampling, and w models perturbations,
such as Gaussian or Poisson noise.

Optimization formulation

Gaussian : min { (1/2)| A(x) — b||2 + pl|x||Tv }
= D

ERNXP
f(x) 9(x)
1 n
Poisson : min { — Z [(ai, x) — b; In ((a;, x))] + pllx||Tv }
xernXp (N ~——
= 9(x)
f(x)
where p > 0 is a regularization parameter and || - ||y is the total variation (TV) norm:
Zi ; [%5,541 — X5,5] + [®it1,5 — %45 anisotropic case,
lIx[lov == ’ 5 5 . .
Zi,j \/|xi7j+1 — X452 + |xi41,5 — %x4,4]% isotropic case
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Example 3: Confocal microscopy with camera blur and Poisson observations

Estimate x*

Observed image b

Original image x!
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Example 4: Sparse inverse covariance estimation
Problem (Graphical model selection)

Given a data set D := {x1, -+ ,XxN}, where x; is a Gaussian random variable. Let 3 be the covariance mattrix
corresponding to the graphical model of the Gaussian Markov random field. Our goal is to learn a sparse
precision matrix © (i.e., the inverse covariance matrix >~ ') that captures the Markov random field structure..

LL‘5. .:U4 ) €Ty Ty Tz Ty T
T3 Q= -
T
€2
Optimization formulation
min { t2(520) — log det(©) + Allvec(©) |1 } ()
OO0 (e—m—n— '
f(x) 9(x)

where © > 0 means that © is symmetric and positive definite and A > 0 is a regularization parameter and vec is
the vectorization operator.
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Wrap up!

o Three supplementary lectures to take a look once the course is over!

> One on compressive sensing (Math of Data Lecture 4 from 2014):
https://archive-wp.epfl.ch/lions/wp-content/uploads/2019/01/lecture-4-2014.pdf

> One on source separation (Math of Data Lecture 6 from 2014)
https://archive-wp.epfl.ch/lions/wp-content/uploads/2019/01/lecture-6-2014.pdf

> One on convexification of structured sparsity models (research presentation)
https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/volkan-TU-view-web.pdf
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