Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2021)
License Information for Mathematics of Data Slides

- This work is released under a Creative Commons License with the following terms:
 - **Attribution**
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the original authors credit.
 - **Non-Commercial**
 - The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the work for commercial purposes – unless they get the licensor’s permission.
 - **Share Alike**
 - The licensor permits others to distribute derivative works only under a license identical to the one that governs the licensor’s work.
 - Full Text of the License
Recall: Gradient descent

Problem (Unconstrained convex problem)

Consider the following convex minimization problem:

\[f^* = \min_{x \in \mathbb{R}^p} f(x) \]

- \(f \) is a convex function that is
 - proper: \(\forall x \in \mathbb{R}^p, -\infty < f(x) \) and there exists \(x \in \mathbb{R}^p \) such that \(f(x) < +\infty \).
 - closed: The epigraph \(\text{epi} f = \{(x, t) \in \mathbb{R}^{p+1}, f(x) \leq t\} \) is closed.
 - smooth: \(f \) is differentiable and its gradient \(\nabla f \) is \(L \)-Lipschitz.
- The solution set \(S^* := \{x^* \in \text{dom}(f) : f(x^*) = f^*\} \) is nonempty.

Gradient descent (GD)

Choose a starting point \(x^0 \) and iterate

\[x^{k+1} = x^k - \alpha_k \nabla f(x^k) \]

where \(\alpha_k \) is a step-size to be chosen so that \(x^k \) converges to \(x^* \).
Convergence rate of gradient descent

Theorem

Let \(f \) be a twice-differentiable convex function, if

- \(f \) is \(L \)-smooth, then \(\alpha = \frac{1}{L} \) : \(f(x^k) - f(x^*) \leq \frac{2L}{k+4} \|x^0 - x^*\|^2 \)

- \(f \) is \(L \)-smooth and \(\mu \)-strongly convex, then \(\alpha = \frac{2}{L+\mu} \) : \(\|x^k - x^*\|_2 \leq \left(\frac{L-\mu}{L+\mu} \right)^k \|x^0 - x^*\|_2 \)

- \(f \) is \(L \)-smooth and \(\mu \)-strongly convex, then \(\alpha = \frac{1}{L} \) : \(\|x^k - x^*\|_2 \leq \left(\frac{L-\mu}{L+\mu} \right)^{k/2} \|x^0 - x^*\|_2 \)

Note that \(\frac{L-\mu}{L+\mu} = \frac{\kappa - 1}{\kappa + 1} \), where \(\kappa := \frac{L}{\mu} \) is the condition number of \(\nabla^2 f \).
Information theoretic lower bounds [20]

What is the best achievable rate for a first-order method?

\[f \in \mathcal{F}_L^\infty: \infty\text{-differentiable and } L\text{-smooth} \]

It is possible to construct a function in \(\mathcal{F}_L^\infty \), for which any first order method must satisfy

\[
f(x^k) - f(x^*) \geq \frac{3L}{32(k+1)^2} \|x^0 - x^*\|^2_2 \quad \text{for all } k \leq \frac{p-1}{2}
\]

\[f \in \mathcal{F}_{L,\mu}^\infty: \infty\text{-differentiable, } L\text{-smooth and } \mu\text{-strongly convex} \]

It is possible to construct a function in \(\mathcal{F}_{L,\mu}^\infty \), for which any first order method must satisfy

\[
\|x^k - x^*\|_2 \geq \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}} \right)^k \|x^0 - x^*\|_2
\]

Gradient descent is \(O(1/k) \) for \(\mathcal{F}_L^\infty \) and it is slower for \(\mathcal{F}_{L,\mu}^\infty \), hence it does not achieve the lower bounds!
Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution

Nesterov’s accelerated scheme

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth (AGD-L)

1. Set $x_0 = y_0 \in \text{dom } f$ and $t_0 := 1$.
2. For $k = 0, 1, ...$, iterate
 \[
 x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k),
 \]
 \[
 y_{k+1} = x_{k+1} + \frac{t_k}{t_k^2 + 1} (x_{k+1} - x_k),
 \]
 \[
 t_{k+1} = \frac{1 + \sqrt{4 t_k^2 + 1}}{2}.
 \]

Accelerated Gradient algorithm for L-smooth and μ-strongly convex (AGD-μ-L)

1. Choose $x_0 = y_0 \in \text{dom } f$.
2. For $k = 0, 1, ...$, iterate
 \[
 x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k),
 \]
 \[
 y_{k+1} = x_{k+1} + \alpha (x_{k+1} - x_k),
 \]
 where
 \[
 \alpha = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}.
 \]

Remark:

◦ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.
Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth (AGD-L)

1. Set $x_0 = y_0 \in \text{dom (f)}$ and $t_0 := 1$.
2. For $k = 0, 1, ...$, iterate

 \[
 \begin{align*}
 x_{k+1} &= y_k - \frac{1}{L} \nabla f(y_k) \\
 t_{k+1} &= \frac{(1 + \sqrt{4t_k^2 + 1})}{2} \\
 y_{k+1} &= x_{k+1} + \left(\frac{t_k - 1}{t_k + 1}\right)(x_{k+1} - x_k)
 \end{align*}
 \]

Accelerated Gradient algorithm for L-smooth and μ-strongly convex ($\text{AGD-}\mu L$)

1. Choose $x_0 = y_0 \in \text{dom (f)}$.
2. For $k = 0, 1, ...$, iterate

 \[
 \begin{align*}
 x_{k+1} &= y_k - \frac{1}{L} \nabla f(y_k) \\
 y_{k+1} &= x_{k+1} + \alpha(x_{k+1} - x_k)
 \end{align*}
 \]

where $\alpha = \sqrt{\frac{L - \sqrt{\mu}}{L + \sqrt{\mu}}}$.

Remark:

- AGD is not monotone, but the cost-per-iteration is essentially the same as GD.
Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth (AGD-L)

1. Set $x^0 = y^0 \in \text{dom}(f)$ and $t_0 := 1$.
2. For $k = 0, 1, \ldots$, iterate

\[
\begin{align*}
 x^{k+1} &= y^k - \frac{1}{L} \nabla f(y^k) \\
 t_{k+1} &= (1 + \sqrt{4t_k^2 + 1})/2 \\
 y^{k+1} &= x^{k+1} + \frac{(t_k - 1)}{t_{k+1}}(x^{k+1} - x^k)
\end{align*}
\]

Remark:

◦ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.
Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth (AGD-L)

1. Set $x^0 = y^0 \in \text{dom}(f)$ and $t_0 := 1$.
2. For $k = 0, 1, \ldots$, iterate

 \[
 \begin{aligned}
 x^{k+1} &= y^k - \frac{1}{L} \nabla f(y^k) \\
 t_{k+1} &= (1 + \sqrt{4t_k^2 + 1})/2 \\
 y^{k+1} &= x^{k+1} + \frac{(t_k - 1)}{t_{k+1}}(x^{k+1} - x^k)
 \end{aligned}
 \]

Accelerated Gradient algorithm for L-smooth and μ-strongly convex (AGD-μL)

1. Choose $x^0 = y^0 \in \text{dom}(f)$
2. For $k = 0, 1, \ldots$, iterate

 \[
 \begin{aligned}
 x^{k+1} &= y^k - \frac{1}{L} \nabla f(y^k) \\
 y^{k+1} &= x^{k+1} + \alpha(x^{k+1} - x^k)
 \end{aligned}
 \]

where $\alpha = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$.

Remark:

◦ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.
Accelerated gradient descent algorithm

Problem

Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]

Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

<table>
<thead>
<tr>
<th>Accelerated Gradient algorithm for L-smooth (AGD-L)</th>
<th>Accelerated Gradient algorithm for L-smooth and μ-strongly convex (AGD-μL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set $x^0 = y^0 \in \text{dom}(f)$ and $t_0 := 1$.</td>
<td>1. Choose $x^0 = y^0 \in \text{dom}(f)$</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$, iterate</td>
<td>2. For $k = 0, 1, \ldots$, iterate</td>
</tr>
</tbody>
</table>
| \[
\begin{align*}
 x^{k+1} &= y^k - \frac{1}{L} \nabla f(y^k) \\
 t_{k+1} &= (1 + \sqrt{4t_k^2 + 1})/2 \\
 y^{k+1} &= x^{k+1} + \frac{(t_k-1)}{t_{k+1}}(x^{k+1} - x^k)
\end{align*}
| \[
\begin{align*}
 x^{k+1} &= y^k - \frac{1}{L} \nabla f(y^k) \\
 y^{k+1} &= x^{k+1} + \alpha(x^{k+1} - x^k)
\end{align*}
\]
| where $\alpha = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}$. |

Remark:
○ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.
Global convergence of AGD [20]

Theorem (\(f\) is convex with Lipschitz gradient)

If \(f\) is \(L\)-smooth or \(L\)-smooth and \(\mu\)-strongly convex, the sequence \(\{x^k\}_{k \geq 0}\) generated by AGD-L satisfies

\[
f(x^k) - f^* \leq \frac{4L}{(k + 2)^2} \|x^0 - x^*\|_2^2, \quad \forall k \geq 0. \tag{1}
\]
Global convergence of AGD [20]

Theorem (f is convex with Lipschitz gradient)

If f is L-smooth or L-smooth and μ-strongly convex, the sequence $\{x^k\}_{k \geq 0}$ generated by AGD-L satisfies

$$f(x^k) - f^* \leq \frac{4L}{(k+2)^2} \|x^0 - x^*\|_2^2, \quad \forall k \geq 0.$$

(1)

AGD-L is optimal for L-smooth but NOT for L-smooth and μ-strongly convex!

Theorem (f is strongly convex with Lipschitz gradient)

If f is L-smooth and μ-strongly convex, the sequence $\{x^k\}_{k \geq 0}$ generated by AGD-μL satisfies

$$f(x^k) - f^* \leq L \left(1 - \sqrt{\frac{\mu}{L}}\right) \|x^0 - x^*\|_2^2, \quad \forall k \geq 0$$

(2)

$$\|x^k - x^*\|_2 \leq \sqrt{\frac{2L}{\mu}} \left(1 - \sqrt{\frac{\mu}{L}}\right)^{\frac{k}{2}} \|x^0 - x^*\|_2, \quad \forall k \geq 0.$$

(3)

Observations:

- AGD-L’s iterates are not guaranteed to converge.
- AGD-L does not have a linear convergence rate for L-smooth and μ-strongly convex.
- AGD-μL does, but needs to know μ.
- AGD achieves the iteration lowerbound within a constant!
Example: Ridge regression

Case 1: \(n = 500, p = 2000, \rho = 0 \)

Case 2: \(n = 500, p = 2000, \rho = 0.01\lambda_p(A^T A) \)
Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates

Gradient descent:

\[f \text{ is } L\text{-smooth, } \alpha = \frac{1}{L} : \quad f(x^k) - f(x^*) \leq \frac{2L}{k+4} \|x^0 - x^*\|^2. \]

Accelerated Gradient Descent:

\[f \text{ is } L\text{-smooth, } \alpha = \frac{1}{L} : \quad f(x^k) - f(x^*) \leq \frac{4L}{(k+2)^2} \|x^0 - x^*\|^2, \quad \forall k \geq 0. \]
Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates

Gradient descent:

\[f \text{ is } L\text{-smooth, } \alpha = \frac{1}{L} : \]
\[f(x^k) - f(x^*) \leq \frac{2L}{k+4} \|x^0 - x^*\|_2^2. \]

Accelerated Gradient Descent:

\[f \text{ is } L\text{-smooth, } \alpha = \frac{1}{L} : \]
\[f(x^k) - f(x^*) \leq \frac{4L}{(k + 2)^2} \|x^0 - x^*\|_2^2, \text{ } \forall k \geq 0. \]

Observations:

- We require \(\alpha_t \) to be a function of \(L \).
- It may not be possible to know exactly the Lipschitz constant.
- Adaptation to local geometry → may lead to larger steps.
Adaptive first-order methods and Newton method

Adaptive methods

Adaptive methods converge with fast rates without knowing the smoothness constant. They do so by making use of the information from gradients and their norms.
Adaptive first-order methods and *Newton method

<table>
<thead>
<tr>
<th>Adaptive methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive methods converge with fast rates without knowing the smoothness constant.</td>
</tr>
<tr>
<td>They do so by making use of the information from gradients and their norms.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*Newton method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher-order information, e.g., Hessian, gives a finer characterization of local behavior.</td>
</tr>
<tr>
<td>Newton method achieves asymptotically better local rates, but for additional cost.</td>
</tr>
</tbody>
</table>
How can we better adapt to the local geometry?

\[
\begin{align*}
\n\n\|\nabla f(x) - \nabla f(y)\| &\leq L\|y - x\| \\
\text{L is a global worst-case constant}
\end{align*}
\]
How can we better adapt to the local geometry?

Local quadratic upper bound

\[Q_{L_k}(x, x^k) \]

\[x^{k+1} = \arg \min_x \left\{ f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L_k}{2} \| x - x^k \|_2^2 \right\} \]

\[\| \nabla f(x) - \nabla f(y) \| \leq L \| y - x \| \]

\(L \) is a global worst-case constant

\[L \] applies only locally
How can we better adapt to the local geometry?

\[f(x^{k+1}) = \arg \min_x \left\{ f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \|x - x^k\|^2 \right\} \]

\[\| \nabla f(x) - \nabla f(y) \| \leq L \| y - x \| \]

\(L \) is a global worst-case constant.
Variable metric gradient descent algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Choose $x^0 \in \mathbb{R}^p$ as a starting point and $H_0 \succ 0$.</td>
</tr>
</tbody>
</table>
| 2. | For $k = 0, 1, \cdots$, perform:
$$ \begin{align*}
 d^k &:= -H_k^{-1}\nabla f(x^k), \\
 x^{k+1} &:= x^k + \alpha_k d^k,
\end{align*} $$
where $\alpha_k \in (0, 1]$ is a given step size. |
| 3. | Update $H_{k+1} \succ 0$ if necessary. |

Common choices of the variable metric H_k:

- $H_k := \lambda_k I \Rightarrow$ gradient descent method.
- $H_k := D_k$ (a positive diagonal matrix) \Rightarrow adaptive gradient methods.
- $H_k := \nabla^2 f(x^k) \Rightarrow$ Newton method.
- $H_k \approx \nabla^2 f(x^k) \Rightarrow$ quasi-Newton method.
Variable metric gradient descent algorithm

1. Choose $x^0 \in \mathbb{R}^p$ as a starting point and $H_0 \succ 0$.
2. For $k = 0, 1, \cdots$, perform:
 \[
 \begin{align*}
 &d_k := -H_k^{-1}\nabla f(x_k), \\
 &x_{k+1} := x_k + \alpha_k d_k,
 \end{align*}
 \]
 where $\alpha_k \in (0, 1]$ is a given step size.
3. Update $H_{k+1} \succ 0$ if necessary.

Common choices of the variable metric H_k:

- $H_k := \lambda_k I$ \implies gradient descent method.
- $H_k := D_k$ (a positive diagonal matrix) \implies adaptive gradient methods.
- $H_k := \nabla^2 f(x_k)$ \implies Newton method.
- $H_k \approx \nabla^2 f(x_k)$ \implies quasi-Newton method.
Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting H_k as a function of past gradient information.
Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting H_k as a function of past gradient information.

- Roughly speaking, $H_k = \text{function}(\nabla f(x^1), \nabla f(x^2), \ldots, \nabla f(x^k))$
- Some well-known examples:

AdaGrad [9]

$$H_k = \sqrt{\sum_{t=1}^{k} (\nabla f(x^t)\top \nabla f(x^t))}$$

RmsProp [27]

$$H_k = \sqrt{\beta H_{k-1} + (1 - \beta) \text{diag}(\nabla f(x^k))^2}$$

ADAM [15]

$$\hat{H}_k = \beta \hat{H}_{k-1} + (1 - \beta) \text{diag}(\nabla f(x^k))^2$$

$$H_k = \sqrt{\hat{H}_k/(1 - \beta^k)}$$
AdaGrad - Adaptive gradient method with $H_k = \lambda_k I$

- If $H_k = \lambda_k I$, it becomes gradient descent method with adaptive step-size $\frac{\alpha_k}{\lambda_k}$.

How step-size adapts?

If gradient $\|\nabla f(x^k)\|$ is large/small \rightarrow AdaGrad adjusts step-size α_k/λ_k smaller/larger

<table>
<thead>
<tr>
<th>Adaptive gradient descent (AdaGrad with $H_k = \lambda_k I$) [16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set $Q^0 = 0$.</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$, iterate</td>
</tr>
</tbody>
</table>
| \[
\begin{align*}
Q^k &= Q^{k-1} + \|\nabla f(x^k)\|^2 \\
H_k &= \sqrt{Q^k} I \\
x^{k+1} &= x^k - \alpha_k H_k^{-1} \nabla f(x^k)
\end{align*}
\] |
AdaGrad - Adaptive gradient method with $H_k = \lambda_k I$

- If $H_k = \lambda_k I$, it becomes gradient descent method with adaptive step-size $\frac{\alpha_k}{\lambda_k}$.

How step-size adapts?

If gradient $\|\nabla f(x^k)\|$ is large/small → AdaGrad adjusts step-size $\frac{\alpha_k}{\lambda_k}$ smaller/larger

<table>
<thead>
<tr>
<th>Adaptive gradient descent (AdaGrad with $H_k = \lambda_k I$) [16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set $Q^0 = 0$.</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$, iterate</td>
</tr>
<tr>
<td>$Q^k = Q^{k-1} + |\nabla f(x^k)|^2$</td>
</tr>
<tr>
<td>$H_k = \sqrt{Q^k} I$</td>
</tr>
<tr>
<td>$x^{k+1} = x^k - \alpha_k H_k^{-1} \nabla f(x^k)$</td>
</tr>
</tbody>
</table>

Adaptation through first-order information

- When $H_k = \lambda_k I$, AdaGrad estimates local geometry through gradient norms.
- Akin to estimating a local quadratic upper bound (majorization / minimization) using gradient history.
AdaGrad - Adaptive gradient method with $H_k = D_k$

Adaptation strategy with a positive diagonal matrix D_k

Adaptive step-size + coordinate-wise extension = adaptive step-size for each coordinate

$$f(x_k) = \mathbb{E}_{D_k} f(x)$$

Local quadratic upper bound

$$Q_{L_k}(x, x^k)$$

$$x^{k+1} = \arg\min_x \left\{ f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L_k}{2} \|x - x^k\|_2^2 \right\}$$

$$\|\nabla f(x) - \nabla f(y)\| \leq L \|y - x\|$$

L is a global worst-case constant

$$f(x) \leq f(x^k) + \nabla f(x^k)^T(x - x^k) + \frac{1}{2} \|x - x^k\|_{D_k^{-1}}^2$$

Applies only locally
AdaGrad - Adaptive gradient method with $H_k = D_k$

- Suppose H_k is diagonal,

$$H_k := \begin{bmatrix} \lambda_{k,1} & 0 \\ & \ddots \\ 0 & \lambda_{k,d} \end{bmatrix},$$

- For each coordinate i, we have different step-size $\frac{\alpha_k}{\lambda_{k,i}}$ is the step-size.

<table>
<thead>
<tr>
<th>Adaptive gradient descent (AdaGrad with $H_k = D_k$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set $Q^0 = 0$.</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$, iterate ${ \begin{align*} Q^k &= Q^{k-1} + \text{diag}(\nabla f(x^k))^2 \ H_k &= \sqrt{Q^k} \ x^{k+1} &= x^k - \alpha_k H_k^{-1} \nabla f(x^k) \end{align*} }$</td>
</tr>
</tbody>
</table>
AdaGrad - Adaptive gradient method with $H_k = D_k$

- Suppose H_k is diagonal,

$$H_k := \begin{bmatrix} \lambda_{k,1} & 0 \\ \vdots & \ddots \\ 0 & \lambda_{k,d} \end{bmatrix},$$

- For each coordinate i, we have different step-size $\frac{\alpha_k}{\lambda_{k,i}}$ is the step-size.

\[
\begin{align*}
\text{Adaptive gradient descent (AdaGrad with } H_k = D_k) \\
\text{1. Set } Q^0 = 0. \\
\text{2. For } k = 0, 1, \ldots, \text{ iterate} \\
\left\{ \\
\begin{array}{l}
Q^k = Q^{k-1} + \text{diag}(\nabla f(x^k))^2 \\
H_k = \sqrt{Q^k} \\
x^{k+1} = x^k - \alpha_k H_k^{-1} \nabla f(x^k)
\end{array} \right.
\end{align*}
\]

Adaptation across each coordinate

- When $H_k = D_k$, we adapt across each coordinate individually.
- Essentially, we have a finer treatment of the function we want to optimize.
Convergence rate for AdaGrad

Original convergence for a different function class

Consider a proper, convex function f such that it is G-Lipschitz continuous \((\text{NOT } L\text{-smooth})\). Let $D = \max_k \| x^k - x^* \|_2$ and $\alpha_k = \frac{D}{\sqrt{2}}$. Define $\bar{x}^k = (\sum_{i=1}^{k} x^i)/k$. Then,

$$f(\bar{x}^k) - f(x^*) \leq \frac{1}{k} \sqrt{2D^2 \sum_{i=1}^{k} \| \nabla f(x^i) \|^2_2} \leq \frac{\sqrt{2DG}}{\sqrt{k}}$$

A more familiar convergence result \([16]\)

Assume f is L-smooth, $D = \max_t \| x^k - x^* \|_2$ and $\alpha_k = \frac{D}{\sqrt{2}}$. Define $\bar{x}^k = (\sum_{i=1}^{k} x^i)/k$. Then,

$$f(\bar{x}^k) - f(x^*) \leq \frac{1}{k} \sqrt{2D^2 \sum_{i=1}^{k} \| \nabla f(x^i) \|^2_2} \leq \frac{4D^2 L}{k}$$
AcceleGrad - Adaptive gradient + Accelerated gradient [17]

Motivation behind AcceleGrad

Is it possible to achieve acceleration for when f is L-smooth, without knowing the Lipschitz constant?

- The answer is yes! See advanced material (AcceleGrad) at the end.
- A rough comparison of the accelerated methods:

<table>
<thead>
<tr>
<th>Accelerated Gradient algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose $x^0 = y^0 \in \text{dom}(f)$</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$, iterate</td>
</tr>
<tr>
<td>$x^{k+1} = y^k - \alpha \nabla f(y^k)$</td>
</tr>
<tr>
<td>$y^{k+1} = x^{k+1} + \gamma_{k+1}(x^{k+1} - x^k)$</td>
</tr>
</tbody>
</table>

for some proper choice of α and γ_{k+1}.

<table>
<thead>
<tr>
<th>AcceleGrad (Accelerated Adaptive Gradient Method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set $y^0 = z^0 = x^0$</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$, iterate</td>
</tr>
<tr>
<td>$\tau_k := 1/\alpha_k$</td>
</tr>
<tr>
<td>$x^{k+1} = \tau_k z^k + (1 - \tau_k)y^k$</td>
</tr>
<tr>
<td>$z^{k+1} = z^k - \alpha_k \eta_k \nabla f(x^k)$</td>
</tr>
<tr>
<td>$y^{k+1} = x^{k+1} - \eta_k \nabla f(x^k)$</td>
</tr>
</tbody>
</table>

for $\alpha_k = (k + 1)/4$ and

$$\eta_k = \frac{2D}{\sqrt{G^2 + \sum_{i=0}^{k} (\alpha_k)^2 \|\nabla f(x^k)\|^2}}.$$
Performance of optimization algorithms

<table>
<thead>
<tr>
<th>Time-to-reach ϵ</th>
</tr>
</thead>
<tbody>
<tr>
<td>time-to-reach $\epsilon = \text{number of iterations to reach } \epsilon \times \text{per iteration time}$</td>
</tr>
</tbody>
</table>

The speed of numerical solutions depends on two factors:

- **Convergence rate** determines the number of iterations needed to obtain an ϵ-optimal solution.
- **Per-iteration time** depends on the information oracles, implementation, and the computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky!
Performance of optimization algorithms (convex)

A non-exhaustive comparison:

<table>
<thead>
<tr>
<th>Assumptions on f</th>
<th>Algorithm</th>
<th>Convergence rate</th>
<th>Iteration complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-smooth</td>
<td>Gradient descent</td>
<td>Sublinear ($1/k$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>AdaGrad</td>
<td>Sublinear ($1/k$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Sublinear ($1/k^2$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>AcceleGrad</td>
<td>Sublinear ($1/k^2$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Sublinear ($1/k$), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
<tr>
<td>L-smooth and μ-strongly convex</td>
<td>Gradient descent</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Linear (e^{-k}), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
</tbody>
</table>

Gradient descent:

$$x^{k+1} = x^k - \alpha \nabla f(x^k),$$

where the stepsize is chosen appropriately, $\alpha \in (0, \frac{2}{L})$

AdaGrad:

$$x^{k+1} = x^k - \alpha^k \nabla f(x^k),$$

where scalar version of the step size is

$$\alpha^k = \frac{D}{\sqrt{\sum_{i=1}^{k} \| \nabla f(x^i) \|^2}}$$
Performance of optimization algorithms (convex)

A non-exhaustive comparison:

<table>
<thead>
<tr>
<th>Assumptions on f</th>
<th>Algorithm</th>
<th>Convergence rate</th>
<th>Iteration complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-smooth</td>
<td>Gradient descent</td>
<td>Sublinear $(1/k)$</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>AdaGrad</td>
<td>Sublinear $(1/k)$</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Sublinear $(1/k^2)$</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>AcceleGrad</td>
<td>Sublinear $(1/k^2)$</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Sublinear $(1/k)$, Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
<tr>
<td>L-smooth and μ-strongly convex</td>
<td>Gradient descent</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Linear (e^{-k}), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
</tbody>
</table>

Accelerated gradient descent:

$$
\begin{align*}
\mathbf{x}^{k+1} &= \mathbf{y}^k - \alpha \nabla f(\mathbf{y}^k) \\
\mathbf{y}^{k+1} &= \mathbf{x}^{k+1} + \gamma_{k+1}(\mathbf{x}^{k+1} - \mathbf{x}^k).
\end{align*}
$$

for some proper choice of α and γ_{k+1}.

AcceleGrad:

$$
\begin{align*}
\mathbf{x}^{k+1} &= \tau_k \mathbf{z}^k + (1 - \tau_k)\mathbf{y}^k \\
\mathbf{z}^{k+1} &= \mathbf{z}^k - \alpha_k \eta_k \nabla f(\mathbf{x}^k) \\
\mathbf{y}^{k+1} &= \mathbf{x}^{k+1} - \eta_k \nabla f(\mathbf{x}^k).
\end{align*}
$$

for $\alpha_k = (k + 1)/4$, $\tau_k = 1/\alpha_k$ and

$$
\eta_k = \frac{2D}{\sqrt{G^2 + \sum_{i=0}^{k} (\alpha_k)^2 \|
\nabla f(\mathbf{x}^k)\|^2}}.
$$
Performance of optimization algorithms (convex)

A non-exhaustive comparison:

<table>
<thead>
<tr>
<th>Assumptions on f</th>
<th>Algorithm</th>
<th>Convergence rate</th>
<th>Iteration complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-smooth</td>
<td>Gradient descent</td>
<td>Sublinear ($1/k$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>AdaGrad</td>
<td>Sublinear ($1/k$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Sublinear ($1/k^2$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>AcceleGrad</td>
<td>Sublinear ($1/k^2$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Sublinear ($1/k$), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
<tr>
<td>L-smooth and μ-strongly convex</td>
<td>Gradient descent</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Linear (e^{-k}), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
</tbody>
</table>

The main computation of the Newton method requires the solution of the linear system

$$\nabla^2 f(x^k)p^k = -\nabla f(x^k).$$
The gradient method for non-convex optimization

Remarks:
- Gradient descent does not match lower bounds in convex setting.
- How about non-convex problems?

Lower bounds for non-convex problems [5]
Assume f is L-gradient Lipschitz and non-convex. Then any first-order method must satisfy,

$$\| \nabla f(x^k) \|^2 = \Omega \left(\frac{1}{k} \right)$$

Observations:
- Gradient descent is optimal for non-convex problems, up to some constant factor!
- Acceleration for non-convex, L-Lipschitz gradient functions is not as meaningful.
Recall: Gradient descent

Problem (Unconstrained optimization problem)

Consider the following minimization problem:

\[f^* = \min_{x \in \mathbb{R}^p} f(x) \]

\(f(x) \) is proper and closed.

Gradient descent

Choose a starting point \(x^0 \) and iterate

\[x^{k+1} = x^k - \alpha_k \nabla f(x^k) \]

where \(\alpha_k \) is a step-size to be chosen so that \(x^k \) converges to \(x^* \).

<table>
<thead>
<tr>
<th></th>
<th>(f) is (L)-smooth & convex</th>
<th>(f) is (L)-gradient Lipschitz & non-convex</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD</td>
<td>(O(1/k)) (fast)</td>
<td>(O(1/k)) (optimal)</td>
</tr>
<tr>
<td>AGD</td>
<td>(O(1/k^2)) (optimal)</td>
<td>(O(1/k)) (optimal) [13]</td>
</tr>
</tbody>
</table>
Recall: Gradient descent

Problem (Unconstrained optimization problem)

Consider the following minimization problem:

\[f^* = \min_{x \in \mathbb{R}^p} f(x) \]

\(f(x) \) is proper and closed.

Gradient descent

Choose a starting point \(x^0 \) and iterate

\[x^{k+1} = x^k - \alpha_k \nabla f(x^k) \]

where \(\alpha_k \) is a step-size to be chosen so that \(x^k \) converges to \(x^* \).

<table>
<thead>
<tr>
<th></th>
<th>(f) is (L)-smooth & convex</th>
<th>(f) is (L)-gradient Lipschitz & non-convex</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD</td>
<td>(O(1/k)) (fast)</td>
<td>(O(1/k)) (optimal)</td>
</tr>
<tr>
<td>AGD</td>
<td>(O(1/k^2)) (optimal)</td>
<td>(O(1/k)) (optimal) [13]</td>
</tr>
</tbody>
</table>

Why should we study anything else?
Statistical learning with streaming data

- Recall that statistical learning seeks to find a $h^* \in \mathcal{H}$ that minimizes the expected risk,
 \[
 h^* \in \arg\min_{h \in \mathcal{H}} \left\{ R(h) := \mathbb{E}_{(a,b)}[L(h(a), b)] \right\}.
 \]

Abstract gradient method

\[
 h^{k+1} = h^k - \alpha_k \nabla R(h^k) = h^k - \alpha_k \mathbb{E}_{(a,b)}[\nabla L(h^k(a), b)].
\]

This can not be implemented in practice as the distribution of (a, b) is unknown.
Statistical learning with streaming data

- Recall that statistical learning seeks to find a $h^* \in \mathcal{H}$ that minimizes the expected risk,

$$h^* \in \arg \min_{h \in \mathcal{H}} \left\{ R(h) := \mathbb{E}_{(a,b)} [L(h(a), b)] \right\}.$$

Abstract gradient method

$$h^{k+1} = h^k - \alpha_k \nabla R(h^k) = h^k - \alpha_k \mathbb{E}_{(a,b)} [\nabla L(h_k(a), b)].$$

This can not be implemented in practice as the distribution of (a, b) is unknown.

- In practice, data can arrive in a *streaming* way.

A parametric example: Markowitz portfolio optimization

$$x^* := \min_{x \in \mathcal{X}} \left\{ \mathbb{E} \left[|b - \langle x, a \rangle|^2 \right] \right\}.$$

- $h_x(\cdot) = \langle x, \cdot \rangle$
- $b \in \mathbb{R}$ is the desired return & $a \in \mathbb{R}^p$ are the stock returns
- \mathcal{X} is intersection of the standard simplex and the constraint: $\langle x, \mathbb{E}[a] \rangle \geq \rho$.
Stochastic programming

Problem (Mathematical formulation)

Consider the following convex minimization problem:

\[f^* = \min_{x \in \mathbb{R}^p} \{ f(x) := \mathbb{E}[f(x, \theta)] \} \]

- \(\theta \) is a random vector whose probability distribution is supported on set \(\Theta \).
- \(f(x) := \mathbb{E}[f(x, \theta)] \) is proper, closed, and convex.
- The solution set \(S^* := \{ x^* \in \text{dom}(f) : f(x^*) = f^* \} \) is nonempty.
Stochastic gradient descent (SGD)

1. Choose $x^0 \in \mathbb{R}^p$ and $(\alpha_k)_{k \in \mathbb{N}} \in]0, +\infty[^{\mathbb{N}}$.
2. For $k = 0, 1, \ldots$ perform:
 \[
 x^{k+1} = x^k - \alpha_k G(x^k, \theta_k).
 \]

- $G(x^k, \theta_k)$ is an unbiased estimate of the full gradient:
 \[
 \mathbb{E}[G(x^k, \theta_k)] = \nabla f(x^k).
 \]
Stochastic gradient descent (SGD)

1. Choose $x^0 \in \mathbb{R}^p$ and $(\alpha_k)_{k \in \mathbb{N}} \in]0, +\infty[^\mathbb{N}$.
2. For $k = 0, 1, \ldots$ perform:

$$x^{k+1} = x^k - \alpha_k G(x^k, \theta_k).$$

○ $G(x^k, \theta_k)$ is an unbiased estimate of the full gradient:

$$\mathbb{E}[G(x^k, \theta_k)] = \nabla f(x^k).$$

Remarks:

○ The cost of computing $G(x^k, \theta_k)$ is n times cheaper than that of $\nabla f(x^k)$.
○ As $G(x^k, \theta_k)$ is an unbiased estimate of the full gradient, SGD would perform well.
○ We assume $\{\theta_k\}$ are jointly independent.
○ SGD is not a monotonic descent method.
Example: Convex optimization with finite sums

Convex optimization with finite sums

The problem

\[
\arg\min_{x \in \mathbb{R}^p} \left\{ f(x) := \frac{1}{n} \sum_{j=1}^{n} f_j(x) \right\},
\]

can be rewritten as

\[
\arg\min_{x \in \mathbb{R}^p} \{ f(x) := \mathbb{E}_i[f_i(x)] \}, \quad i \text{ is uniformly distributed over } \{1, 2, \cdots, n\}.
\]

A stochastic gradient descent (SGD) variant for finite sums

\[
x^{k+1} = x^k - \alpha_k \nabla f_i(x^k) \quad i \text{ is uniformly distributed over } \{1, \ldots, n\}
\]

Remarks:

- Note: \(\mathbb{E}_i[\nabla f_i(x^k)] = \sum_{j=1}^{n} \nabla f_j(x^k)/n = \nabla f(x^k) \).
- The computational cost of SGD per iteration is \(p \).
Synthetic least-squares problem

\[\min_x \left\{ f(x) := \frac{1}{2n} \|Ax - b\|^2_2 : x \in \mathbb{R}^p \right\} \]

Setup

- \(A := \text{randn}(n, p) \) - standard Gaussian \(\mathcal{N}(0, I) \), with \(n = 10^4 \), \(p = 10^2 \).
- \(x^\natural \) is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to \(\|x^\natural\|_2 = 1 \).
- \(b := Ax^\natural + w \), where \(w \) is Gaussian white noise with variance 1.

\(\circ \ 1 \text{ epoch} = 1 \text{ pass over the full gradient} \)
Convergence of SGD when the objective is not strongly convex

Theorem (decaying step-size [25])

Assume

- $\mathbb{E}[\|x_k - x^*\|_2^2] \leq D^2$ for all k,
- $\mathbb{E}[\|G(x_k, \theta_k)\|_2^2] \leq M^2$ (bounded gradient),
- $\alpha_k = \alpha_0 / \sqrt{k}$.

Then

$$\mathbb{E}[f(x^k) - f(x^*)] \leq \left(\frac{D^2}{\alpha_0} + \alpha_0 M^2 \right) \frac{2 + \log k}{\sqrt{k}}.$$

Observation: $\mathcal{O}(1/\sqrt{k})$ rate is optimal for SGD if we do not consider the strong convexity.
Convergence of SGD for strongly convex problems I

Theorem (strongly convex objective, fixed step-size [4])

Assume

▶ f is μ-strongly convex and L-smooth,
▶ $\mathbb{E}[\|G(x^k, \theta_k)\|^2] \leq \sigma^2 + M\|\nabla f(x^k)\|^2$ (bounded variance),
▶ $\alpha_k = \alpha \leq \frac{1}{LM}$.

Then

$$\mathbb{E}[f(x^k) - f(x^*)] \leq \frac{\alpha L \sigma^2}{2\mu} + (1 - \mu \alpha)^{k-1} (f(x^1) - f^*).$$

Observations:

○ Converge fast (linearly) to a neighborhood around x^*
○ Zero variance ($\sigma = 0$) \implies linear convergence
○ Smaller step-sizes $\alpha \implies$ converge to a better point, but with a slower rate
Theorem (strongly convex objective, decaying step-size [4])

Assume

- f is μ-strongly convex and L-smooth,
- $\mathbb{E}[\|G(x^k, \theta_k)\|^2] \leq \sigma^2 + M\|\nabla f(x^k)\|^2$ (bounded variance),
- $\alpha_k = \frac{c}{k_0 + k}$ with some appropriate constants c and k_0.

Then

$$\mathbb{E}[\|x^k - x^*\|^2] \leq \frac{C}{k + 1},$$

where C is a constant independent of k.

Observations:

- Using the smooth property,

$$\mathbb{E}[f(x^k) - f(x^*)] \leq L\mathbb{E}[\|x^k - x^*\|^2] \leq \frac{C}{k + 1}.$$

- The rate is optimal if $\sigma^2 > 0$ with the assumption of strongly-convexity.
Example: SGD with different step sizes

Setup

○ Synthetic least-squares problem as before

○ $\alpha_k = \alpha_0 / (k + k_0)$.
Example: SGD with different step sizes

Setup

- Synthetic least-squares problem as before
- $\alpha_k = \alpha_0/(k + k_0)$.

Observation: $\alpha_0 = 1/\mu$ is the best choice.
Comparison with GD

\[f^* := \min_{x \in \mathbb{R}^p} \left\{ f(x) := \frac{1}{n} \sum_{j=1}^{n} f_j(x) \right\}. \]

\(f \): \(\mu \)-strongly convex with \(L \)-Lipschitz smooth.

<table>
<thead>
<tr>
<th></th>
<th>rate</th>
<th>iteration complexity</th>
<th>cost per iteration</th>
<th>total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD</td>
<td>(\rho^k)</td>
<td>(\log(1/\epsilon))</td>
<td>(n)</td>
<td>(n \log(1/\epsilon))</td>
</tr>
<tr>
<td>SGD</td>
<td>(1/k)</td>
<td>(1/\epsilon)</td>
<td>1</td>
<td>(1/\epsilon)</td>
</tr>
</tbody>
</table>

Remark: SGD is more favorable when \(n \) is large — large-scale optimization problems
Motivation for SGD with Averaging

- SGD iterates tend to oscillate around global minimizers
- Averaging iterates can reduce the oscillation effect
- Two types of averaging:
 \[
 \bar{x}^k = \frac{1}{k} \sum_{j=1}^{k} \alpha_j x^j \quad \text{(vanilla averaging)}
 \]
 \[
 \bar{x}^k = \frac{\sum_{j=1}^{k} \alpha_j x^j}{\sum_{j=1}^{k} \alpha_j} \quad \text{(weighted averaging)}
 \]
Convergence for SGD-A I: non-strongly convex case

Stochastic gradient method with averaging (SGD-A)

1. Choose $x^0 \in \mathbb{R}^p$ and $(\alpha_k)_{k \in \mathbb{N}} \in]0, +\infty[^\mathbb{N}$.

2a. For $k = 0, 1, \ldots$ perform:

$$x^{k+1} = x^k - \alpha_k G(x^k, \theta_k).$$

2b. $\bar{x}^k = (\sum_{j=0}^{k} \alpha_j)^{-1} \sum_{j=0}^{k} \alpha_j x^j$.

Theorem (Convergence of SGD-A [19])

Let $D = \|x^0 - x^*\|$ and $\mathbb{E}[\|G(x^k, \theta_k)\|^2] \leq M^2$.

Then,

$$\mathbb{E}[f(\bar{x}^{k+1}) - f(x^*)] \leq \frac{D^2 + M^2 \sum_{j=0}^{k} \alpha_j^2}{2 \sum_{j=0}^{k} \alpha_j}.$$

In addition, choosing $\alpha_k = D/(M \sqrt{k + 1})$, we get,

$$\mathbb{E}[f(\bar{x}^k) - f(x^*)] \leq \frac{MD(2 + \log k)}{\sqrt{k}}.$$

Observation:
- Same convergence rate with vanilla SGD.
Convergence for SGD-A II: strongly convex case

<table>
<thead>
<tr>
<th>Stochastic gradient method with averaging (SGD-A)</th>
</tr>
</thead>
</table>

1. Choose $x^0 \in \mathbb{R}^p$ and $(\alpha_k)_{k \in \mathbb{N}} \in]0, +\infty[^{\mathbb{N}}$.
2a. For $k = 0, 1, \ldots$ perform:
 \[x^{k+1} = x^k - \alpha_k G(x^k, \theta_k). \]
2b. $\bar{x}^k = \frac{1}{k} \sum_{j=1}^{k} x^j$.

Theorem (Convergence of SGD-A [24])

Assume

- f is μ-strongly convex,
- $\mathbb{E}[\|G(x^k, \theta_k)\|^2] \leq M^2$,
- $\alpha_k = \alpha_0/k$ for some $\alpha_0 \geq 1/\mu$.

Then

\[\mathbb{E}[f(\bar{x}^k) - f(x^*)] \leq \frac{\alpha_0 M^2 (1 + \log k)}{2k}. \]

Observation: Same convergence rate with vanilla SGD.
Example: SGD-A method with different step sizes

\[
\min_x \left\{ f(x) := \frac{1}{2n} \|Ax - b\|^2_2 : x \in \mathbb{R}^p \right\}
\]

Setup

- Synthetic least-squares problem as before
- \(\alpha_k = \alpha_0 / (k + k_0) \).
Example: SGD-A method with different step sizes

\[\min_x \left\{ f(x) := \frac{1}{2n} \|Ax - b\|_2^2 : x \in \mathbb{R}^p \right\} \]

Setup
- Synthetic least-squares problem as before
- \(\alpha_k = \alpha_0 / (k + k_0) \).

Observations:
- SGD-A is more stable than SGD.
- \(\alpha_0 = 2/\mu \) is the best choice.
Least mean squares algorithm

Least-square regression problem

Solve

\[x^* \in \arg \min_{x \in \mathbb{R}^p} \left\{ f(x) := \frac{1}{2} \mathbb{E}_{(a, b)} \left(\langle a, x \rangle - b \right)^2 \right\}, \]
given i.i.d. samples \(\{(a_j, b_j)\}_{j=1}^n \) (particularly in a streaming way).

Stochastic gradient method with averaging

1. Choose \(x^0 \in \mathbb{R}^p \) and \(\alpha > 0 \).
2a. For \(k = 1, \ldots, n \) perform:

\[x^k = x^{k-1} - \alpha \left(\langle a_k, x^{k-1} \rangle - b_k \right) a_k. \]

2b. \(\bar{x}^k = \frac{1}{k+1} \sum_{j=0}^{k} x^j. \)

\(O(1/n) \) convergence rate, without strongly convexity [3]

Let \(\|a_j\|_2 \leq R \) and \(|\langle a_j, x^* \rangle - b_j| \leq \sigma \) a.s. Pick \(\alpha = 1/(4R^2) \). Then

\[\mathbb{E} f(x^{n-1}) - f^* \leq \frac{2}{n} \left(\sigma \sqrt{p} + R \|x^0 - x^*\|_2 \right)^2. \]
Popular SGD Variants

- Mini-batch SGD: For each iteration,

\[\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \frac{1}{b} \sum_{\theta \in \Gamma} G(\mathbf{x}^k, \theta). \]

 - \(\alpha_k \): step-size
 - \(b \): mini-batch size
 - \(\Gamma \): a set of random variables \(\theta \) of size \(b \)

- Accelerated SGD (Nesterov accelerated technique)

- SGD with Momentum

- Adaptive stochastic methods: AdaGrad...
SGD - Non-convex stochastic optimization

- SGD is not as well-studied for non-convex problems as for convex problems.
- There is a gap between SGD’s practical performance and theoretical understanding.
- Recall SGD update rule:

\[x^{k+1} = x^k - \alpha_k G(x^k, \theta) \]

Theorem (A well-known result for SGD & Non-convex problems [12])

Let \(f \) be a non-convex and \(L \)-smooth function. Set
\[\alpha_k = \min \left\{ \frac{1}{L}, \frac{C}{\sigma \sqrt{T}} \right\}, \forall k = 1, ..., T, \]
where \(\sigma^2 \) is the variance of the gradients and \(C > 0 \) is constant. Then,

\[\mathbb{E}[\|\nabla f(x^R)\|^2] = O \left(\frac{\sigma}{\sqrt{T}} \right), \]

where \(\mathbb{P}(R = k) = \frac{2\alpha_k - L\alpha_k^2}{\sum_{k=1}^{T} (2\alpha_k - L\alpha_k^2)} \).
Lower bounds in non-convex optimization

<table>
<thead>
<tr>
<th>Assumptions on f</th>
<th>Additional assumptions</th>
<th>Sample complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-smooth</td>
<td>Deterministic Oracle</td>
<td>$\Omega(\Delta L \epsilon^{-2})$[6]</td>
</tr>
<tr>
<td>L_1-smooth L_2-Lipschitz Hessian</td>
<td>$f(x^0) - \inf_x f(x) \leq \Delta$</td>
<td>$\Omega(\Delta L_{1}^{3/7} L_{2}^{2/7} \epsilon^{-12/7})$[6]</td>
</tr>
<tr>
<td>L-smooth</td>
<td>$\mathbb{E}[G(x, \theta)] = \nabla f(x)$</td>
<td>$\Omega(\Delta L \sigma^2 \epsilon^{-4})$[2]</td>
</tr>
<tr>
<td>$G(x, \theta)$ has averaged L-Lipschitz gradient \implies L-smooth</td>
<td>$\mathbb{E}[|G(x, \theta) - \nabla f(x)|^2] \leq \sigma^2$</td>
<td>$\Omega(\Delta L \sigma^{-3} + \sigma^2 \epsilon^{-2})$[2]</td>
</tr>
</tbody>
</table>

- Measure of stationarity: $\|\nabla f(x)\| \leq \epsilon$ or $\mathbb{E}[\|\nabla f(x)\|] \leq \epsilon$
- Sample complexity: # of total oracle calls (deterministic or stochastic gradients)
- Averaged L-Lipschitz gradient: $\mathbb{E} \left[\|\nabla f_i(x) - \nabla f_i(y)\|^2\right] \leq L^2 \|x - y\|^2$
- $G(x, \theta)$ denotes a stochastic gradient estimate for f at x with randomness governed by θ.

1 We have $n \leq O(\epsilon^{-4})$ in order to match the respective upper bound of $O(n + \sqrt{n} \epsilon^{-2})$ achieved by [10]
Wrap up!

- The remaining slides in this lecture are advanced material.
- Lecture on Monday!
Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.
Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?

We can use a line-search procedure for both GD and AGD when

- L is known but it is expensive to evaluate;
- The global constant L usually does not capture the local behavior of f or it is unknown.
Enhancements

Two enhancements

1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?

We can use a line-search procedure for both GD and AGD when

- L is known but it is expensive to evaluate;
- The global constant L usually does not capture the local behavior of f or it is unknown.

Line-search

At each iteration, we try to find a constant L_k that satisfies:

$$f(x^{k+1}) \leq Q_{L_k}(x^{k+1}, y^k) := f(y^k) + \langle \nabla f(y^k), x^{k+1} - y^k \rangle + \frac{L_k}{2} \|x^{k+1} - y^k\|_2^2.$$

Here: $L_0 > 0$ is given (e.g., $L_0 := c \frac{\|\nabla f(x^1) - \nabla f(x^0)\|_2}{\|x^1 - x^0\|_2}$) for $c \in (0, 1]$.
How can we better adapt to the local geometry?

\[f(x) = f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L}{2} \| x - x^k \|^2 \]
*How can we better adapt to the local geometry?

Local quadratic upper bound

\[Q_{L^k}(x, x^k) \]

\[x^{k+1} = \arg \min_x \left\{ f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{L_k}{2} \| x - x^k \|^2 \right\} \]

\[\| \nabla f(x) - \nabla f(y) \| \leq L \| y - x \| \]

\[f(x) \leq f(x^k) + \nabla f(x^k)^T(x - x^k) + \frac{L_k}{2} \| x - x^k \|^2 \]

L is a global worst-case constant

applies only locally
Enhancements

Why do we need a restart strategy?

- AGD-μL requires knowledge of μ and AGD-L does not have optimal convergence for strongly convex f.
- AGD is non-monotonic (i.e., $f(x^{k+1}) \leq f(x^k)$ is not always satisfied).
- AGD has a periodic behavior, where the momentum depends on the local condition number $\kappa = L/\mu$.
- A restart strategy tries to reset this momentum whenever we observe high periodic behavior. We often use function values but other strategies are possible.

Restart strategies

1. **O’Donoghue - Candes’s strategy [22]**: There are at least three options: Restart with fixed number of iterations, restart based on objective values, and restart based on a gradient condition.
2. **Giselsson-Boyd’s strategy [14]**: Do not require $t_k = 1$ and do not necessary require function evaluations.
3. **Fercoq-Qu’s strategy [11]**: Unconditional periodic restart for strongly convex functions. Do not require the strong convexity parameter.
Example: Ridge regression

Case 1: \(n = 500, p = 2000, \rho = 0 \)

Case 2: \(n = 500, p = 2000, \rho = 0.01\lambda_p(A^T A) \)
AcceleGrad - Adaptive gradient + Accelerated gradient [17]

Motivation behind AcceleGrad
Is it possible to achieve acceleration when f is L-smooth, without knowing the Lipschitz constant?

<table>
<thead>
<tr>
<th>AcceleGrad (Accelerated Adaptive Gradient Method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input : $x^0 \in \mathcal{K}$, diameter D, weights ${\alpha_k}{k \in \mathbb{N}}$, learning rate ${\eta_k}{k \in \mathbb{N}}$</td>
</tr>
<tr>
<td>1. Set $y^0 = z^0 = x^0$</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$, iterate</td>
</tr>
</tbody>
</table>
| $\begin{align*}
\tau_k &:= 1/\alpha_k \\
x^{k+1} &= \tau_k z^k + (1 - \tau_k)y^k, \text{define } g_k := \nabla f(x^{k+1}) \\
z^{k+1} &= \Pi_{\mathcal{K}}(z^k - \alpha_k \eta_k g_k) \\
y^{k+1} &= x^{k+1} - \eta_k g_k
\end{align*}$ |
| **Output** : $\bar{y}^k \propto \sum_{i=0}^{k-1} \alpha_i y^{i+1}$ |

where $\Pi_{\mathcal{K}}(y) = \arg\min_{x \in \mathcal{K}} \langle x - y, x - y \rangle$ (projection onto \mathcal{K}).

Remark:
- This is essentially the MD + GD scheme [1], with an adaptive step size!
Learning rate and weight computation

Assume that function f has uniformly bounded gradient norms $\|\nabla f(x^k)\|^2 \leq G^2$, i.e., f is G-Lipschitz continuous. AcceleGrad uses the following weights and learning rate:

$$\alpha_k = \frac{k + 1}{4}, \quad \eta_k = \frac{2D}{\sqrt{G^2 + \sum_{\tau=0}^{k} \alpha_\tau^2 \|\nabla f(x_{\tau+1})\|^2}}$$

- Similar to RmsProp, AcceleGrad assigns greater weights to recent gradients.

Convergence rate of AcceleGrad

Assume that f is convex and L-smooth. Let K be a convex set with bounded diameter D, and assume $x^* \in K$. Define $\bar{y}^k = (\sum_{i=0}^{k-1} \alpha_i y_{i+1})/(\sum_{i=0}^{k-1} \alpha_i)$. Then,

$$f(\bar{y}^k) - \min_{x \in \mathbb{R}^d} f(x) \leq O\left(\frac{DG + LD^2 \log(LD/G)}{k^2}\right)$$

If f is only convex and G-Lipschitz, then

$$f(\bar{y}^k) - \min_{x \in \mathbb{R}^d} f(x) \leq O\left(GD \sqrt{\log k} / \sqrt{k}\right)$$
*Example: Logistic regression

Problem (Logistic regression)

Given \(A \in \{0, 1\}^{n \times p} \) and \(b \in \{-1, +1\}^n \), solve:

\[
f^* := \min_{x, \beta} \left\{ f(x) := \frac{1}{n} \sum_{j=1}^{n} \log \left(1 + \exp \left(-b_j \left(a_j^T x + \beta \right) \right) \right) \right\}.
\]

Real data

- Real data: a4a with \(A \in \mathbb{R}^{n \times d} \), where \(n = 4781 \) data points, \(d = 122 \) features
- All methods are run for \(T = 10000 \) iterations
RMSProp - Adaptive gradient method with \(H_k = D_k \)

What could be improved over AdaGrad?

1. Gradients have equal weights in step size.
2. Consider a *steep* function, flat around minimum \(\rightarrow \) slow convergence at flat region.
RMSProp - Adaptive gradient method with $H_k = D_k$

What could be improved over AdaGrad?

1. Gradients have equal weights in step size.
2. Consider a **steep** function, flat around minimum \rightarrow slow convergence at flat region.

AdaGrad with $H_k = D_k$

1. Set $Q_0 = 0$.
2. For $k = 0, 1, \ldots$, iterate

$$
\begin{align*}
Q^k &= Q^{k-1} + \text{diag}(\nabla f(x^k))^2 \\
H_k &= \sqrt{Q^k} \\
x_{k+1} &= x^k - \alpha_k H_k^{-1} \nabla f(x^k)
\end{align*}
$$

RMSProp

1. Set $Q_0 = 0$.
2. For $k = 0, 1, \ldots$, iterate

$$
\begin{align*}
Q^k &= \beta Q^{k-1} + (1 - \beta) \text{diag}(\nabla f(x^k))^2 \\
H_k &= \sqrt{Q^k} \\
x_{k+1} &= x^k - \alpha_k H_k^{-1} \nabla f(x^k)
\end{align*}
$$
RMSProp - Adaptive gradient method with $H_k = D_k$

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.
2. Consider a steep function, flat around minimum \rightarrow slow convergence at flat region.

AdaGrad with $H_k = D_k$

1. Set $Q_0 = 0$.
2. For $k = 0, 1, \ldots$, iterate
 \[
 \begin{align*}
 Q^k &= Q^{k-1} + \text{diag}(\nabla f(x^k))^2 \\
 H_k &= \sqrt{Q^k} \\
 x^{k+1} &= x^k - \alpha_k H_k^{-1} \nabla f(x^k)
 \end{align*}
 \]

RMSProp

1. Set $Q_0 = 0$.
2. For $k = 0, 1, \ldots$, iterate
 \[
 \begin{align*}
 Q^k &= \beta Q^{k-1} + (1 - \beta) \text{diag}(\nabla f(x^k))^2 \\
 H_k &= \sqrt{Q^k} \\
 x^{k+1} &= x^k - \alpha_k H_k^{-1} \nabla f(x^k)
 \end{align*}
 \]

- RMSProp uses weighted averaging with constant β
- Recent gradients have greater importance
ADAM - Adaptive moment estimation

Over-simplified idea of ADAM

\[
\text{RMSProp} + \text{2nd order moment estimation} = \text{ADAM}
\]
ADAM - Adaptive moment estimation

Over-simplified idea of ADAM

RMSProp + 2nd order moment estimation = ADAM

<table>
<thead>
<tr>
<th>ADAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input. Step size α, exponential decay rates $\beta_1, \beta_2 \in [0, 1)$</td>
</tr>
<tr>
<td>1. Set $m_0, v_0 = 0$</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$, iterate</td>
</tr>
<tr>
<td>$g_k = \nabla f(x^{k-1})$</td>
</tr>
<tr>
<td>$m_k = \beta_1 m_{k-1} + (1 - \beta_1)g_k$ \leftarrow 1st order estimate</td>
</tr>
<tr>
<td>$v_k = \beta_2 v_{k-1} + (1 - \beta_2)g_k^2$ \leftarrow 2nd order estimate</td>
</tr>
<tr>
<td>$\hat{m}_k = m_k / (1 - \beta_1^k) \leftarrow$ Bias correction</td>
</tr>
<tr>
<td>$\hat{v}_k = v_k / (1 - \beta_2^k) \leftarrow$ Bias correction</td>
</tr>
<tr>
<td>$H_k = \sqrt{\hat{v}_k + \epsilon}$</td>
</tr>
<tr>
<td>$x^{k+1} = x^k - \alpha \hat{m}_k / H_k$</td>
</tr>
</tbody>
</table>

Output: x^k

(Every vector operation is an element-wise operation)
Non-convergence of ADAM and a new method: AmsGrad

- It has been shown that ADAM may not converge for some objective functions [23].
- An ADAM alternative is proposed that is proved to be convergent [23].

AmsGrad

<table>
<thead>
<tr>
<th>Input.</th>
<th>Step size ({\alpha_k}{k \in \mathbb{N}}), exponential decay rates ({\beta{1,k}}_{k \in \mathbb{N}}, \beta_2 \in [0, 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set (m_0 = 0, v_0 = 0) and (\hat{v}_0 = 0)</td>
<td></td>
</tr>
<tr>
<td>2. For (k = 1, 2, \ldots), iterate</td>
<td></td>
</tr>
<tr>
<td>(g_k = G(x^k, \theta))</td>
<td></td>
</tr>
<tr>
<td>(m_k = \beta_{1,k} m_{k-1} + (1 - \beta_{1,k}) g_k \leftarrow 1\text{st order estimate})</td>
<td></td>
</tr>
<tr>
<td>(v_k = \beta_2 v_{k-1} + (1 - \beta_2) g_k^2 \leftarrow 2\text{nd order estimate})</td>
<td></td>
</tr>
<tr>
<td>(\hat{v}k = \max{\hat{v}{k-1}, v_k} \text{ and } \hat{V}_k = \text{diag}(\hat{v}_k))</td>
<td></td>
</tr>
<tr>
<td>(H_k = \sqrt{\hat{v}_k})</td>
<td></td>
</tr>
<tr>
<td>(x^{k+1} = \Pi_{\hat{V}_k} (x^k - \alpha_k \hat{m}_k / H_k))</td>
<td></td>
</tr>
</tbody>
</table>

Output: \(x^k \)

where \(\Pi_A^K(y) = \arg \min_{x \in K} \langle (x - y), A(x - y) \rangle \) (weighted projection onto \(K \)).

(Every vector operation is an element-wise operation)
AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [28])
Assume f is non-convex and L-smooth, such that $\|\nabla f(x)\|^2 \leq G^2$ and $f^* = \inf_x f(x) > \infty$. Also consider bounded variance for unbiased gradient estimates, i.e., $\mathbb{E} \left[\|G(x, \theta) - \nabla f(x)\|^2 | x \right] \leq \sigma^2$. Then with probability $1 - \delta$,

$$\min_{i \in \{1, \ldots, k-1\}} \|\nabla f(x^i)\|^2 = \tilde{O} \left(\frac{\sigma}{\delta^{3/2} \sqrt{k}} \right)$$

Note: As $1 - \delta \to 1$, the rate deteriorates by a factor of $\delta^{-3/2}$.

Theorem (AmsGrad convergence rate 1: stochastic, non-convex [7])
Let $g_k = G(x^k, \theta)$. Assume $|g_{1,i}| > c > 0$, $\forall i \in [d]$ and $\|g_k\| \leq G$. Consider a non-increasing sequence $\beta_{1,k}$ and $\beta_{1,k} \leq \beta_1 \in [0, 1)$. Set $\alpha_k = 1/\sqrt{k}$. Then,

$$\min_{i \in \{1, \ldots, k-1\}} \mathbb{E} \left[\|\nabla f(x^i)\|^2 \right] = O \left(\frac{\log k}{\sqrt{k}} \right).$$
AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [28])

Assume f is non-convex and L-smooth, such that $\|\nabla f(x)\|^2 \leq G^2$ and $f^* = \inf_x f(x) > \infty$. Also consider bounded variance for unbiased gradient estimates, i.e., $\mathbb{E} \left[\|G(x, \theta) - \nabla f(x)\|^2 | x \right] \leq \sigma^2$. Then with probability $1 - \delta$,

$$\min_{i \in \{1, \ldots, k-1\}} \|\nabla f(x^i)\|^2 = \tilde{O} \left(\frac{\sigma}{\delta^{3/2} \sqrt{k}} \right)$$

- **Note:** As $1 - \delta \to 1$, the rate deteriorates by a factor of $\delta^{-3/2}$.

Theorem (AmsGrad convergence rate 2: stochastic, non-convex [29])

Consider $f : \mathbb{R}^d \to \mathbb{R}$ to be non-convex and L-smooth. Assume $\|G(x, \theta)\|_{\infty} \leq G_{\infty}$ and set $\alpha_k = 1 / \sqrt{dT}$. Also define $x_{out} = x^k$, for $k = 1, \ldots, T$ with probability $\alpha_k / \sum_{i=1}^{T} \alpha_i$. Then,

$$\mathbb{E} \left[\|\nabla f(x_{out})\|^2 \right] = O \left(\sqrt{\frac{d}{T}} \right).$$
Example: Logistic regression with non-convex regularizer

- Synthetic data: \(\mathbf{A} \in \mathbb{R}^{n \times d}, n = 2000, d = 200. \)
- Batch size: 20 samples.
- Algorithms: SGD, AdaGrad, AmsGrad.
Remark

- Adaptive methods have extensive applications in stochastic optimization.
- We will see another nature of adaptive methods in this lecture.
- Mild additional assumption: bounded variance of gradient estimates.
AdaGrad for stochastic optimization

- Only modification: \(\nabla f(x) \Rightarrow G(x, \theta) \)

<table>
<thead>
<tr>
<th>AdaGrad with (H_k = \lambda_k I) [16]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set (Q^0 = 0.)</td>
</tr>
<tr>
<td>2. For (k = 0, 1, \ldots), iterate</td>
</tr>
<tr>
<td>(Q^k = Q^{k-1} + | G(x^k, \theta) |^2)</td>
</tr>
<tr>
<td>(H_k = \sqrt{Q^k I})</td>
</tr>
<tr>
<td>(x^{k+1} = x_t - \alpha_k H_k^{-1} G(x^k, \theta))</td>
</tr>
</tbody>
</table>

Theorem (Convergence rate: stochastic, convex optimization [16])

Assume \(f \) is convex and \(L \)-smooth, such that minimizer of \(f \) lies in a convex, compact set \(K \) with diameter \(D \). Also consider bounded variance for unbiased gradient estimates, i.e., \(\mathbb{E} \left[\| G(x, \theta) - \nabla f(x) \|^2 | x \right] \leq \sigma^2 \). Then,

\[
\mathbb{E}[f(x^k)] - \min_{x \in \mathbb{R}^d} f(x) = O \left(\frac{\sigma D}{\sqrt{k}} \right)
\]

- AdaGrad is **adaptive** also in the sense that it adapts to nature of the oracle.
AcceleGrad for stochastic optimization

- Similar to AdaGrad, replace $\nabla f(x) \Rightarrow G(x, \theta)$

AcceleGrad (Accelerated Adaptive Gradient Method)

<table>
<thead>
<tr>
<th>Input: $x^0 \in \mathcal{K}$, diameter D, weights ${\alpha_k}{k \in \mathbb{N}}$, learning rate ${\eta_k}{k \in \mathbb{N}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Set $y^0 = z^0 = x^0$</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$, iterate</td>
</tr>
</tbody>
</table>
| $\begin{cases}
\tau_k & := 1/\alpha_k \\
 x^{k+1} & = \tau_k z^k + (1 - \tau_k) y^k, \text{ define } g_k := \nabla f(x^{k+1}) \\
 z^{k+1} & = \Pi_{\mathcal{K}}(z^k - \alpha_k \eta_k g_k) \\
y^{k+1} & = x^{k+1} - \eta_k g_k
\end{cases}$ |

Output: $\bar{y}^k \propto \sum_{i=0}^{k-1} \alpha_i y^{i+1}$

Theorem (Convergence rate [17])

Assume f is convex and G-Lipschitz and that minimizer of f lies in a convex, compact set \mathcal{K} with diameter D. Also consider bounded variance for unbiased gradient estimates, i.e., $\mathbb{E} \left[\|G(x, \theta) - \nabla f(x)\|^2 | x \right] \leq \sigma^2$. Then,

$$
\mathbb{E} [f(\bar{y}^k)] - \min_x f(x) = O \left(\frac{GD \sqrt{\log k}}{\sqrt{k}} \right).
$$

Example: Synthetic least squares

- \(\mathbf{A} \in \mathbb{R}^{n \times d} \), where \(n = 200 \) and \(d = 50 \).
- Number of epochs: 20.

![Graph](graph.png)
*Newton method

- **Fast** (local) convergence but **expensive** per iteration cost
- **Useful** when **warm-started** near a solution

Local quadratic approximation using the Hessian

\[f(x_k + p) \approx f(x_k) + \langle p, \nabla f(x_k) \rangle + \frac{1}{2} \langle p, \nabla^2 f(x_k) p \rangle \]

The Newton direction is the vector \(p_k \) that minimizes \(f(x_k + p) \); assuming the Hessian \(\nabla^2 f_k \) to be positive definite:

\[\nabla^2 f_k p_k = -\nabla f_k(x_k) \iff p_k = -\left(\nabla^2 f_k(x_k) \right)^{-1} \nabla f_k(x_k) \]

A unit step-size \(\alpha_k = 1 \) can be chosen near convergence:

\[x_{k+1} = x_k - \left(\nabla^2 f_k \right)^{-1} \nabla f_k(x_k) \]

Remark

For \(f \in F^2_{1L} \) but \(f < F^2_{1L, \mu} \), the Hessian may not always be positive definite.
*Newton method

- Fast (local) convergence but expensive per iteration cost
- Useful when warm-started near a solution

Local quadratic approximation using the Hessian

- Obtain a local quadratic approximation using the second-order Taylor series approximation to $f(x^k + p)$:

$$f(x^k + p) \approx f(x^k) + \langle p, \nabla f(x^k) \rangle + \frac{1}{2} \langle p, \nabla^2 f(x^k) p \rangle$$
Newton method

- **Fast** (local) convergence but **expensive** per iteration cost
- **Useful** when **warm-started** near a solution

Local quadratic approximation using the Hessian

- Obtain a local quadratic approximation using the second-order Taylor series approximation to $f(x^k + p)$:
 \[
 f(x^k + p) \approx f(x^k) + \langle p, \nabla f(x^k) \rangle + \frac{1}{2} \langle p, \nabla^2 f(x^k)p \rangle
 \]

- The Newton direction is the vector p^k that minimizes $f(x^k + p)$; assuming the Hessian $\nabla^2 f_k$ to be **positive definite**:
 \[
 \nabla^2 f(x^k)p^k = -\nabla f(x^k) \quad \Leftrightarrow \quad p^k = - \left(\nabla^2 f(x^k) \right)^{-1} \nabla f(x^k)
 \]
Newton method

- Fast (local) convergence but expensive per iteration cost
- Useful when warm-started near a solution

Local quadratic approximation using the Hessian

- Obtain a local quadratic approximation using the second-order Taylor series approximation to $f(x^k + p)$:

$$f(x^k + p) \approx f(x^k) + \langle p, \nabla f(x^k) \rangle + \frac{1}{2} \langle p, \nabla^2 f(x^k)p \rangle$$

- The Newton direction is the vector p^k that minimizes $f(x^k + p)$; assuming the Hessian $\nabla^2 f_k$ to be positive definite:

$$\nabla^2 f(x^k)p^k = -\nabla f(x^k) \iff p^k = -\left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)$$

- A unit step-size $\alpha_k = 1$ can be chosen near convergence:

$$x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k).$$
Newton method

- Fast (local) convergence but expensive per iteration cost
- Useful when warm-started near a solution

Local quadratic approximation using the Hessian

- Obtain a local quadratic approximation using the second-order Taylor series approximation to $f(x^k + p)$:
 \[
 f(x^k + p) \approx f(x^k) + \langle p, \nabla f(x^k) \rangle + \frac{1}{2} \langle p, \nabla^2 f(x^k)p \rangle
 \]

- The Newton direction is the vector p^k that minimizes $f(x^k + p)$; assuming the Hessian $\nabla^2 f_k$ to be positive definite:
 \[
 \nabla^2 f(x^k)p^k = -\nabla f(x^k) \iff p^k = -\left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)
 \]

- A unit step-size $\alpha_k = 1$ can be chosen near convergence:
 \[
 x^{k+1} = x^k - \left(\nabla^2 f(x^k)\right)^{-1} \nabla f(x^k)
 \]

Remark

- For $f \in \mathcal{F}_{L,1}^2$ but $f \notin \mathcal{F}_{L,\mu,1}^2$, the Hessian may not always be positive definite.
(Local) Convergence of Newton method

Lemma

Assume f is a twice differentiable convex function with minimum at x^* such that:

- $\nabla^2 f(x^*) \succeq \mu I$ for some $\mu > 0$,
- $\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \leq M \|x - y\|_2$ for some constant $M > 0$ and all $x, y \in \text{dom}(f)$.

Moreover, assume the starting point $x^0 \in \text{dom}(f)$ is such that $\|x^0 - x^*\|_2 < \frac{2\mu}{3M}$.

Then, the Newton method iterates converge quadratically:

$$\|x^{k+1} - x^*\| \leq \frac{M \|x^k - x^*\|_2^2}{2 \left(\mu - M \|x^k - x^*\|_2 \right)}.$$

Remark

This is the fastest convergence rate we have seen so far, but it requires to solve a $p \times p$ linear system at each iteration, $\nabla^2 f(x^k)p^k = -\nabla f(x^k)$!
*Locally quadratic convergence of the Newton method–I

Newton’s method local quadratic convergence - Proof [21]

Since $\nabla f(x^*) = 0$ we have

$$x^{k+1} - x^* = x^k - x^* - (\nabla^2 f(x^k))^{-1} \nabla f(x^k)$$

$$= (\nabla^2 f(x^k))^{-1} \left(\nabla^2 f(x^k)(x^k - x^*) - (\nabla f(x^k) - \nabla f(x^*)) \right)$$

By Taylor’s theorem, we also have

$$\nabla f(x^k) - \nabla f(x^*) = \int_0^1 \nabla^2 f(x^k + t(x^* - x^k))(x^k - x^*) dt$$

Combining the two above, we obtain

$$\|\nabla^2 f(x^k)(x^k - x^*) - (\nabla f(x^k) - \nabla f(x^*))\|$$

$$= \left\| \int_0^1 (\nabla^2 f(x^k) - \nabla^2 f(x^k + t(x^* - x^k))) (x^k - x^*) dt \right\|$$

$$\leq \int_0^1 \left\| \nabla^2 f(x^k) - \nabla^2 f(x^k + t(x^* - x^k)) \right\| \|x^k - x^*\| dt$$

$$\leq M \|x^k - x^*\|^2 \int_0^1 t dt = \frac{1}{2} M \|x^k - x^*\|^2$$
Locally quadratic convergence of the Newton method–II

Newton’s method local quadratic convergence - Proof [21].

- Recall

\[x^{k+1} - x^* = (\nabla^2 f(x^k))^{-1} \left(\nabla^2 f(x^k)(x^k - x^*) - (\nabla f(x^k) - \nabla f(x^*)) \right) \]

\[\|\nabla^2 f(x^k)(x^k - x^*) - (\nabla f(x^k) - \nabla f(x^*))\| \leq \frac{1}{2} M \|x^k - x^*\|^2 \]

- Since \(\nabla^2 f(x^*) \) is nonsingular, there must exist a radius \(r \) such that \(\| (\nabla^2 f(x^k))^{-1} \| \leq 2 \| (\nabla^2 f(x^*))^{-1} \| \) for all \(x^k \) with \(\| x^k - x^* \| \leq r \).

- Substituting, we obtain

\[\| x^{k+1} - x^* \| \leq M \| (\nabla^2 f(x^*))^{-1} \| \| x^k - x^* \|^2 = \tilde{M} \| x^k - x^* \|^2, \]

where \(\tilde{M} = M \| (\nabla^2 f(x^*))^{-1} \| \).

- If we choose \(\| x^0 - x^* \| \leq \min(r, 1/(2\tilde{M})) \), we obtain by induction that the iterates \(x^k \) converge quadratically to \(x^* \).
*Example: Logistic regression - GD, AGD, AcceleGrad + NM

- **Newton’s method**: maximum number of iterations 30, tolerance 10^{-6}.
- **For GD, AGD & AcceleGrad**: maximum number of iterations 10000, tolerance 10^{-6}.
- **Ground truth**: Get a high accuracy approximation of x^* and f^* by applying Newton’s method for 200 iterations.
Approximating Hessian: Quasi-Newton methods

Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

- Useful for \(f(x) := \sum_{i=1}^{n} f_i(x) \) with \(n \gg p \).

Main ingredients

Quasi-Newton direction:

\[
p^k = -H_k^{-1} \nabla f(x^k) = -B_k \nabla f(x^k).
\]

- Matrix \(H_k \), or its inverse \(B_k \), undergoes low-rank updates:
 - Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
 - Limited memory BFGS (L-BFGS).
- Line-search: The step-size \(\alpha_k \) is chosen to satisfy the **Wolfe conditions**:

\[
\begin{align*}
 f(x^k + \alpha_k p^k) &\leq f(x^k) + c_1 \alpha_k \langle \nabla f(x^k), p^k \rangle \quad \text{(sufficient decrease)} \\
 \langle \nabla f(x^k + \alpha_k p^k), p^k \rangle &\geq c_2 \langle \nabla f(x^k), p^k \rangle \quad \text{(curvature condition)}
\end{align*}
\]

with \(0 < c_1 < c_2 < 1 \). For quasi-Newton methods, we usually use \(c_1 = 0.1 \).

- Convergence is guaranteed under the Dennis & Moré condition [8].
- For more details on quasi-Newton methods, see Nocedal&Wright’s book [21].
Quasi-Newton methods

How do we update B_{k+1}?

Suppose we have (note the coordinate change from p to \bar{p})

$$m_{k+1}(\bar{p}) := f(x^{k+1}) + \langle \nabla f(x^{k+1}), \bar{p} - x^{k+1} \rangle + \frac{1}{2} \langle B_{k+1}(\bar{p} - x^{k+1}), (\bar{p} - x^{k+1}) \rangle.$$

We require the gradient of m_{k+1} to match the gradient of f at x^k and x^{k+1}.

- $\nabla m_{k+1}(x^{k+1}) = \nabla f(x^{k+1})$ as desired;
- For x^k, we have

$$\nabla m_{k+1}(x^k) = \nabla f(x^{k+1}) + B_{k+1}(x^k - x^{k+1})$$

which must be equal to $\nabla f(x^k)$.

- Rearranging, we have that B_{k+1} must satisfy the secant equation

$$B_{k+1} s^k = y^k$$

where $s^k = x^{k+1} - x^k$ and $y^k = \nabla f(x^{k+1}) - \nabla f(x^k)$.

- The secant equation can be satisfied with a positive definite matrix B_{k+1} only if $\langle s^k, y^k \rangle > 0$, which is guaranteed to hold if the step-size α_k satisfies the Wolfe conditions.
Quasi-Newton methods

BFGS method [21] (from Broyden, Fletcher, Goldfarb & Shanno)

The BFGS method arises from directly updating \(H_k = B_k^{-1} \). The update on the inverse \(B \) is found by solving

\[
\min_H \| H - H_k \|_W \quad \text{subject to} \quad H = H^T \quad \text{and} \quad H y^k = s^k
\]

The solution is a rank-2 update of the matrix \(H_k \):

\[
H_{k+1} = V_k^T H_k V_k + \eta_k s^k (s^k)^T,
\]

where \(V_k = I - \eta_k y^k (s^k)^T \).

- Initialization of \(H_0 \) is an art. We can choose to set it to be an approximation of \(\nabla^2 f(x^0) \) obtained by finite differences or just a multiple of the identity matrix.
Quasi-Newton methods

BFGS method [21] (from Broyden, Fletcher, Goldfarb & Shanno)

The BFGS method arises from directly updating $H_k = B_k^{-1}$. The update on the inverse B is found by solving

$$
\min_H \|H - H_k\|_W \quad \text{subject to } H = H^T \text{ and } H y_k = s_k
$$

(4)

The solution is a rank-2 update of the matrix H_k:

$$
H_{k+1} = V_k^T H_k V_k + \eta_k s_k (s_k)^T,
$$

where $V_k = I - \eta_k y_k (s_k)^T$.

Theorem (Convergence of BFGS)

Let $f \in C^2$. Assume that the BFGS sequence $\{x^k\}$ converges to a point x^* and $\sum_{k=1}^{\infty} \|x^k - x^*\| < \infty$. Assume also that $\nabla^2 f(x)$ is Lipschitz continuous at x^*. Then x^k converges to x^* at a superlinear rate.

Remarks

The proof shows that given the assumptions, the BFGS updates for B_k satisfy the Dennis & Moré condition, which in turn implies superlinear convergence.
L-BFGS

Challenges for BFGS

- BFGS approach stores and applies a dense $p \times p$ matrix H_k.
- When p is very large, H_k can prohibitively expensive to store and apply.

L(imited memory)-BFGS

- Do not store H_k, but keep only the m most recent pairs $\{(s^i, y^i)\}$.
- Compute $H_k \nabla f(x_k)$ by performing a sequence of operations with s^i and y^i:
 - Choose a temporary initial approximation H_0^k.
 - Recursively apply $H_{k+1} = V_k^T H_k V_k + \eta_k s^k (s^k)^T$, m times starting from H_0^k:
 \[
 H_k = \left(V_{k-1}^T \cdots V_{k-m}^T \right) H_k^0 \left(V_{k-m} \cdots V_{k-1} \right) \\
 + \eta_{k-m} \left(V_{k-1}^T \cdots V_{k-m+1}^T \right) s^{k-m} (s^{k-m})^T \left(V_{k-m+1} \cdots V_{k-1} \right) \\
 + \cdots \\
 + \eta_{k-1} s^{k-1} (s^{k-1})^T
 \]
 - From the previous expression, we can compute $H_k \nabla f(x_k)$ recursively.
 - Replace the oldest element in $\{s^i, y^i\}$ with (s^k, y^k).
 - From practical experience, $m \in (3, 50)$ does the trick.
L-BFGS: A quasi-Newton method

<table>
<thead>
<tr>
<th>Procedure for computing $H_k \nabla f(x^k)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Recall $\eta_k = 1/\langle y^k, s^k \rangle$.</td>
</tr>
<tr>
<td>1. $q = \nabla f(x^k)$.</td>
</tr>
<tr>
<td>2. For $i = k - 1, \ldots, k - m$</td>
</tr>
<tr>
<td>$\alpha_i = \eta_i \langle s^i, q \rangle$</td>
</tr>
<tr>
<td>$q = q - \alpha_i y^i$.</td>
</tr>
<tr>
<td>3. $r = H_k^0 q$.</td>
</tr>
<tr>
<td>4. For $i = k - m, \ldots, k - 1$</td>
</tr>
<tr>
<td>$\beta = \eta_i \langle y^i, r \rangle$</td>
</tr>
<tr>
<td>$r = r + (\alpha_i - \beta)s^i$.</td>
</tr>
<tr>
<td>5. $H_k \nabla f(x^k) = r$.</td>
</tr>
</tbody>
</table>

Remarks

- Apart from the step $r = H_k^0 q$, the algorithm requires only $4mp$ multiplications.
- If H_k^0 is chosen to be diagonal, another p multiplications are needed.
- An effective initial choice is $H_k^0 = \gamma_k I$, where

$$\gamma_k = \frac{\langle s^{k-1}, y^{k-1} \rangle}{\langle y^{k-1}, y^{k-1} \rangle}$$
1. Choose starting point x^0 and $m > 0$.
2. For $k = 0, 1, \ldots$
 2.a Choose H^0_k.
 2.b Compute $p^k = -H_k \nabla f(x^k)$ using the previous algorithm.
 2.c Set $x^{k+1} = x^k + \alpha_k p^k$, where α_k satisfies the Wolfe conditions.
 if $k > m$, discard the pair $\{s^{k-m}, p^{k-m}\}$ from storage.
 2.d Compute and store $s^k = x^{k+1} - x^k$, $y^k = \nabla f(x^{k+1}) - \nabla f(x^k)$.

Warning

L-BFGS updates does not guarantee positive semidefiniteness of the variable metric H_k in contrast to BFGS.
Example: Logistic regression - numerical results

- Newton
- Quasi-Newton with BFGS
- Quasi-Newton with L-BFGS
- Accelerated gradient method
- Line Search AGD with adaptive restart

<table>
<thead>
<tr>
<th>Number of iterations</th>
<th>(f(x_k) − f^)/f^ in log scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-6}</td>
<td></td>
</tr>
<tr>
<td>10^{-5}</td>
<td></td>
</tr>
<tr>
<td>10^{-4}</td>
<td></td>
</tr>
<tr>
<td>10^{-3}</td>
<td></td>
</tr>
<tr>
<td>10^{-2}</td>
<td></td>
</tr>
<tr>
<td>10^{-1}</td>
<td></td>
</tr>
</tbody>
</table>

Parameters

- For BFGS, L-BFGS and Newton’s method: maximum number of iterations 200, tolerance 10^{-6}. L-BFGS memory $m = 50$.
- For accelerated gradient method: maximum number of iterations 20000, tolerance 10^{-6}.
- Ground truth: Get a high accuracy approximation of x^* and f^* by applying Newton’s method for 200 iterations.
Performance of optimization algorithms

Time-to-reach ϵ

time-to-reach $\epsilon = \text{number of iterations to reach } \epsilon \times \text{per iteration time}$

The speed of numerical solutions depends on two factors:

▶ Convergence rate determines the number of iterations needed to obtain an ϵ-optimal solution.
▶ Per-iteration time depends on the information oracles, implementation, and the computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky! A non-exhaustive illustration:

<table>
<thead>
<tr>
<th>Assumptions on f</th>
<th>Algorithm</th>
<th>Convergence rate</th>
<th>Iteration complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gradient descent</td>
<td>Sublinear $(1/k)$</td>
<td>One gradient</td>
</tr>
<tr>
<td>L-smooth</td>
<td>Accelerated GD</td>
<td>Sublinear $(1/k^2)$</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Quasi-Newton</td>
<td>Superlinear</td>
<td>One gradient, rank-2 update</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Sublinear $(1/k)$, Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
<tr>
<td></td>
<td>Gradient descent</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td>L-smooth and μ-strongly convex</td>
<td>Accelerated GD</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Quasi-Newton</td>
<td>Superlinear</td>
<td>One gradient, rank-2 update</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Linear (e^{-k}), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
</tbody>
</table>
Performance of optimization algorithms

A non-exhaustive comparison:

<table>
<thead>
<tr>
<th>Assumptions on f</th>
<th>Algorithm</th>
<th>Convergence rate</th>
<th>Iteration complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-smooth</td>
<td>Gradient descent</td>
<td>Sublinear ($\frac{1}{k}$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Sublinear ($\frac{1}{k^2}$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Quasi-Newton</td>
<td>Superlinear</td>
<td>One gradient, rank-2 update</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Sublinear ($\frac{1}{k}$), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
<tr>
<td>L-smooth and μ-strongly convex</td>
<td>Gradient descent</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Quasi-Newton</td>
<td>Superlinear</td>
<td>One gradient, rank-2 update</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Linear (e^{-k}), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
</tbody>
</table>

Accelerated gradient descent:

$$x^{k+1} = y^k - \alpha \nabla f(y^k)$$

$$y^{k+1} = x^{k+1} + \alpha_{k+1}(x^{k+1} - x^k).$$

for some proper choice of α and α_{k+1}.
Performance of optimization algorithms

A non-exhaustive comparison:

<table>
<thead>
<tr>
<th>Assumptions on f</th>
<th>Algorithm</th>
<th>Convergence rate</th>
<th>Iteration complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-smooth</td>
<td>Gradient descent</td>
<td>Sublinear ($1/k$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Sublinear ($1/k^2$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Quasi-Newton</td>
<td>Superlinear</td>
<td>One gradient, rank-2 update</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Sublinear ($1/k$), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
<tr>
<td>L-smooth and μ-strongly convex</td>
<td>Gradient descent</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Quasi-Newton</td>
<td>Superlinear</td>
<td>One gradient, rank-2 update</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Linear (e^{-k}), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
</tbody>
</table>

Main computations of the Quasi-Newton method is given by

$$p^k = -B_k^{-1}\nabla f(x^k),$$

where B_k^{-1} is updated at each iteration by adding a rank-2 matrix.
Performance of optimization algorithms

A non-exhaustive comparison:

<table>
<thead>
<tr>
<th>Assumptions on f</th>
<th>Algorithm</th>
<th>Convergence rate</th>
<th>Iteration complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-smooth</td>
<td>Gradient descent</td>
<td>Sublinear ($1/k$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Sublinear ($1/k^2$)</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Quasi-Newton</td>
<td>Superlinear</td>
<td>One gradient, rank-2 update</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Sublinear ($1/k$), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
<tr>
<td>L-smooth and μ-strongly convex</td>
<td>Gradient descent</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Accelerated GD</td>
<td>Linear (e^{-k})</td>
<td>One gradient</td>
</tr>
<tr>
<td></td>
<td>Quasi-Newton</td>
<td>Superlinear</td>
<td>One gradient, rank-2 update</td>
</tr>
<tr>
<td></td>
<td>Newton method</td>
<td>Linear (e^{-k}), Quadratic</td>
<td>One gradient, one linear system</td>
</tr>
</tbody>
</table>

The main computation of the Newton method requires the solution of the linear system

$$\nabla^2 f(x^k)p^k = -\nabla f(x^k).$$
*Randomized Kaczmarz algorithm

Problem

Given a full-column-rank matrix $A \in \mathbb{R}^{n \times p}$ and $b \in \mathbb{R}^n$, solve the linear system

$$Ax = b.$$

Notations: $b := (b_1, \ldots, b_n)^T$ and a_j^T is the j-th row of A.

<table>
<thead>
<tr>
<th>Randomized Kaczmarz algorithm (RKA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Choose $x^0 \in \mathbb{R}^p$.</td>
</tr>
<tr>
<td>2. For $k = 0, 1, \ldots$ perform:</td>
</tr>
<tr>
<td>2a. Pick $j_k \in {1, \ldots, n}$ randomly with $\Pr(j_k = i) = |a_i|_2^2 / |A|_F^2$.</td>
</tr>
<tr>
<td>2b. $x^{k+1} = x^k - (\langle a_{j_k}, x^k \rangle - b_{j_k}) a_{j_k} / |a_{j_k}|_2^2$.</td>
</tr>
</tbody>
</table>

Linear convergence [26]

Let x^* be the solution of $Ax = b$ and $\kappa = \|A\|_F \|A^{-1}\|$. Then

$$\mathbb{E}\|x^k - x^*\|_2^2 \leq (1 - \kappa^{-2})^k \|x^0 - x^*\|_2^2$$

- RKA can be seen as a particular case of SGD [18].
References

References II

[6] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford.
Lower bounds for finding stationary points II: first-order methods.

[7] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong.
On the convergence of a class of adam-type algorithms for non-convex optimization.

A characterization of superlinear convergence and its application to quasi-newton methods.

Adaptive subgradient methods for online learning and stochastic optimization.

SPIDER: near-optimal non-convex optimization via stochastic path-integrated differential estimator.
References III

Restarting accelerated gradient methods with a rough strong convexity estimate.
2016.

Stochastic first- and zeroth-order methods for nonconvex stochastic programming.

Accelerated gradient methods for nonconvex nonlinear and stochastic programming.

Monotonicity and restart in fast gradient methods.

Adam: A method for stochastic optimization.
References IV

Online to offline conversions, universality and adaptive minibatch sizes.

Online adaptive methods, universality and acceleration.

Stochastic gradient descent, weighted sampling, and the randomized kaczmarz algorithm.

Robust stochastic approximation approach to stochastic programming.

Introductory Lectures on Convex Optimization: A Basic Course.
References V

Numerical Optimization.

[22] Brendan O’Donoghue and Emmanuel Candes.
Adaptive restart for accelerated gradient schemes.

On the convergence of adam and beyond.

[24] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter.
Pegasos: primal estimated sub-gradient solver for svm.

Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes.
A randomized kaczmarz algorithm with exponential convergence.

Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.

AdaGrad stepsizes: Sharp convergence over nonconvex landscapes.

[29] Dongruo Zhou, Yiqi Tang, Ziyang Yang, Yuan Cao, and Quanquan Gu.
On the convergence of adaptive gradient methods for nonconvex optimization.