Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher volkan.cevher@epfl.ch

Lecture 4: Concise signal models and compressive sensing

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2021)

License Information for Mathematics of Data Slides

- ▶ This work is released under a <u>Creative Commons License</u> with the following terms:
- Attribution
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
- Non-Commercial
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes unless they get the licensor's permission.
- Share Alike
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor's work.
- Full Text of the License

Outline

- Deficiency of smooth models
- Sparsity and compressive sensing
- Atomic norms
- Non-smooth minimization via Subgradient descent

Non-smooth minimization: A simple example

What if we simultaneously want $f_1(x), f_2(x), \ldots, f_k(x)$ to be small?

A natural approach in some cases: Minimize $f(x) = \max\{f_1(x), \dots, f_k(x)\}$

- The good news: If each $f_i(x)$ is convex, then f(x) is convex
- **The bad (!)** news: Even if each $f_i(x)$ is smooth, f(x) may be non-smooth

• e.g., $f(x) = \max\{x, x^2\}$

A statistical learning motivation for non-smooth optimization

Linear Regression

Consider the classical linear regression problem:

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$$

with $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times p}$ are known, \mathbf{x}^{\natural} is unknown, and \mathbf{w} is noise. Assume for now that $n \ge p$ (more later).

A statistical learning motivation for non-smooth optimization

Linear Regression

Consider the classical linear regression problem:

$$\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$$

with $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{n \times p}$ are known, \mathbf{x}^{\natural} is unknown, and \mathbf{w} is noise. Assume for now that $n \ge p$ (more later).

- Standard approach: Least squares: $\mathbf{x}_{\mathsf{LS}}^{\star} \in \arg\min_{\mathbf{x}} \|\mathbf{b} \mathbf{Ax}\|_2^2$
 - Convex, smooth, and an explicit solution: $\mathbf{x}_{LS}^{\star} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} = \mathbf{A}^{\dagger} \mathbf{b}$

• Alternative approach: Least absolute value deviation: $\mathbf{x}^{\star} \in \arg \min_{\mathbf{x}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_1$

- The advantage: Improved robustness against outliers (i.e., less sensitive to high noise values)
- ▶ The bad (!) news: A non-differentiable objective function

Our main motivating example this lecture: The case $n \ll p$

Deficiency of smooth models

Recall the practical performance of an estimator \mathbf{x}^{\star} .

Practical performance

Denote the numerical approximation at time t by \mathbf{x}^t . The practical performance is determined by

$$\left\|\mathbf{x}^{t} - \mathbf{x}^{\natural}\right\|_{2} \leq \underbrace{\left\|\mathbf{x}^{t} - \mathbf{x}^{\star}\right\|_{2}}_{\text{numerical error}} + \underbrace{\left\|\mathbf{x}^{\star} - \mathbf{x}^{\natural}\right\|_{2}}_{\text{statistical error}}$$

Remarks:

 \circ *Non-smooth* estimators of \mathbf{x}^{\natural} can help *reduce the statistical error*.

• This improvement *may* require higher computational costs.

Example: Least-squares estimation in the linear model

 \circ Recall the linear model and the LS estimator.

LS estimation in the linear model

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ and $\mathbf{A} \in \mathbb{R}^{n \times p}$. The samples are given by $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural} + \mathbf{w}$, where \mathbf{w} denotes the unknown noise. The LS estimator for \mathbf{x}^{\natural} given \mathbf{A} and \mathbf{b} is defined as

$$\mathbf{x}_{\mathsf{LS}}^{\star} \in rg\min_{\mathbf{x}\in\mathbb{R}^p}\left\{\|\mathbf{b}-\mathbf{Ax}\|_2^2
ight\}.$$

 $\begin{array}{ll} \textbf{Remarks:} & \circ \mbox{ If } \textbf{A} \mbox{ has full column rank, } \textbf{x}^{\star}_{\text{LS}} = \textbf{A}^{\dagger}\textbf{b} \mbox{ is uniquely defined.} \\ & \circ \mbox{ When } n < p, \mbox{ A cannot have full column rank, and hence } \textbf{x}^{\star}_{\text{LS}} \in \Big\{ \textbf{A}^{\dagger}\textbf{b} + \textbf{h} : \textbf{h} \in \mbox{null} (\textbf{A}) \Big\}. \end{array}$

Observation: • The estimation error $\left\|\mathbf{x}_{\mathsf{LS}}^{\star} - \mathbf{x}^{\natural}\right\|_{2}$ can be *arbitrarily large*!

A candidate solution

Continuing the LS example:

- \blacktriangleright There exist infinitely many x's such that $\mathbf{b}=\mathbf{A}\mathbf{x}$
- Suppose that $\mathbf{w} = 0$ (i.e. no noise). Let us just choose the one $\hat{\mathbf{x}}_{candidate}$ with the smallest norm $\|\mathbf{x}\|_2$.

$\label{eq:observation: observation: observation: observation: observation: observation: observation of the state of the$

A candidate solution contd.

Proposition ([7])

Suppose that $\mathbf{A} \in \mathbb{R}^{n \times p}$ is a matrix of i.i.d. standard Gaussian random variables, and $\mathbf{w} = \mathbf{0}$. We have

$$(1-\epsilon)\left(1-\frac{n}{p}\right)\left\|\mathbf{x}^{\natural}\right\|_{2}^{2} \leq \left\|\hat{\mathbf{x}}_{\text{candidate}}-\mathbf{x}^{\natural}\right\|_{2}^{2} \leq (1-\epsilon)^{-1}\left(1-\frac{n}{p}\right)\left\|\mathbf{x}^{\natural}\right\|_{2}^{2}$$

with probability at least $1 - 2 \exp\left[-(1/4)(p-n)\epsilon^2\right] - 2 \exp\left[-(1/4)p\epsilon^2\right]$, for all $\epsilon > 0$ and $\mathbf{x}^{\natural} \in \mathbb{R}^p$.

Summarizing the findings so far

The message so far:

- Even in the absence of noise, we cannot recover x^{\natural} from the observations $b = Ax^{\natural}$ unless $n \ge p$
- But in applications, p might be thousands, millions, billions...
- Can we get away with $n \ll p$ under some further assumptions on x?

A natural signal model

Definition (s-sparse vector)

A vector $\mathbf{x} \in \mathbb{R}^p$ is s-sparse if it has at most s non-zero entries.

Sparse representations

- **x**^{\\equiv:} *sparse* transform coefficients
 - ▶ Basis representations $\Psi \in \mathbb{R}^{p \times p}$
 - ► Wavelets, DCT, ...
 - Frame representations $\Psi \in \mathbb{R}^{m \times p}$, m > p
 - Gabor, curvelets, shearlets, …
 - Other dictionary representations...

 $\blacktriangleright \mathbf{b} \in \mathbb{R}^n, \, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times p}, \, \text{and} \, n < p$

- $\blacktriangleright \ \mathbf{b} \in \mathbb{R}^n \text{, } \tilde{\mathbf{A}} \in \mathbb{R}^{n \times p} \text{, and } n < p$
- $\Psi \in \mathbb{R}^{p imes p}$, $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$, and $\|\mathbf{x}^{\natural}\|_{0} \leq s < n$

 $\blacktriangleright \mathbf{b} \in \mathbb{R}^n, \ \mathbf{A} \in \mathbb{R}^{n \times p}, \ \text{and} \ \mathbf{x}^{\natural} \in \mathbb{R}^p, \ \text{and} \ \|\mathbf{x}^{\natural}\|_0 \le s < n < p$

Compressible signals

• Real signals may not be exactly sparse, but approximately sparse, or *compressible*.

Definition (Compressible signals)

Roughly speaking, a vector $\mathbf{x} := (x_1, \dots, x_p)^T \in \mathbb{R}^p$ is compressible if the number of its significant components (i.e., entries larger than some $\epsilon > 0$: $|\{k : |x_k| \ge \epsilon, 1 \le k \le p\}|$) is small.

Cameraman@MIT.

- Solid curve: Sorted wavelet coefficients of the cameraman image.
- Dashed curve: Expected order statistics of generalized Pareto distribution with shape parameter 1.67.

A different tale of the linear model $\mathbf{b} = \mathbf{A}\mathbf{x} + \mathbf{w}$

A realistic linear model

Let $\mathbf{b} := \tilde{\mathbf{A}} \mathbf{y}^{\natural} + \tilde{\mathbf{w}} \in \mathbb{R}^n$.

- Let $\mathbf{y}^{\natural} := \Psi \mathbf{x}_{\mathsf{real}} \in \mathbb{R}^m$ that admits a *compressible* representation $\mathbf{x}_{\mathsf{real}}$.
- Let $\mathbf{x}_{real} \in \mathbb{R}^p$ that is *compressible* and let \mathbf{x}^{\natural} be its *best s-term approximation*.
- Let $\tilde{\mathbf{w}} \in \mathbb{R}^n$ denote the possibly nonzero *noise* term.
- Assume that $\Psi \in \mathbb{R}^{m \times p}$ and $\tilde{\mathbf{A}} \in \mathbb{R}^{n \times m}$ are known.

Then we have

$$\begin{split} \mathbf{b} &= \tilde{\mathbf{A}} \Psi \left(\mathbf{x}^{\natural} + \mathbf{x}_{\mathsf{real}} - \mathbf{x}^{\natural} \right) + \tilde{\mathbf{w}}. \\ &:= \underbrace{\left(\tilde{\mathbf{A}} \Psi \right)}_{\mathbf{A}} \mathbf{x}^{\natural} + \underbrace{\left[\underbrace{\tilde{\mathbf{w}} + \tilde{\mathbf{A}} \Psi \left(\mathbf{x}_{\mathsf{real}} - \mathbf{x}^{\natural} \right) \right]}_{\mathbf{w}}, \end{split}$$

equivalently, $\mathbf{b} = \mathbf{A} \mathbf{x}^{\natural} + \mathbf{w}$.

• The *realistic* linear model uncovers yet another level of difficulty

Practical performance

The practical performance at time t is determined by

$$\left\|\mathbf{x}^{t} - \mathbf{x}_{\mathsf{real}}\right\|_{2} \leq \underbrace{\left\|\mathbf{x}^{t} - \mathbf{x}^{\star}\right\|_{2}}_{\mathsf{numerical error}} + \underbrace{\left\|\mathbf{x}^{\star} - \mathbf{x}^{\natural}\right\|_{2}}_{\mathsf{statistical error}} + \underbrace{\left\|\mathbf{x}_{\mathsf{real}} - \mathbf{x}^{\natural}\right\|_{2}}_{\mathsf{model error}}.$$

numerical error

model erro

Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating \mathbf{x}^{\natural} from $\mathbf{b}=\mathbf{A}\mathbf{x}^{\natural}+\mathbf{w}$

We may search over all $\binom{p}{s}$ subsets $S \subset \{1, \ldots, p\}$ of cardinality s, solve the restricted least least-squared problem $\min_{\mathbf{x}S} \|\mathbf{b} - \mathbf{A}_S \mathbf{x}_S\|_2^2$, and return the resulting \mathbf{x} corresponding to the smallest error, putting zeros in the entries of \mathbf{x} outside S.

 \circ Stable and robust recovery of any s-sparse signal is possible using just n = 2s measurements.

Approach 1: Sparse recovery via exhaustive search

Approach 1 for estimating \mathbf{x}^{\natural} from $\mathbf{b}=\mathbf{A}\mathbf{x}^{\natural}+\mathbf{w}$

We may search over all $\binom{p}{s}$ subsets $S \subset \{1, \ldots, p\}$ of cardinality s, solve the restricted least least-squared problem $\min_{\mathbf{x}S} \|\mathbf{b} - \mathbf{A}_S \mathbf{x}_S\|_2^2$, and return the resulting \mathbf{x} corresponding to the smallest error, putting zeros in the entries of \mathbf{x} outside S.

 \circ Stable and robust recovery of any s-sparse signal is possible using just n=2s measurements.

Issues

- $(p)_{s}$ is a huge number too many to search!
- s is not known in practice

The ℓ_1 -norm heuristic

Heuristic: The ℓ_1 -ball with radius c_{∞} is an "approximation" of the set of sparse vectors $\hat{\mathbf{x}} \in \left\{ \mathbf{x} : \|\mathbf{x}\|_0 \le s, \|\mathbf{x}\|_{\infty} \le c_{\infty} \right\}$ parameterized by their sparsity s and maximum amplitude c_{∞} .

 $\hat{\mathbf{x}} \in \left\{ \mathbf{x} : \left\| \mathbf{x} \right\|_1 \le c_\infty \right\}$ with some $c_\infty > 0$.

The set $\left\{\mathbf{x}: \|\mathbf{x}\|_{0} \leq 1, \|\mathbf{x}\|_{\infty} \leq 1, \mathbf{x} \in \mathbb{R}^{3}\right\}$

The unit ℓ_1 -norm ball $\left\{ \mathbf{x} : \|\mathbf{x}\|_1 \leq 1, \mathbf{x} \in \mathbb{R}^3 \right\}$

Remark: • This heuristic leads to the so-called Lasso optimization problem.

Sparse recovery via the Lasso

Definition (Least absolute shrinkage and selection operator (Lasso))

$$\mathbf{x}_{Lasso}^{\star} := \arg\min_{\mathbf{x} \in \mathbb{R}^{p}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \rho \|\mathbf{x}\|_{1}$$

with some $\rho \geq 0$.

• The second term in the objective function is called the *regularizer*.

• The parameter ρ is called the *regularization parameter*. It is used to trade off the objectives:

- Minimize $\|\mathbf{b} \mathbf{A}\mathbf{x}\|_2^2$, so that the solution is consistent with the observations
- Minimize $\|\mathbf{x}\|_1$, so that the solution has the desired sparsity structure

Remark: • The Lasso has a *convex* but *non-smooth* objective function

Performance of the Lasso

Theorem (Existence of a stable solution in polynomial time [10])

This Lasso convex formulation is a second order cone program, which can be solved in polynomial time in terms of the inputs n and p. Surprisingly, if the signal \mathbf{x}^{\natural} is s-sparse and the noise \mathbf{w} is sub-Gaussian (e.g., Gaussian or bounded) with parameter σ , then choosing $\rho = \sqrt{\frac{16\sigma^2 \log p}{n}}$ yields an error of

$$\left\| \mathbf{x}_{\text{Lasso}}^{\star} - \mathbf{x}^{\natural} \right\|_{2} \leq \frac{8\sigma}{\kappa(\mathbf{A})} \sqrt{\frac{s \ln p}{n}},$$

with probability at least $1 - c_1 \exp(-c_2 n \rho^2)$, where c_1 and c_2 are absolute constants, and $\kappa(\mathbf{A}) > 0$ encodes the difficulty of the problem.

Remark: • The number of measurements is $O(s \ln p)$ – this may be *much* smaller than p!

Other models with simplicity

There are many models extending far beyond sparsity, coming with other non-smooth regularizers.

Generalization via simple representations

Definition (Atomic sets & atoms [3])

An *atomic set* \mathcal{A} is a set of vectors in \mathbb{R}^p . An *atom* is an element in an atomic set.

Terminology (Simple representation [3])

A parameter $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ admits a simple representation with respect to an atomic set $\mathcal{A} \subseteq \mathbb{R}^{p}$, if it can be represented as a non-negative combination of few atoms, i.e., $\mathbf{x}^{\natural} = \sum_{i=1}^{k} c_{i} \mathbf{a}_{i}$, $\mathbf{a}_{i} \in \mathcal{A}$, $c_{i} \ge 0$.

Example (Sparse parameter)

Let \mathbf{x}^{\natural} be *s*-sparse. Then \mathbf{x}^{\natural} can be represented as the non-negative combination of *s* elements in \mathcal{A} , with $\mathcal{A} := \{\pm \mathbf{e}_1, \dots, \pm \mathbf{e}_p\}$, where $\mathbf{e}_i := (\delta_{1,i}, \delta_{2,i}, \dots, \delta_{p,i})$ for all *i*.

Example (Sparse parameter with a dictionary)

Let $\Psi \in \mathbb{R}^{m \times p}$, and let $\mathbf{y}^{\natural} := \Psi \mathbf{x}^{\natural}$ for some *s*-sparse \mathbf{x}^{\natural} . Then \mathbf{y}^{\natural} can be represented as the non-negative combination of *s* elements in \mathcal{A} , with $\mathcal{A} := \{\pm \psi_1, \ldots, \pm \psi_p\}$, where ψ_k denotes the *k*th column of Ψ .

Atomic norms

• Recall the Lasso problem

$$\mathbf{x}_{\mathsf{Lasso}}^{\star} := \arg\min_{\mathbf{x} \in \mathbb{R}^p} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_2^2 + \rho \|\mathbf{x}\|_1$$

Observations: $\circ \ell_1$ -norm is the *atomic norm* associated with the atomic set $\mathcal{A} := \{\pm \mathbf{e}_1, \dots, \pm \mathbf{e}_p\}$.

 \circ The norm is closely tied with the convex hull of the set.

 \circ We can extend the same principle for a wide range of regularizers

$$\mathcal{A} := \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} -1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1 \end{bmatrix} \right\}.$$
$$\mathcal{C} := \operatorname{conv}\left(\mathcal{A}\right).$$

Gauge functions and atomic norms

Definition (Gauge function)

Let \mathcal{C} be a convex set in \mathbb{R}^p , the gauge function associated with \mathcal{C} is given by

$$g_{\mathcal{C}}(\mathbf{x}) := \inf \left\{ t > 0 : \mathbf{x} = t\mathbf{c} \text{ for some } \mathbf{c} \in \mathcal{C} \right\}.$$

Definition (Atomic norm)

Let \mathcal{A} be a symmetric *atomic set* in \mathbb{R}^p such that if $\mathbf{a} \in \mathcal{A}$ then $-\mathbf{a} \in \mathcal{A}$ for all $\mathbf{a} \in \mathcal{A}$. Then, the **atomic norm** associated with a symmetric atomic set \mathcal{A} is given by

$$\|\mathbf{x}\|_{\mathcal{A}} := g_{\operatorname{conv}(\mathcal{A})}(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^p,$$

where $\operatorname{conv}(\mathcal{A})$ denotes the *convex hull* of \mathcal{A} .

A generalization of the Lasso

Given an atomic set \mathcal{A} , solve the following regularized least-squares problem:

$$\mathbf{x}^{\star} = \arg\min_{\mathbf{x}\in\mathbb{R}^{p}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \rho \|\mathbf{x}\|_{\mathcal{A}}$$
(1)

Let
$$\mathcal{A} := \left\{ (1,0)^T, (0,1)^T, (-1,0)^T, (0,-1)^T \right\}$$
, and let $\mathbf{x} := (-\frac{1}{5}, 1)^T$. What is $\|\mathbf{x}\|_{\mathcal{A}}$?

Let
$$\mathcal{A} := \left\{ (1,0)^T, (0,1)^T, (-1,0)^T, (0,-1)^T \right\}$$
, and let $\mathbf{x} := (-\frac{1}{5}, 1)^T$. What is $\|\mathbf{x}\|_{\mathcal{A}}$?
ANS: $\|\mathbf{x}\|_{\mathcal{A}} = \frac{6}{5}$.

What is the expression of $\|\mathbf{x}\|_{\mathcal{A}}$ for any $\mathbf{x} := (x_1, x_2, x_3)^T \in \mathbb{R}^3$?

What is the expression of $\|\mathbf{x}\|_{\mathcal{A}}$ for any $\mathbf{x} := (x_1, x_2, x_3)^T \in \mathbb{R}^3$?

ANS: $\|\mathbf{x}\|_{\mathcal{A}} = |x_1| + \left\| (x_2, x_3)^T \right\|_2$.

Application: Multi-knapsack feasibility problem

Problem formulation [9]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ which is a convex combination of k vectors in $\mathcal{A} := \{-1, +1\}^{p}$, and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. How can we recover \mathbf{x}^{\natural} given \mathbf{A} and $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural}$?

The answer: \circ We can use the ℓ_{∞} -norm, $\|\cdot\|_{\infty}$ as $\|\cdot\|_{\mathcal{A}}$. The regularized estimator is given by

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{x}\in\mathbb{R}^{p}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \rho \|\mathbf{x}\|_{\infty}, \rho > 0.$$

Application: Multi-knapsack feasibility problem

Problem formulation [9]

Let $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ which is a convex combination of k vectors in $\mathcal{A} := \{-1, +1\}^{p}$, and let $\mathbf{A} \in \mathbb{R}^{n \times p}$. How can we recover \mathbf{x}^{\natural} given \mathbf{A} and $\mathbf{b} = \mathbf{A}\mathbf{x}^{\natural}$?

The answer: • We can use the ℓ_{∞} -norm, $\|\cdot\|_{\infty}$ as $\|\cdot\|_{\mathcal{A}}$. The regularized estimator is given by $\mathbf{x}^{\star} \in \arg\min_{\mathbf{x}\in\mathbb{R}^{p}} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \rho \|\mathbf{x}\|_{\infty}, \rho > 0.$

The derivation: \circ In this case, we have $\mathsf{conv}(\mathcal{A}) = [-1,1]^p$ and

 $g_{\mathsf{conv}(\mathcal{A})}(\mathbf{x}) = \inf \left\{ t > 0 : \mathbf{x} = t\mathbf{c} \text{ for some } \mathbf{c} \text{ such that } |c_i| \le 1 \ \forall i \right\}.$

 \circ We also have, $\forall \mathbf{x} \in \mathbb{R}^p, \mathbf{c} \in \operatorname{conv}(\mathcal{A}), t > 0$,

$$\mathbf{x} = t\mathbf{c} \Rightarrow \forall i, |x_i| = |tc_i| \le t$$
$$\Rightarrow g_{\mathsf{conv}(\mathcal{A})}(\mathbf{x}) \ge \max_i |x_i|.$$

◦ Let $\mathbf{x} \neq 0$, let $j \in \arg \max_i |x_i|$ and choose $t = \max_i |x_i|$, $c_i = x_i/t \in [-1, 1]^p$. ◦ Then, $\mathbf{x} = t\mathbf{c}$, and so $g_{\mathsf{conv}(\mathcal{A})}(\mathbf{x}) \leq \max_i |x_i|$.

Application: Matrix completion

Problem formulation [2, 5]

Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with $\operatorname{rank}(\mathbf{X}^{\natural}) = r$, and let $\mathbf{A}_1, \dots, \mathbf{A}_n$ be matrices in $\mathbb{R}^{p \times p}$. How do we estimate \mathbf{X}^{\natural} given $\mathbf{A}_1, \dots, \mathbf{A}_n$ and $b_i = \operatorname{Tr} \left(\mathbf{A}_i \mathbf{X}^{\natural} \right) + w_i$, $i = 1, \dots, n$, where $\mathbf{w} := (w_1, \dots, w_n)^T$ denotes unknown noise?

The answer: • We can use the *nuclear norm*, $\|\cdot\|_*$ as $\|\cdot\|_{\mathcal{A}}$. The regularized estimator is given by

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{X} \in \mathbb{R}^{p \times p}} \sum_{i=1}^{n} (b_i - \operatorname{Tr}(\mathbf{A}_i \mathbf{X}))^2 + \rho \|\mathbf{X}\|_*, \rho > 0.$$

Application: Matrix completion

Problem formulation [2, 5]

Let $\mathbf{X}^{\natural} \in \mathbb{R}^{p \times p}$ with $\operatorname{rank}(\mathbf{X}^{\natural}) = r$, and let $\mathbf{A}_1, \dots, \mathbf{A}_n$ be matrices in $\mathbb{R}^{p \times p}$. How do we estimate \mathbf{X}^{\natural} given $\mathbf{A}_1, \dots, \mathbf{A}_n$ and $b_i = \operatorname{Tr} \left(\mathbf{A}_i \mathbf{X}^{\natural} \right) + w_i$, $i = 1, \dots, n$, where $\mathbf{w} := (w_1, \dots, w_n)^T$ denotes unknown noise?

The answer: • We can use the *nuclear norm*, $\|\cdot\|_*$ as $\|\cdot\|_{\mathcal{A}}$. The regularized estimator is given by

$$\mathbf{x}^{\star} \in \arg\min_{\mathbf{X}\in\mathbb{R}^{p\times p}} \sum_{i=1}^{n} (b_{i} - \operatorname{Tr}(\mathbf{A}_{i}\mathbf{X}))^{2} + \rho \left\|\mathbf{X}\right\|_{*}, \rho > 0.$$

The derivation: \circ Let us use the following atomic set $\mathcal{A} = \left\{ \mathbf{X} : \mathrm{rank} \ (\mathbf{X}) = 1, \|\mathbf{X}\|_F = 1, \mathbf{X} \in \mathbb{R}^{p \times p} \right\}.$

$$\circ \text{ Let } \forall \mathbf{X} \in \mathbb{R}^{p \times p}, \mathbf{C} = \sum_{i} \lambda_i \mathbf{C}_i \in \text{conv}(\mathcal{A}), \sum_{i} \lambda_i = 1, \mathbf{C}_i \in \mathcal{A}, t > 0. \text{ Then, we have}$$
$$\mathbf{X} = t \sum_{i} \lambda_i \mathbf{C}_i \Rightarrow \left\| \mathbf{X} \right\|_* = t \left\| \sum_{i} \lambda_i \mathbf{C}_i \right\|_* \le t \sum_{i} \lambda_i \left\| \mathbf{C}_i \right\|_* \le t \Rightarrow g_{\text{conv}(\mathcal{A})}(\mathbf{X}) \ge \left\| \mathbf{X} \right\|_*.$$

• Let $\mathbf{X} \neq 0$, let $\mathbf{X} = \sum_{i} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{t}$ be its SVD decomposition, where σ_{i} 's are its singular values. • Let $t = \|\mathbf{X}\|_{*} = \sum_{i} |\sigma_{i}|$, $\mathbf{C}_{i} = \mathbf{u}_{i} \mathbf{v}_{i}^{T} \in \mathcal{A}$, $\forall i$. Then, $\mathbf{X} = t \sum_{i} \lambda_{i} \mathbf{C}_{i}$, $\lambda_{i} = \frac{|\sigma_{i}|}{t}$. • Since t is feasible and $\sum_{i} \lambda_{i} = 1$, it follows that $g_{\text{conv}(\mathcal{A})}(\mathbf{X}) \leq \|\mathbf{X}\|_{*}$.

Structured Sparsity

There exist many more structures that we have not covered here, each of which is handled using different non-smooth regularizers. Some examples [1, 8]:

- Group Sparsity: Many signals are not only sparse, but the non-zero entries tend to cluster according to known patterns.
- **Tree Sparsity:** When natural images are transformed to the Wavelet domain, their significant entries form a *rooted connected tree*.

Figure: (Left panel) Natural image in the Wavelet domain. (Right panel) Rooted connected tree containing the significant coefficients.

Selection of the Parameters

In all of these problems, there remain the issues of how to design A and how to choose ρ .

Design of A:

- Sometimes A is given "by nature", whereas sometimes it can be designed
- ▶ For the latter case, i.i.d. Gaussian designs provide good theoretical guarantees, whereas in practice we must resort to structured matrices permitting more efficient storage and computation
- See [6] for an extensive study in the context of compressive sensing

Selection of ρ :

- ▶ Theoretical bounds provide some insight, but usually the direct use of the theoretical choice does not suffice
- In practice, a common approach is cross-validation [4], which involves searching for a parameter that performs well on a set of known training signals
- ▶ Other approaches include *covariance penalty* [4] and *upper bound heuristic* [13]

Non-smooth unconstrained convex minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x})$$

where f is proper, closed, convex, but not everywhere differentiable.

(2)

Subdifferentials: A generalization of the gradient

Definition

Let $f: \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$ be a convex function. The subdifferential of f at a point $\mathbf{x} \in \mathcal{Q}$ is defined by the set:

$$\partial f(\mathbf{x}) = \{ \mathbf{v} \in \mathbb{R}^p : f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \mathbf{v}, \mathbf{y} - \mathbf{x} \rangle \text{ for all } \mathbf{y} \in \mathcal{Q} \}.$$

Each element **v** of $\partial f(\mathbf{x})$ is called *subgradient* of f at **x**.

Lemma

Let $f : \mathcal{Q} \to \mathbb{R} \cup \{+\infty\}$ be a differentiable convex function. Then, the subdifferential of f at a point $\mathbf{x} \in \mathcal{Q}$ contains only the gradient, i.e., $\partial f(\mathbf{x}) = \{\nabla f(\mathbf{x})\}$.

 Figure: (Left) Non-differentiability at point y. (Right) Gradient as a subdifferential with a singleton entry.

 Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch
 Slide 31/45

(Sub)gradients in convex functions

Example

 $f(x) = |x| \qquad \qquad \longrightarrow \quad \partial |x| = \{ \operatorname{sgn}(x) \} \,, \text{ if } x \neq 0, \text{ but } [-1,1], \text{ if } x = 0.$

Subdifferentials: Two basic results

Lemma (Necessary and sufficient condition)

 $\mathbf{x}^{\star} \in \operatorname{dom}(F)$ is a globally optimal solution to (2) iff $0 \in \partial F(\mathbf{x}^{\star})$.

Sketch of the proof.

• \Leftarrow : For any $\mathbf{x} \in \mathbb{R}^p$, by definition of $\partial F(\mathbf{x}^{\star})$:

$$F(\mathbf{x}) - F(\mathbf{x}^{\star}) \ge 0^T (\mathbf{x} - \mathbf{x}^{\star}) = 0,$$

that is, \mathbf{x}^* is a global solution to (2).

• \Rightarrow : If \mathbf{x}^* is a global of (2) then for every $\mathbf{x} \in \text{dom}(F)$, $F(\mathbf{x}) \ge F(\mathbf{x}^*)$ and hence

$$F(\mathbf{x}) - F(\mathbf{x}^{\star}) \ge 0^T (\mathbf{x} - \mathbf{x}^{\star}), \forall \mathbf{x} \in \mathbb{R}^p,$$

which leads to $0 \in \partial F(\mathbf{x}^{\star})$.

Theorem (Moreau-Rockafellar's theorem [11])

Let ∂f and ∂g be the subdifferential of f and g, respectively. If $f, g \in \mathcal{F}(\mathbb{R}^p)$ and $\operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$, then:

 $\partial(f+g) = \partial f + \partial g.$

Slide 33/ 45

Non-smooth unconstrained convex minimization

Problem (Non-smooth convex minimization)

$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} f(\mathbf{x}) \tag{3}$$

Subgradient method

The subgradient method relies on the fact that even though f is non-smooth, we can still compute its subgradients, informing of the local descent directions.

Subgradient method	
1 . Choose $\mathbf{x}^0 \in \mathbb{R}^p$ as a starting point.	
2 . For $k = 0, 1, \cdots$, perform:	
$\left\{ egin{array}{cc} \mathbf{x}^{k+1} &= \mathbf{x}^k - lpha_k \mathbf{d}^k, \end{array} ight.$	(4)
where $\mathbf{d}^k \in \partial f(\mathbf{x}^k)$ and $\alpha_k \in (0,1]$ is a given step size.	

Convergence of the subgradient method

Theorem

Assume that the following conditions are satisfied:

- 1. $\|\mathbf{g}\|_2 \leq G$ for all $\mathbf{g} \in \partial f(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{R}^p$.
- **2**. $\|\mathbf{x}^0 \mathbf{x}^{\star}\|_2 \le R$

Let the stepsize be chosen as

$$\alpha_k = \frac{R}{G\sqrt{k}}$$

then the iterates generated by the subgradient method satisfy

$$\min_{0 \le i \le k} f(\mathbf{x}^i) - f^\star \le \frac{RG}{\sqrt{k}}$$

Remarks

- ▶ Condition (1) holds, for example, when *f* is *G*-Lipschitz.
- The convergence rate of $\mathcal{O}(1/\sqrt{k})$ is the slowest we have seen so far!

Stochastic subgradient methods

• An unbiased stochastic subgradient

$$\mathbb{E}[G(\mathbf{x})|\mathbf{x}] \in \partial f(\mathbf{x}).$$

 \circ Stochastic gradient methods using unbiased subgradients instead of unbiased gradients work

The classic stochastic subgradient methods (SG)1. Choose $\mathbf{x}_1 \in \mathbb{R}^p$ and $(\gamma_k)_{k \in \mathbb{N}} \in]0, +\infty[^{\mathbb{N}}.$ 2. For $k = 1, \dots$ perform: $\mathbf{x}_{k+1} = \mathbf{x}_k - \gamma_k G(\mathbf{x}_k).$

Theorem (Convergence in expectation [12]) *Suppose that:*

1.
$$\mathbb{E}[\|G(\mathbf{x}^k)\|^2] \leq M^2$$
,

$$2. \ \gamma_k = \gamma_0 / \sqrt{k}.$$

Then,

$$\mathbb{E}[f(\mathbf{x}^k) - f(\mathbf{x}^\star)] \le \left(\frac{D^2}{\gamma_0} + \gamma_0 M^2\right) \frac{2 + \log k}{\sqrt{k}}.$$

Remark: • The rate is $O(\log k/\sqrt{k})$ instead of $O(1/\sqrt{k})$ for the deterministic algorithm.

Composite convex minimization

Problem (Unconstrained composite convex minimization)

$$F^{\star} := \min_{\mathbf{x} \in \mathbb{R}^p} \left\{ F(\mathbf{x}) := f(\mathbf{x}) + g(\mathbf{x}) \right\}$$

- ▶ *f* and *g* are both proper, closed, and convex.
- $\operatorname{dom}(F) := \operatorname{dom}(f) \cap \operatorname{dom}(g) \neq \emptyset$ and $-\infty < F^* < +\infty$.
- The solution set $S^* := {\mathbf{x}^* \in \text{dom}(F) : F(\mathbf{x}^*) = F^*}$ is nonempty.

Two remarks

- Nonsmoothness: At least one of the two functions f and g is nonsmooth
 - General nonsmooth convex optimization methods (e.g., classical subgradient methods, level, or bundle methods) lack efficiency and numerical robustness.
 - ▶ Require $\mathcal{O}(\epsilon^{-2})$ iterations to reach a point $\mathbf{x}_{\epsilon}^{\star}$ such that $F(\mathbf{x}_{\epsilon}^{\star}) F^{\star} \leq \epsilon$. Hence, to reach $\mathbf{x}_{0.01}^{\star}$ such that $F(\mathbf{x}_{0.01}^{\star}) F^{\star} \leq 0.01$, we need $\mathcal{O}(10^4)$ iterations.
- Generality: it covers a wider range of problems than smooth unconstrained problems, e.g., when handling regularized *M*-estimation,
 - *f* is a loss function, a data fidelity, or negative log-likelihood function.
 - \blacktriangleright g is a regularizer, encouraging structure and/or constraints in the solution.

(5)

Example 1: Sparse regression in generalized linear models (GLMs)

Problem (Sparse regression in GLM)

Our goal is to estimate $\mathbf{x}^{\natural} \in \mathbb{R}^{p}$ given $\{b_{i}\}_{i=1}^{n}$ and $\{\mathbf{a}_{i}\}_{i=1}^{n}$, knowing that the likelihood function at y_{i} given \mathbf{a}_{i} and \mathbf{x}^{\natural} is given by $L(\langle \mathbf{a}_{i}, \mathbf{x}^{\natural} \rangle, b_{i})$, and that \mathbf{x}^{\natural} is sparse.

Optimization formulation

$$\min_{\mathbf{x}\in\mathbb{R}^p} \left\{ \underbrace{-\sum_{i=1}^n \log L(\langle \mathbf{a}_i, \mathbf{x}^{\sharp} \rangle, b_i)}_{f(\mathbf{x})} + \underbrace{\rho_n \|\mathbf{x}\|_1}_{g(\mathbf{x})} \right\}$$

where $\rho_n > 0$ is a parameter which controls the strength of sparsity regularization.

Theorem (cf. [10] for details)

Under some technical conditions, there exists $\{\rho_i\}_{i=1}^{\infty}$ such that with high probability,

$$\left\| \mathbf{x}^{\star} - \mathbf{x}^{\natural} \right\|_{2}^{2} = \mathcal{O}\left(\frac{s \log p}{n}\right), \quad \text{supp } \mathbf{x}^{\star} = \text{supp } \mathbf{x}^{\natural}.$$

$$Recall ML: \left\| \mathbf{x}_{ML} - \mathbf{x}^{\natural} \right\|_{2}^{2} = \mathcal{O}\left(p/n\right).$$

Example 2: Image processing

Problem (Imaging denoising/deblurring)

Our goal is to obtain a clean image \mathbf{x} given "dirty" observations $\mathbf{b} \in \mathbb{R}^{n \times 1}$ via $\mathbf{b} = \mathcal{A}(\mathbf{x}) + \mathbf{w}$, where \mathcal{A} is a linear operator, which, e.g., captures camera blur as well as image subsampling, and \mathbf{w} models perturbations, such as Gaussian or Poisson noise.

Optimization formulation

$$\begin{aligned} \text{Gaussian}: & \min_{\mathbf{x} \in \mathbb{R}^{n \times p}} \left\{ \underbrace{(1/2) \| \mathcal{A}(\mathbf{x}) - \mathbf{b} \|_{2}^{2}}_{f(\mathbf{x})} + \underbrace{\rho \| \mathbf{x} \|_{\mathrm{TV}}}_{g(\mathbf{x})} \right\} \\ \text{Poisson}: & \min_{\mathbf{x} \in \mathbb{R}^{n \times p}} \left\{ \underbrace{\frac{1}{n} \sum_{i=1}^{n} \left[\langle \mathbf{a}_{i}, \mathbf{x} \rangle - b_{i} \ln \left(\langle \mathbf{a}_{i}, \mathbf{x} \rangle \right) \right]}_{f(\mathbf{x})} + \underbrace{\rho \| \mathbf{x} \|_{\mathrm{TV}}}_{g(\mathbf{x})} \right\} \end{aligned}$$

where $\rho > 0$ is a regularization parameter and $\|\cdot\|_{TV}$ is the total variation (TV) norm:

$$\|\mathbf{x}\|_{\mathrm{TV}} := \begin{cases} \sum_{i,j} |\mathbf{x}_{i,j+1} - \mathbf{x}_{i,j}| + |\mathbf{x}_{i+1,j} - \mathbf{x}_{i,j}| & \text{anisotropic case,} \\ \sum_{i,j} \sqrt{|\mathbf{x}_{i,j+1} - \mathbf{x}_{i,j}|^2 + |\mathbf{x}_{i+1,j} - \mathbf{x}_{i,j}|^2} & \text{isotropic case} \end{cases}$$

Example 3: Confocal microscopy with camera blur and Poisson observations

Example 4: Sparse inverse covariance estimation

Problem (Graphical model selection)

Given a data set $\mathcal{D} := \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, where \mathbf{x}_i is a Gaussian random variable. Let Σ be the covariance matrix corresponding to the graphical model of the Gaussian Markov random field. Our goal is to learn a sparse precision matrix Θ (i.e., the inverse covariance matrix Σ^{-1}) that captures the Markov random field structure.

Optimization formulation

$$\min_{\Theta \succ 0} \left\{ \underbrace{\operatorname{tr}(\Sigma\Theta) - \log \det(\Theta)}_{f(\mathbf{x})} + \underbrace{\lambda \|\operatorname{vec}(\Theta)\|_1}_{g(\mathbf{x})} \right\}$$
(6)

where $\Theta \succ 0$ means that Θ is symmetric and positive definite and $\lambda > 0$ is a regularization parameter and vec is the vectorization operator.

Wrap up!

- $\circ\,$ Three supplementary lectures to take a look once the course is over!
 - One on compressive sensing (Math of Data Lecture 4 from 2014): https://archive-wp.epfl.ch/lions/wp-content/uploads/2019/01/lecture-4-2014.pdf
 - One on source separation (Math of Data Lecture 6 from 2014) https://archive-wp.epfl.ch/lions/wp-content/uploads/2019/01/lecture-6-2014.pdf
 - One on convexification of structured sparsity models (research presentation) https://www.epfl.ch/labs/lions/wp-content/uploads/2019/01/volkan-TU-view-web.pdf

References |

- R.G. Baraniuk, V. Cevher, M.F. Duarte, and C. Hegde. Model-based compressive sensing. Information Theory, IEEE Transactions on, 56(4):1982–2001, 2010.
- [2] Emmanuel Candès and Benjamin Recht.
 Exact matrix completion via convex optimization.
 Found. Comput. Math., 9:717–772, 2009.
- [3] Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, and Alan S. Willsky. The convex geometry of linear inverse problems. *Found. Comput. Math.*, 12:805–849, 2012.

[4] Bradley Efron.
 The estimation of prediction error: Covariance penalities and cross-validation.
 J. Am. Stat. Assoc., 99(467):619–632, September 2004.

[5] Steven T. Flammia, David Gross, Yi-Kai Liu, and Jens Eisert. Quantum tomography via compressed sensing: Error bounds, sample complexity and efficient estimators. *New J. Phys.*, 14, 2012.

References II

[6] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Springer, 2013.

 [7] Rémi Gribonval, Volkan Cevher, and Mike E. Davies.
 Compressible distributions for high-dimensional statistics. IEEE Trans. Inf. Theory, 58(8):5016–5034, 2012.

 [8] Marwa El Halabi and Volkan Cevher. A totally unimodular view of structured sparsity. http://arxiv.org/abs/1411.1990, 2014.

 O. L. Mangasarian and Benjamin Recht.
 Probability of unique integer solution to a system of linear equations. *Eur. J. Oper. Res.*, 214:27–30, 2011.

[10] Sahand N. Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A unified framework for high-dimensional analysis of *M*-estimators with decomposable regularizers. *Stat. Sci.*, 27(4):538–557, 2012.

References III

[11] R. Tyrrell Rockafellar.

Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J., 1970.

[12] Ohad Shamir and Tong Zhang.

Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes.

In International Conference on Machine Learning, pages 71–79, 2013.

[13] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi.

Simple error bounds for regularized noisy linear inverse problems. 2014. arXiv:1401.6578v1 [math.OC].