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Recall: Gradient descent

Problem (Unconstrained convex problem)
Consider the following convex minimization problem:

f? = min
x∈Rp

f(x)

I f is a convex function that is
I proper : ∀x ∈ Rp, −∞ < f(x) and there exists x ∈ Rp such that f(x) < +∞.
I closed : The epigraph epif = {(x, t) ∈ Rp+1, f(x) ≤ t} is closed.
I smooth : f is differentiable and its gradient ∇f is L-Lipschitz.

I The solution set S? := {x? ∈ dom (f) : f(x?) = f?} is nonempty.

Gradient descent (GD)
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f(xk)

where αk is a step-size to be chosen so that xk converges to x?.
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Convergence rate of gradient descent

Theorem
Let f be a twice-differentiable convex function, if

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
2L
k + 4

‖x0 − x?‖22

f is L-smooth and µ-strongly convex, α =
2

L+ µ
: ‖xk − x?‖2 ≤

(
L− µ
L+ µ

)k
‖x0 − x?‖2

f is L-smooth and µ-strongly convex, α =
1
L

: ‖xk − x?‖2 ≤
(
L− µ
L+ µ

) k
2
‖x0 − x?‖2

Note that L−µ
L+µ = κ−1

κ+1 , where κ := L
µ

is the condition number of ∇2f .
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Information theoretic lower bounds [20]
What is the best achievable rate for a first-order method?

f ∈ F∞L : ∞-differentiable and L-smooth
It is possible to construct a function in F∞L , for which any first order method must satisfy

f(xk)− f(x?) ≥
3L

32(k + 1)2 ‖x
0 − x?‖22 for all k ≤ (p− 1)/2

f ∈ F∞L,µ: ∞-differentiable, L-smooth and µ-strongly convex
It is possible to construct a function in F∞L,µ, for which any first order method must satisfy

‖xk − x?‖2 ≥
( √

L− √µ
√
L+ √µ

)k
‖x0 − x?‖2

Gradient descent is O(1/k) for F∞L and it is slower for F∞L,µ, hence it does not
achieve the lower bounds!
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Accelerated gradient descent algorithm

Problem
Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]
Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth
(AGD-L)

1. Set x0 = y0 ∈ dom (f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L
∇f(yk)

tk+1 = (1 +
√

4t2
k

+ 1)/2
yk+1 = xk+1 + (tk−1)

tk+1
(xk+1 − xk)

Accelerated Gradient algorithm for L-smooth
and µ-strongly convex (AGD-µL)

1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L
∇f(yk)

yk+1 = xk+1 + α(xk+1 − xk)
where α =

√
L−√µ√
L+√µ

.

Remark: ◦ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.
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Global convergence of AGD [20]

Theorem (f is convex with Lipschitz gradient)
If f is L-smooth or L-smooth and µ-strongly convex, the sequence {xk}k≥0 generated by AGD-L satisfies

f(xk)− f? ≤
4L

(k + 2)2 ‖x
0 − x?‖22, ∀k ≥ 0. (1)

AGD-L is optimal for L-smooth but NOT for L-smooth and µ-strongly convex!

Theorem (f is strongly convex with Lipschitz gradient)
If f is L-smooth and µ-strongly convex, the sequence {xk}k≥0 generated by AGD-µL satisfies

f(xk)− f? ≤ L
(

1−
√

µ

L

)k
‖x0 − x?‖22, ∀k ≥ 0 (2)

‖xk − x?‖2 ≤

√
2L
µ

(
1−

√
µ

L

) k
2
‖x0 − x?‖2, ∀k ≥ 0. (3)

Observations: ◦ AGD-L’s iterates are not guaranteed to converge.
◦ AGD-L does not have a linear convergence rate for L-smooth and µ-strongly convex.
◦ AGD-µL does, but needs to know µ.
◦ AGD achieves the iteration lowerbound within a constant!
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Example: Ridge regression
Case 1: n = 500, p = 2000, ρ = 0
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Case 2: n = 500, p = 2000, ρ = 0.01λp(ATA)
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Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates
Gradient descent:

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
2L
k + 4

‖x0 − x?‖22.

Accelerated Gradient Descent:

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
4L

(k + 2)2 ‖x
0 − x?‖22, ∀k ≥ 0.

Observations: ◦ We require αt to be a function of L.

◦ It may not be possible to know exactly the Lipschitz constant.

◦ Adaptation to local geometry → may lead to larger steps.
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Adaptive first-order methods and ?Newton method

Adaptive methods
Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.

?Newton method
Higher-order information, e.g., Hessian, gives a finer characterization of local behavior.

Newton method achieves asymptotically better local rates, but for additional cost.
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How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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�f(xk)

x1

x2
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krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
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Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
Lk

2
kx � xkk2

2
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How can we better adapt to the local geometry?

�f(xk)

x1

x2
f(x)  f(xk) +rf(xk)T (x� x

k) +
L

2
kx� x

kk22

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

H�1
k

L is a global worst-case constant

krf(x)�rf(y)k  Lky � xk

f(x)

x

k+1 = argmin
x

⇢
f(xk) + hrf(xk),x� x

ki+ L

2
kx� x

kk22
�

f(xk)
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Variable metric gradient descent algorithm

Variable metric gradient descent algorithm
1. Choose x0 ∈ Rp as a starting point and H0 � 0.
2. For k = 0, 1, · · · , perform:{

dk := −H−1
k
∇f(xk),

xk+1 := xk + αkdk,

where αk ∈ (0, 1] is a given step size.
3. Update Hk+1 � 0 if necessary.

Common choices of the variable metric Hk

I Hk := λkI =⇒ gradient descent method.
I Hk := Dk (a positive diagonal matrix) =⇒ adaptive gradient methods.
I Hk := ∇2f(xk) =⇒ Newton method.
I Hk ≈ ∇2f(xk) =⇒ quasi-Newton method.
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Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting Hk as a function of past gradient information.

◦ Roughly speaking, Hk = function(∇f(x1),∇f(x2), · · · ,∇f(xk))

◦ Some well-known examples:

AdaGrad [9]
Hk =

√∑k

t=1(∇f(xt)>∇f(xt))

?RmsProp [27]
Hk =

√
βHk−1 + (1− β)diag(∇f(xk))2

?ADAM [15]
Ĥk = βĤk−1 + (1− β)diag(∇f(xk))2

Hk =
√

Ĥk/(1− βk)
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AdaGrad - Adaptive gradient method with Hk = λkI
◦ If Hk = λkI, it becomes gradient descent method with adaptive step-size αk

λk
.

How step-size adapts?
If gradient ‖∇f(xk)‖ is large/small → AdaGrad adjusts step-size αk/λk smaller/larger

Adaptive gradient descent (AdaGrad with Hk = λkI) [16]
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{

Qk = Qk−1 + ‖∇f(xk)‖2

Hk =
√
QkI

xk+1 = xk − αkH−1
k
∇f(xk)

Adaptation through first-order information

I When Hk = λkI, AdaGrad estimates local geometry through gradient norms.
I Akin to estimating a local quadratic upper bound (majorization / minimization) using gradient history.
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AdaGrad - Adaptive gradient method with Hk = Dk

Adaptation strategy with a positive diagonal matrix Dk

Adaptive step-size + coordinate-wise extension = adaptive step-size for each coordinate

�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

D�1
k

<latexit sha1_base64="RcBFv+9WMTiD8KYpeDUFT84TVOE="></latexit>
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AdaGrad - Adaptive gradient method with Hk = Dk

◦ Suppose Hk is diagonal,

Hk :=

λk,1 0
. . .

0 λk,d

 ,
◦ For each coordinate i, we have different step-size αk

λk,i
is the step-size.

Adaptive gradient descent(AdaGrad with Hk = Dk)
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

Adaptation across each coordinate

I When Hk = Dk, we adapt across each coordinate individually.
I Essentially, we have a finer treatment of the function we want to optimize.
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Convergence rate for AdaGrad

Original convergence for a different function class
Consider a proper, convex function f such that it is G-Lipschitz continuous (NOT L-smooth). Let
D = max

k
‖xk − x?‖2 and αk = D√

2
. Define x̄k = (

∑k

i=1 xi)/k. Then,

f(x̄k)− f(x?) ≤
1
k

√√√√2D2
k∑
i=1

‖∇f(xi)‖22 ≤
√

2DG
√
k

A more familiar convergence result [16]
Assume f is L-smooth, D = max

t
‖xk − x?‖2 and αk = D√

2
. Define x̄k = (

∑k

i=1 xi)/k. Then,

f(x̄k)− f(x?) ≤
1
k

√√√√2D2
k∑
i=1

‖∇f(xi)‖22 ≤
4D2L

k
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AcceleGrad - Adaptive gradient + Accelerated gradient [17]

Motivation behind AcceleGrad
Is it possible to achieve acceleration for when f is L-smooth, without knowing the Lipschitz constant?

◦ The answer is yes! See advanced material (AcceleGrad) at the end.

◦ A rough comparison of the accelerated methods:

Accelerated Gradient algorithm

1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − α∇f(yk)
yk+1 = xk+1 + γk+1(xk+1 − xk)

for some proper choice of α and γk+1.

AcceleGrad (Accelerated Adaptive Gradient Method)

1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk
xk+1 = τkzk + (1− τk)yk
zk+1 = zk − αkηk∇f(xk)
yk+1 = xk+1 − ηk∇f(xk)

for αk = (k + 1)/4 and
ηk = 2D√

G2+
∑k

i=0
(αk)2‖∇f(xk)‖2

.
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Performance of optimization algorithms

Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

The speed of numerical solutions depends on two factors:
I Convergence rate determines the number of iterations needed to obtain an ε-optimal solution.
I Per-iteration time depends on the information oracles, implementation, and the computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky!
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

AdaGrad Sublinear (1/k) One gradient
L-smooth Accelerated GD Sublinear (1/k2) One gradient

AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Newton method Linear (e−k), Quadratic One gradient, one linear system

Gradient descent:

xk+1 = xk − α∇f(xk),

where the stepsize is chosen appropriately, α ∈ (0, 2
L

)

AdaGrad:

xk+1 = xk − αk∇f(xk),

where scalar version of the step size is
αk = D√∑k

i=1
‖∇f(xi)‖2
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

AdaGrad Sublinear (1/k) One gradient
L-smooth Accelerated GD Sublinear (1/k2) One gradient

AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Newton method Linear (e−k), Quadratic One gradient, one linear system

Accelerated gradient descent:

xk+1 = yk − α∇f(yk)

yk+1 = xk+1 + γk+1(xk+1 − xk).

for some proper choice of α and γk+1.

AcceleGrad:

xk+1 = τkzk + (1− τk)yk

zk+1 = zk − αkηk∇f(xk)

yk+1 = xk+1 − ηk∇f(xk).

for αk = (k + 1)/4, τk = 1/αk and
ηk = 2D√

G2+
∑k

i=0
(αk)2‖∇f(xk)‖2

.
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Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

AdaGrad Sublinear (1/k) One gradient
L-smooth Accelerated GD Sublinear (1/k2) One gradient

AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Newton method Linear (e−k), Quadratic One gradient, one linear system

The main computation of the Newton method requires the solution of the linear system

∇2f(xk)pk = −∇f(xk) .
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The gradient method for non-convex optimization

Remarks: ◦ Gradient descent does not match lower bounds in convex setting.

◦ How about non-convex problems?

Lower bounds for non-convex problems [5]
Assume f is L-gradient Lipschitz and non-convex. Then any first-order method must satisfy,

‖∇f(xk)‖2 = Ω
( 1
k

)

Observations: ◦ Gradient descent is optimal for non-convex problems, up to some constant factor!

◦ Acceleration for non-convex, L-Lipschitz gradient functions is not as meaningful.
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Recall: Gradient descent

Problem (Unconstrained optimization problem)
Consider the following minimization problem:

f? = min
x∈Rp

f(x)

f(x) is proper and closed.

Gradient descent
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f(xk)

where αk is a step-size to be chosen so that xk converges to x?.

f is L-smooth & convex f is L-gradient Lipschitz & non-convex
GD O(1/k) (fast) O(1/k) (optimal)
AGD O(1/k2) (optimal) O(1/k) (optimal) [13]

Why should we study anything else?
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Statistical learning with streaming data
◦ Recall that statistical learning seeks to find a h? ∈ H that minimizes the expected risk,

h? ∈ arg min
h∈H

{
R(h) := E(a,b) [L(h(a), b)]

}
.

Abstract gradient method

hk+1 = hk − αk∇R(hk) = hk − αkE(a,b)[∇L(hk(a), b)].

This can not be implemented in practice as the distribution of (a, b) is unknown.

◦ In practice, data can arrive in a streaming way.

A parametric example: Markowitz portfolio optimization

x? := min
x∈X

{
E
[
|b− 〈x,a〉|2

]}
I hx(·) = 〈x, ·〉
I b ∈ R is the desired return & a ∈ Rp are the stock returns
I X is intersection of the standard simplex and the constraint: 〈x,E[a]〉 ≥ ρ.
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Stochastic programming

Problem (Mathematical formulation)
Consider the following convex minimization problem:

f? = min
x∈Rp

{
f(x) := E[f(x, θ)]

}
I θ is a random vector whose probability distribution is supported on set Θ.
I f(x) := E[f(x, θ)] is proper, closed, and convex.
I The solution set S? := {x? ∈ dom (f) : f(x?) = f?} is nonempty.
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Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

◦ G(xk, θk) is an unbiased estimate of the full gradient:

E[G(xk, θk)] = ∇f(xk).

Remarks: ◦ The cost of computing G(xk, θk) is n times cheaper than that of ∇f(xk).

◦ As G(xk, θk) is an unbiased estimate of the full gradient, SGD would perform well.

◦ We assume {θk} are jointly independent.

◦ SGD is not a monotonic descent method.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 85



Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ ]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

◦ G(xk, θk) is an unbiased estimate of the full gradient:

E[G(xk, θk)] = ∇f(xk).

Remarks: ◦ The cost of computing G(xk, θk) is n times cheaper than that of ∇f(xk).

◦ As G(xk, θk) is an unbiased estimate of the full gradient, SGD would perform well.

◦ We assume {θk} are jointly independent.

◦ SGD is not a monotonic descent method.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 85



Example: Convex optimization with finite sums

Convex optimization with finite sums
The problem

arg min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)

}
,

can be rewritten as

arg min
x∈Rp

{f(x) := Ei[fi(x)]} , i is uniformly distributed over {1, 2, · · · , n}.

A stochastic gradient descent (SGD) variant for finite sums

xk+1 = xk − αk∇fi(xk) i is uniformly distributed over{1, ..., n}

Remarks: ◦ Note: Ei[∇fi(xk)] =
∑n

j=1∇fj(x
k)/n = ∇f(xk).

◦ The computational cost of SGD per iteration is p.
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Synthetic least-squares problem

min
x

{
f(x) :=

1
2n
‖Ax− b‖22 : x ∈ Rp

}
Setup

I A := randn(n, p) - standard Gaussian N (0, I), with n = 104, p = 102.
I x\ is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to ‖x\‖2 = 1.
I b := Ax\ + w, where w is Gaussian white noise with variance 1.
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◦ 1 epoch = 1 pass over the full gradient
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Convergence of SGD when the objective is not strongly convex

Theorem (decaying step-size [25])
Assume
I E[‖xk − x?‖2] ≤ D2 for all k,
I E[‖G(xk, θk)‖2] ≤M2 (bounded gradient),
I αk = α0/

√
k.

Then

E[f(xk)− f(x?)] ≤
(
D2

α0
+ α0M

2
)

2 + log k
√
k

.

Observation: ◦ O(1/
√
k) rate is optimal for SGD if we do not consider the strong convexity.
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Convergence of SGD for strongly convex problems I

Theorem (strongly convex objective, fixed step-size [4])
Assume
I f is µ-strongly convex and L-smooth,
I E[‖G(xk, θk)‖2]2 ≤ σ2 +M‖∇f(xk)‖22 (bounded variance),
I αk = α ≤ 1

LM
.

Then
E[f(xk)− f(x?)] ≤

αLσ2

2µ
+ (1− µα)k−1

(
f(x1)− f?

)
.

Observations: ◦ Converge fast (linearly) to a neighborhood around x?

◦ Zero variance (σ = 0) =⇒ linear convergence

◦ Smaller step-sizes α =⇒ converge to a better point, but with a slower rate
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Convergence of SGD for strongly convex problems II

Theorem (strongly convex objective, decaying step-size [4])
Assume
I f is µ-strongly convex and L-smooth,
I E[‖G(xk, θk)‖2]2 ≤ σ2 +M‖∇f(xk)‖22 (bounded variance),
I αk = c

k0+k with some appropriate constants c and k0.

Then
E[‖xk − x?‖2] ≤

C

k + 1
,

where C is a constant independent of k.

Observations: ◦ Using the smooth property,

E[f(xk)− f(x?)] ≤ LE[‖xk − x?‖2] ≤
C

k + 1
.

◦ The rate is optimal if σ2 > 0 with the assumption of strongly-convexity.
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Example: SGD with different step sizes
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Setup
◦ Synthetic least-squares problem as before

◦ αk = α0/(k + k0).

Observation: ◦ α0 = 1/µ is the best choice.
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Comparison with GD

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ f : µ-strongly convex with L-Lipschitz smooth.

rate iteration complexity cost per iteration total cost
GD ρk log(1/ε) n n log(1/ε)
SGD 1/k 1/ε 1 1/ε

Remark: ◦ SGD is more favorable when n is large — large-scale optimization problems
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Motivation for SGD with Averaging

◦ SGD iterates tend to oscillate around global minimizers

◦ Averaging iterates can reduce the oscillation effect

◦ Two types of averaging:

x̄k =
1
k

k∑
j=1

αjxj (vanilla averaging)

x̄k =

∑k

j=1 αjx
j∑k

j=1 αj
(weighted averaging)
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Convergence for SGD-A I: non-strongly convex case
Stochastic gradient method with averaging (SGD-A)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ ]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

2b. x̄k = (
∑k

j=0 αj)
−1
∑k

j=0 αjx
j .

Theorem (Convergence of SGD-A [19])
Let D = ‖x0 − x?‖ and E[‖G(xk, θk)‖2] ≤M2.
Then,

E[f(x̄k+1)− f(x?)] ≤
D2 +M2

∑k

j=0 α
2
j

2
∑k

j=0 αj
.

In addition, choosing αk = D/(M
√
k + 1), we get,

E[f(x̄k)− f(x?)] ≤
MD(2 + log k)

√
k

.

Observation: ◦ Same convergence rate with vanilla SGD.
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Convergence for SGD-A II: strongly convex case
Stochastic gradient method with averaging (SGD-A)

1. Choose x0 ∈ Rp and (αk)k∈N ∈ ]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

2b. x̄k = 1
k

∑k

j=1 xj .

Theorem (Convergence of SGD-A [24])
Assume
I f is µ-strongly convex,
I E[‖G(xk, θk)‖2] ≤M2,
I αk = α0/k for some α0 ≥ 1/µ.

Then
E[f(x̄k)− f(x?)] ≤

α0M2(1 + log k)
2k

.

Observation: ◦ Same convergence rate with vanilla SGD.
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Example: SGD-A method with different step sizes

min
x

{
f(x) :=

1
2n
‖Ax− b‖22 : x ∈ Rp

}
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◦ Synthetic least-squares problem as before

◦ αk = α0/(k + k0).

Observations: ◦ SGD-A is more stable than SGD.

◦ α0 = 2/µ is the best choice.
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Least mean squares algorithm

Least-square regression problem
Solve

x? ∈ arg min
x∈Rp

{
f(x) :=

1
2
E(a,b)(〈a,x〉 − b)2

}
,

given i.i.d. samples {(aj , bj)}nj=1 (particularly in a streaming way).

Stochastic gradient method with averaging

1. Choose x0 ∈ Rp and α > 0.
2a. For k = 1, . . . , n perform:

xk = xk−1 − α
(
〈ak,xk−1〉 − bk

)
ak.

2b. x̄k = 1
k+1

∑k

j=0 xj .

O(1/n) convergence rate, without strongly convexity [3]
Let ‖aj‖2 ≤ R and |〈aj ,x?〉 − bj | ≤ σ a.s.. Pick α = 1/(4R2). Then

Ef(x̄n−1)− f∗ ≤
2
n

(
σ
√
p+R‖x0 − x?‖2

)2
.
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Popular SGD Variants

◦ Mini-batch SGD: For each iteration,

xk+1 = xk − αk
1
b

∑
θ∈Γ

G(xk, θ).

I αk: step-size
I b : mini-batch size
I Γ : a set of random variables θ of size b

◦ Accelerated SGD (Nesterov accelerated technique)

◦ SGD with Momentum

◦ Adaptive stochastic methods: AdaGrad...
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SGD - Non-convex stochastic optimization

◦ SGD is not as well-studied for non-convex problems as for convex problems.

◦ There is a gap between SGD’s practical performance and theoretical understanding.

◦ Recall SGD update rule:

xk+1 = xk − αkG(xk, θ)

Theorem (A well-known result for SGD & Non-convex problems [12])
Let f be a non-convex and L-smooth function. Set αk = min

{
1
L
, C

σ
√
T

}
, ∀k = 1, ..., T , where σ2 is the

variance of the gradients and C > 0 is constant. Then,

E[‖∇f(xR)‖2] = O

(
σ
√
T

)
,

where P(R = k) = 2αk−Lα2
k∑T

k=1
(2αk−Lα2

k
)
.
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Lower bounds in non-convex optimization

Assumptions on f Additional assumptions Sample complexity

L-smooth Deterministic Oracle
f(x0)− infx f(x) ≤ ∆ Ω(∆Lε−2)[6]

L1-smooth
L2-Lipschitz Hessian

Deterministic Oracle
f(x0)− infx f(x) ≤ ∆ Ω(∆L3/7

1 L
2/7
2 ε−12/7)[6]

L-smooth
E[G(x, θ)] = ∇f(x)

E[‖G(x, θ)−∇f(x)‖2] ≤ σ2

f(x0)− infx f(x) ≤ ∆
Ω(∆Lσ2ε−4)[2]

G(x, θ) has averaged L-Lipschitz gradient
=⇒ L-smooth

E[G(x, θ)] = ∇f(x)
E[‖G(x, θ)−∇f(x)‖2] ≤ σ2

f(x0)− infx f(x) ≤ ∆
Ω(∆Lσε−3 + σ2ε−2)[2]

f(x) := 1
n

∑n

i=1
fi(x)

fi(x) has averaged L-Lipschitz gradient
=⇒ L-smooth

Access to ∇fi(x)
f(x0)− infx f(x) ≤ ∆

n ≤ O(ε−4)1
Ω(∆L

√
nε−2)[10]

◦ Measure of stationarity: ‖∇f(x)‖ ≤ ε or E[‖∇f(x)‖ ≤ ε

◦ Sample complexity: # of total oracle calls (deterministic or stochastic gradients)

◦ Averaged L-Lipschitz gradient: E
[
‖∇fi(x)−∇fi(y)‖2

]
≤ L2‖x− y‖2

◦ G(x, θ) denotes a stochastic gradient estimate for f at x with randomness governed by θ.

1We have n ≤ O(ε−4) in order to match the respective upper bound of O(n +
√
nε−2) achieved by [10]
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Wrap up!

◦ The remaining slides in this lecture are advanced material.

◦ Lecture on Monday!
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?Enhancements

Two enhancements
1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?
We can use a line-search procedure for both GD and AGD when
I L is known but it is expensive to evaluate;
I The global constant L usually does not capture the local behavior of f or it is unknown.

Line-search
At each iteration, we try to find a constant Lk that satisfies:

f(xk+1) ≤ QLk
(xk+1,yk) := f(yk) + 〈∇f(yk),xk+1 − yk〉+

Lk

2
‖xk+1 − yk‖22.

Here: L0 > 0 is given (e.g., L0 := c
‖∇f(x1)−∇f(x0)‖2

‖x1−x0‖2
) for c ∈ (0, 1].
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?How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound
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L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
Lk

2
kx � xkk2

2
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?Enhancements

Why do we need a restart strategy?

I AGD-µL requires knowledge of µ and AGD-L does not have optimal convergence for strongly convex f .
I AGD is non-monotonic (i.e., f(xk+1) ≤ f(xk) is not always satisfied).
I AGD has a periodic behavior, where the momentum depends on the local condition number κ = L/µ.
I A restart strategy tries to reset this momentum whenever we observe high periodic behavior. We often use

function values but other strategies are possible.

Restart strategies

1. O’Donoghue - Candes’s strategy [22]: There are at least three options: Restart with fixed number of
iterations, restart based on objective values, and restart based on a gradient condition.

2. Giselsson-Boyd’s strategy [14]: Do not require tk = 1 and do not necessary require function evaluations.
3. Fercoq-Qu’s strategy [11]: Unconditional periodic restart for strongly convex functions. Do not require

the strong convexity parameter.
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?Example: Ridge regression
Case 1: n = 500, p = 2000, ρ = 0
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Case 2: n = 500, p = 2000, ρ = 0.01λp(ATA)
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?AcceleGrad - Adaptive gradient + Accelerated gradient [17]

Motivation behind AcceleGrad
Is it possible to achieve acceleration when f is L-smooth, without knowing the Lipschitz constant?

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : x0 ∈ K, diameter D, weights {αk}k∈N, learning
rate {ηk}k∈N
1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk
xk+1 = τkzk + (1− τk)yk, define gk := ∇f(xk+1)
zk+1 = ΠK(zk − αkηkgk)
yk+1 = xk+1 − ηkgk

Output : yk ∝
∑k−1

i=0 αiy
i+1

where ΠK(y) = arg minx∈K 〈x− y,x− y〉 (projection onto K).

Remark: ◦ This is essentially the MD + GD scheme [1], with an adaptive step size!
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?AcceleGrad - Properties and convergence

Learning rate and weight computation
Assume that function f has uniformly bounded gradient norms ‖∇f(xk)‖2 ≤ G2, i.e., f is G-Lipschitz
continuous. AcceleGrad uses the following weights and learning rate:

αk =
k + 1

4
, ηk =

2D√
G2 +

∑k

τ=0 α
2
τ‖∇f(xτ+1)‖2

◦ Similar to RmsProp, AcceleGrad assignes greater weights to recent gradients.

Convergence rate of AcceleGrad
Assume that f is convex and L-smooth. Let K be a convex set with bounded diameter D, and assume x? ∈ K.
Define ȳk = (

∑k−1
i=0 αiy

i+1)/(
∑k−1

i=0 αi). Then,

f(yk)− min
x∈Rd

f(x) ≤ O
(
DG+ LD2 log(LD/G)

k2

)
If f is only convex and G-Lipschitz, then

f(yk)− min
x∈Rd

f(x) ≤ O
(
GD
√

log k/
√
k

)
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?Example: Logistic regression

Problem (Logistic regression)
Given A ∈ {0, 1}n×p and b ∈ {−1,+1}n, solve:

f? := min
x,β

{
f(x) :=

1
n

n∑
j=1

log
(
1 + exp

(
−bj(aTj x + β)

))}
.

Real data
I Real data: a4a with A ∈ Rn×d, where n = 4781 data points, d = 122 features
I All methods are run for T = 10000 iterations
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?RMSProp - Adaptive gradient method with Hk = Dk

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum → slow convergence at flat region.

AdaGrad with Hk = Dk

1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

RMSProp
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = βQk−1 + (1− β)diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

◦ RMSProp uses weighted averaging with constant β

◦ Recent gradients have greater importance
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?ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM
Input. Step size α, exponential decay rates β1, β2 ∈ [0, 1)
1. Set m0,v0 = 0
2. For k = 0, 1, . . ., iterate

gk = ∇f(xk−1)
mk = β1mk−1 + (1− β1)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g2

k ← 2nd order estimate
m̂k = mk/(1− βk1 ) ← Bias correction
v̂k = vk/(1− βk2 ) ← Bias correction
Hk =

√
v̂k + ε

xk+1 = xk − αm̂k/Hk

Output : xk

(Every vector operation is an element-wise operation)
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?Non-convergence of ADAM and a new method: AmsGrad
◦ It has been shown that ADAM may not converge for some objective functions [23].

◦ An ADAM alternative is proposed that is proved to be convergent [23].

AmsGrad
Input. Step size {αk}k∈N, exponential decay rates {β1,k}k∈N, β2 ∈ [0, 1)
1. Set m0 = 0,v0 = 0 and v̂0 = 0
2. For k = 1, 2, . . ., iterate

gk = G(xk, θ)
mk = β1,kmk−1 + (1− β1,k)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g2

k ← 2nd order estimate
v̂k = max{v̂k−1,vk} and V̂k = diag(v̂k)
Hk =

√
v̂k

xk+1 = Π
√

V̂k
X (xk − αkm̂k/Hk)

Output : xk

where ΠA
K (y) = arg minx∈K 〈(x− y),A(x− y)〉 (weighted projection onto K).

(Every vector operation is an element-wise operation)
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?AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [28])
Assume f is non-convex and L-smooth, such that ‖∇f(x)‖2 ≤ G2 and f? = infx f(x) >∞. Also consider
bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then with probability

1− δ,

min
i∈{1,..,k−1}

‖∇f(xi)‖2 = Õ

(
σ

δ3/2
√
k

)
◦ Note: As 1− δ → 1, the rate deteriorates by a factor of δ−3/2.

Theorem (AmsGrad convergence rate 1: stochastic, non-convex [7])
Let gk = G(xk, θ). Assume |g1,i| > c > 0, ∀i ∈ [d] and ‖gk‖ ≤ G. Consider a non-increasing sequence β1,k
and β1,k ≤ β1 ∈ [0, 1). Set αk = 1/

√
k. Then,

min
i∈{1,..,k−1}

E
[
‖∇f(xi)‖2

]
= O

( log k
√
k

)
.
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bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then with probability

1− δ,

min
i∈{1,..,k−1}

‖∇f(xi)‖2 = Õ

(
σ

δ3/2
√
k

)
◦ Note: As 1− δ → 1, the rate deteriorates by a factor of δ−3/2.

Theorem (AmsGrad convergence rate 2: stochastic, non-convex [29])
Consider f : Rd → R to be non-convex ans L-smooth. Assume ‖G(x, θ)‖∞ ≤ G∞ and set αk = 1/

√
dT . Also

define xout = xk, for k = 1, . . . , T with probability αk/
∑T

i=1 αi. Then,

E
[
‖∇f(xout)‖2

]
= O

(√
d

T

)
.
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?Example: Logistic regression with non-convex regularizer
◦ Synthetic data: A ∈ Rn×d, n = 2000, d = 200.

◦ Batch size: 20 samples.

◦ Algorithms: SGD, AdaGrad, AmsGrad.
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?Adaptive methods for stochastic optimization

Remark
I Adaptive methods have extensive applications in stochastic optimization.

I We will see another nature of adaptive methods in this lecture.

I Mild additional assumption: bounded variance of gradient estimates.
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?AdaGrad for stochastic optimization
◦ Only modification: ∇f(x)⇒ G(x, θ)

AdaGrad with Hk = λkI [16]
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{

Qk = Qk−1 + ‖G(xk, θ)‖2

Hk =
√
QkI

xk+1 = xt − αkH−1
k
G(xk, θ)

Theorem (Convergence rate: stochastic, convex optimization [16])
Assume f is convex and L-smooth, such that minimizer of f lies in a convex, compact set K with diameter D.
Also consider bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then,

E[f(xk)]− min
x∈Rd

f(x) = O

(
σD
√
k

)

◦ AdaGrad is adaptive also in the sense that it adapts to nature of the oracle.
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?AcceleGrad for stochastic optimization
◦ Similar to AdaGrad, replace ∇f(x)⇒ G(x, θ)

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : x0 ∈ K, diameter D, weights {αk}k∈N, learning
rate {ηk}k∈N
1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk
xk+1 = τtzk + (1− τk)yk, define gk := ∇f(xk+1)
zk+1 = ΠK(zk − αkηkgk)
yk+1 = xk+1 − ηkgk

Output : yk ∝
∑k−1

i=0 αiy
i+1

Theorem (Convergence rate [17])
Assume f is convex and G-Lipschitz and that minimizer of f lies in a convex, compact set K with diameter D.
Also consider bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then,

E[f(yk)]−min
x
f(x) = O

(
GD
√

log k
√
k

)
.
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?Example: Synthetic least squares
◦ A ∈ Rn×d, where n = 200 and d = 50.
◦ Number of epochs: 20.
◦ Algorithms: SGD, AdaGrad & AcceleGrad.
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?Newton method
• Fast (local) convergence but expensive per iteration cost

• Useful when warm-started near a solution

Local quadratic approximation using the Hessian

I Obtain a local quadratic approximation using the second-order Taylor series approximation to f(xk + p):

f(xk + p) ≈ f(xk) + 〈p,∇f(xk)〉+
1
2
〈p,∇2f(xk)p〉

I The Newton direction is the vector pk that minimizes f(xk + p); assuming the Hessian ∇2fk to be
positive definite:

∇2f(xk)pk = −∇f(xk) ⇔ pk = −
(
∇2f(xk)

)−1
∇f(xk)

I A unit step-size αk = 1 can be chosen near convergence:

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk) .

Remark
I For f ∈ F2,1

L but f < F2,1
L,µ, the Hessian may not always be positive definite.
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1
2
〈p,∇2f(xk)p〉

I The Newton direction is the vector pk that minimizes f(xk + p); assuming the Hessian ∇2fk to be
positive definite:

∇2f(xk)pk = −∇f(xk) ⇔ pk = −
(
∇2f(xk)

)−1
∇f(xk)

I A unit step-size αk = 1 can be chosen near convergence:

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk) .

Remark
I For f ∈ F2,1

L but f < F2,1
L,µ, the Hessian may not always be positive definite.
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?(Local) Convergence of Newton method

Lemma
Assume f is a twice differentiable convex function with minimum at x? such that:
I ∇2f(x?) � µI for some µ > 0,
I ‖∇2f(x)−∇2f(y)‖2→2 ≤M‖x− y‖2 for some constant M > 0 and all x,y ∈ dom(f).

Moreover, assume the starting point x0 ∈ dom(f) is such that ‖x0 − x?‖2 < 2µ
3M .

Then, the Newton method iterates converge quadratically:

‖xk+1 − x?‖ ≤
M‖xk − x?‖22

2
(
µ−M‖xk − x?‖2

) .
Remark
This is the fastest convergence rate we have seen so far, but it requires to solve a p× p linear system at each
iteration, ∇2f(xk)pk = −∇f(xk)!
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?Locally quadratic convergence of the Newton method–I

Newton’s method local quadratic convergence - Proof [21]
Since ∇f(x?) = 0 we have

xk+1 − x? = xk − x? − (∇2f(xk))−1∇f(xk)

= (∇2f(xk))−1
(
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

)
By Taylor’s theorem, we also have

∇f(xk)−∇f(x?) =
∫ 1

0
∇2f(xk + t(x? − xk))(xk − x?)dt

Combining the two above, we obtain
‖∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))‖

=

∥∥∥∥∫ 1

0

(
∇2f(xk)−∇2f(xk + t(x? − xk))

)
(xk − x?)dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2f(xk)−∇2f(xk + t(x? − xk))
∥∥ ‖xk − x?‖dt

≤M‖xk − x?‖2
∫ 1

0
tdt =

1
2
M‖xk − x?‖2
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?Locally quadratic convergence of the Newton method–II

Newton’s method local quadratic convergence - Proof [21].
I Recall

xk+1 − x? = (∇2f(xk))−1
(
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

)
‖∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))‖ ≤

1
2
M‖xk − x?‖2

I Since ∇2f(x?) is nonsingular, there must exist a radius r such that ‖(∇2f(xk))−1‖ ≤ 2‖(∇2f(x?))−1‖
for all xk with ‖xk − x∗‖ ≤ r.

I Substituting, we obtain

‖xk+1 − x?‖ ≤M‖(∇2f(x?))−1‖‖xk − x?‖2 = M̃‖xk − x?‖2,

where M̃ = M‖(∇2f(x?))−1‖.
I If we choose ‖x0 − x?‖ ≤ min(r, 1/(2M̃)), we obtain by induction that the iterates xk converge

quadratically to x?.

�
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?Example: Logistic regression - GD, AGD, AcceleGrad + NM
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Parameters
I Newton’s method: maximum number of iterations 30, tolerance 10−6.
I For GD, AGD & AcceleGrad: maximum number of iterations 10000, tolerance 10−6.
I Ground truth: Get a high accuracy approximation of x? and f? by applying Newton’s method for 200

iterations.
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?Approximating Hessian: Quasi-Newton methods
Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

• Useful for f(x) :=
∑n

i=1 fi(x) with n� p.

Main ingredients
Quasi-Newton direction:

pk = −H−1
k
∇f(xk) = −Bk∇f(xk).

I Matrix Hk, or its inverse Bk, undergoes low-rank updates:
I Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
I Limited memory BFGS (L-BFGS).

I Line-search: The step-size αk is chosen to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk〈∇f(xk),pk〉 (sufficient decrease)

〈∇f(xk + αkpk),pk〉 ≥ c2〈∇f(xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.
I Convergence is guaranteed under the Dennis & Moré condition [8].
I For more details on quasi-Newton methods, see Nocedal&Wright’s book [21].
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?Quasi-Newton methods

How do we update Bk+1?
Suppose we have (note the coordinate change from p to p̄)

mk+1(p̄) := f(xk+1) + 〈∇f(xk+1), p̄− xk+1〉+
1
2
〈

Bk+1(p̄− xk+1), (p̄− xk+1))
〉
.

We require the gradient of mk+1 to match the gradient of f at xk and xk+1.
I ∇mk+1(xk+1) = ∇f(xk+1) as desired;
I For xk, we have

∇mk+1(xk) = ∇f(xk+1) + Bk+1(xk − xk+1)

which must be equal to ∇f(xk).
I Rearranging, we have that Bk+1 must satisfy the secant equation

Bk+1sk = yk

where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).
I The secant equation can be satisfied with a positive definite matrix Bk+1 only if 〈sk,yk〉 > 0, which is

guaranteed to hold if the step-size αk satisfies the Wolfe conditions.
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?Quasi-Newton methods

BFGS method [21] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k
. The update on the inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (4)

The solution is a rank-2 update of the matrix Hk:

Hk+1 = VT
k HkVk + ηksk(sk)T ,

where Vk = I− ηkyk(sk)T .
I Initialization of H0 is an art. We can choose to set it to be an approximation of ∇2f(x0) obtained by

finite differences or just a multiple of the identity matrix.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 70/ 85



?Quasi-Newton methods

BFGS method [21] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k
. The update on the inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (4)

The solution is a rank-2 update of the matrix Hk:

Hk+1 = VT
k HkVk + ηksk(sk)T ,

where Vk = I− ηkyk(sk)T .

Theorem (Convergence of BFGS)
Let f ∈ C2. Assume that the BFGS sequence {xk} converges to a point x? and

∑∞
k=1 ‖x

k − x?‖ ≤ ∞.
Assume also that ∇2f(x) is Lipschitz continuous at x?. Then xk converges to x? at a superlinear rate.

Remarks
The proof shows that given the assumptions, the BFGS updates for Bk satisfy the Dennis & Moré condition,
which in turn implies superlinear convergence.
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?L-BFGS
Challenges for BFGS

I BFGS approach stores and applies a dense p× p matrix Hk.
I When p is very large, Hk can prohibitively expensive to store and apply.

L(imited memory)-BFGS

I Do not store Hk, but keep only the m most recent pairs {(si,yi)}.
I Compute Hk∇f(xk) by performing a sequence of operations with si and yi:

I Choose a temporary initial approximation H0
k.

I Recursively apply Hk+1 = VT
k HkVk + ηksk(sk)T , m times starting from H0

k:

Hk =
(

VT
k−1 · · ·V

T
k−m

)
H0

k (Vk−m · · ·Vk−1)

+ ηk−m

(
VT

k−1 · · ·V
T
k−m+1

)
sk−m(sk−m)T (Vk−m+1 · · ·Vk−1)

+ · · ·

+ ηk−1sk−1(sk−1)T

I From the previous expression, we can compute Hk∇f(xk) recursively.
I Replace the oldest element in {si,yi} with (sk,yk).
I From practical experience, m ∈ (3, 50) does the trick.
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?L-BFGS: A quasi-Newton method
Procedure for computing Hk∇f(xk)

0. Recall ηk = 1/〈yk, sk〉.
1. q = ∇f(xk).
2. For i = k − 1, . . . , k −m

αi = ηi〈si,q〉
q = q − αiyi.

3. r = H0
kq.

4. For i = k −m, . . . , k − 1
β = ηi〈yi, r〉
r = r + (αi − β)si.

5. Hk∇f(xk) = r.

Remarks
I Apart from the step r = H0

kq, the algorithm requires only 4mp multiplications.
I If H0

k is chosen to be diagonal, another p multiplications are needed.
I An effective initial choice is H0

k = γkI, where

γk =
〈sk−1,yk−1〉
〈yk−1,yk−1〉
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?L-BFGS: A quasi-Newton method

L-BFGS

1. Choose starting point x0 and m > 0.
2. For k = 0, 1, . . .

2.a Choose H0
k.

2.b Compute pk = −Hk∇f(xk) using the previous algorithm.
2.c Set xk+1 = xk + αkpk, where αk satisfies the Wolfe conditions.

if k > m, discard the pair {sk−m,pk−m} from storage.
2.d Compute and store sk = xk+1−xk, yk = ∇f(xk+1)−∇f(xk).

Warning
L-BFGS updates does not guarantee positive semidefiniteness of the variable metric Hk in contrast to BFGS.
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?Example: Logistic regression - numerical results
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Parameters
I For BFGS, L-BFGS and Newton’s method: maximum number of iterations 200, tolerance 10−6. L-BFGS

memory m = 50.
I For accelerated gradient method: maximum number of iterations 20000, tolerance 10−6.
I Ground truth: Get a high accuracy approximation of x? and f? by applying Newton’s method for 200

iterations.
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?Performance of optimization algorithms

Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

The speed of numerical solutions depends on two factors:
I Convergence rate determines the number of iterations needed to obtain an ε-optimal solution.
I Per-iteration time depends on the information oracles, implementation, and the computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky! A non-exhaustive illustration:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

L-smooth Accelerated GD Sublinear (1/k2) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e−k), Quadratic One gradient, one linear system
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?Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

L-smooth Accelerated GD Sublinear (1/k2) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e−k), Quadratic One gradient, one linear system

Accelerated gradient descent:

xk+1 = yk − α∇f(yk)

yk+1 = xk+1 + αk+1(xk+1 − xk).

for some proper choice of α and αk+1.
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?Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

L-smooth Accelerated GD Sublinear (1/k2) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Linear (e−k), Quadratic One gradient, one linear system

Main computations of the Quasi-Newton method is given by

pk = −B−1
k
∇f(xk) ,

where B−1
k

is updated at each iteration by adding a rank-2 matrix.
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?Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

L-smooth Accelerated GD Sublinear (1/k2) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e−k), Quadratic One gradient, one linear system

The main computation of the Newton method requires the solution of the linear system

∇2f(xk)pk = −∇f(xk) .
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?Randomized Kaczmarz algorithm

Problem
Given a full-column-rank matrix A ∈ Rn×p and b ∈ Rn, solve the linear system

Ax = b.

Notations: b := (b1, . . . , bn)T and aTj is the j-th row of A.

Randomized Kaczmarz algorithm (RKA)

1. Choose x0 ∈ Rp .
2. For k = 0, 1, . . . perform:
2a. Pick jk ∈ {1, · · · , n} randomly with Pr(jk = i) = ‖ai‖22/‖A‖2F
2b. xk+1 = xk −

(
〈ajk

,xk〉 − bjk

)
ajk

/‖ajk
‖22.

Linear convergence [26]
Let x? be the solution of Ax = b and κ = ‖A‖F ‖A−1‖. Then

E‖xk − x?‖22 ≤ (1− κ−2)k‖x0 − x∗‖22

• RKA can be seen as a particular case of SGD [18].
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