
Mathematics of Data: From Theory to Computation

Prof. Volkan Cevher
volkan.cevher@epfl.ch

Lecture 3: Optimality of Convergence rates. Accelerated/Stochastic Gradient Descent
Laboratory for Information and Inference Systems (LIONS)

École Polytechnique Fédérale de Lausanne (EPFL)

EE-556 (Fall 2021)

License Information for Mathematics of Data Slides

I This work is released under a Creative Commons License with the following terms:
I Attribution

I The licensor permits others to copy, distribute, display, and perform the work. In return, licensees must give the
original authors credit.

I Non-Commercial
I The licensor permits others to copy, distribute, display, and perform the work. In return, licensees may not use the

work for commercial purposes – unless they get the licensor’s permission.
I Share Alike

I The licensor permits others to distribute derivative works only under a license identical to the one that governs the
licensor’s work.

I Full Text of the License

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 2/ 85

http://creativecommons.org/licenses/by-nc-sa/1.0/
http://creativecommons.org/licenses/by-nc-sa/1.0/legalcode

Recall: Gradient descent

Problem (Unconstrained convex problem)
Consider the following convex minimization problem:

f? = min
x∈Rp

f(x)

I f is a convex function that is
I proper : ∀x ∈ Rp, −∞ < f(x) and there exists x ∈ Rp such that f(x) < +∞.
I closed : The epigraph epif = {(x, t) ∈ Rp+1, f(x) ≤ t} is closed.
I smooth : f is differentiable and its gradient ∇f is L-Lipschitz.

I The solution set S? := {x? ∈ dom (f) : f(x?) = f?} is nonempty.

Gradient descent (GD)
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f(xk)

where αk is a step-size to be chosen so that xk converges to x?.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 3/ 85

Convergence rate of gradient descent

Theorem
Let f be a twice-differentiable convex function, if

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
2L
k + 4

‖x0 − x?‖22

f is L-smooth and µ-strongly convex, α =
2

L+ µ
: ‖xk − x?‖2 ≤

(
L− µ
L+ µ

)k
‖x0 − x?‖2

f is L-smooth and µ-strongly convex, α =
1
L

: ‖xk − x?‖2 ≤
(
L− µ
L+ µ

) k
2
‖x0 − x?‖2

Note that L−µ
L+µ = κ−1

κ+1 , where κ := L
µ

is the condition number of ∇2f .

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 4/ 85

Information theoretic lower bounds [20]
What is the best achievable rate for a first-order method?

f ∈ F∞L : ∞-differentiable and L-smooth
It is possible to construct a function in F∞L , for which any first order method must satisfy

f(xk)− f(x?) ≥
3L

32(k + 1)2 ‖x
0 − x?‖22 for all k ≤ (p− 1)/2

f ∈ F∞L,µ: ∞-differentiable, L-smooth and µ-strongly convex
It is possible to construct a function in F∞L,µ, for which any first order method must satisfy

‖xk − x?‖2 ≥
(√

L− √µ
√
L+ √µ

)k
‖x0 − x?‖2

Gradient descent is O(1/k) for F∞L and it is slower for F∞L,µ, hence it does not
achieve the lower bounds!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 85

Accelerated gradient descent algorithm

Problem
Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]
Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth
(AGD-L)

1. Set x0 = y0 ∈ dom (f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L
∇f(yk)

tk+1 = (1 +
√

4t2
k

+ 1)/2
yk+1 = xk+1 + (tk−1)

tk+1
(xk+1 − xk)

Accelerated Gradient algorithm for L-smooth
and µ-strongly convex (AGD-µL)

1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L
∇f(yk)

yk+1 = xk+1 + α(xk+1 − xk)
where α =

√
L−√µ√
L+√µ

.

Remark: ◦ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 85

Accelerated gradient descent algorithm

Problem
Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]
Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth
(AGD-L)

1. Set x0 = y0 ∈ dom (f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L
∇f(yk)

tk+1 = (1 +
√

4t2
k

+ 1)/2
yk+1 = xk+1 + (tk−1)

tk+1
(xk+1 − xk)

Accelerated Gradient algorithm for L-smooth
and µ-strongly convex (AGD-µL)

1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L
∇f(yk)

yk+1 = xk+1 + α(xk+1 − xk)
where α =

√
L−√µ√
L+√µ

.

Remark: ◦ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 85

Accelerated gradient descent algorithm

Problem
Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]
Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth
(AGD-L)

1. Set x0 = y0 ∈ dom (f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L
∇f(yk)

tk+1 = (1 +
√

4t2
k

+ 1)/2
yk+1 = xk+1 + (tk−1)

tk+1
(xk+1 − xk)

Accelerated Gradient algorithm for L-smooth
and µ-strongly convex (AGD-µL)

1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L
∇f(yk)

yk+1 = xk+1 + α(xk+1 − xk)
where α =

√
L−√µ√
L+√µ

.

Remark: ◦ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 85

Accelerated gradient descent algorithm

Problem
Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]
Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth
(AGD-L)

1. Set x0 = y0 ∈ dom (f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L
∇f(yk)

tk+1 = (1 +
√

4t2
k

+ 1)/2
yk+1 = xk+1 + (tk−1)

tk+1
(xk+1 − xk)

Accelerated Gradient algorithm for L-smooth
and µ-strongly convex (AGD-µL)

1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L
∇f(yk)

yk+1 = xk+1 + α(xk+1 − xk)
where α =

√
L−√µ√
L+√µ

.

Remark: ◦ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 85

Accelerated gradient descent algorithm

Problem
Is it possible to design first-order methods with convergence rates matching the theoretical lower bounds?

Solution [Nesterov’s accelerated scheme]
Accelerated Gradient Descent (AGD) methods achieve optimal convergence rates.

Accelerated Gradient algorithm for L-smooth
(AGD-L)

1. Set x0 = y0 ∈ dom (f) and t0 := 1.
2. For k = 0, 1, . . ., iterate

xk+1 = yk − 1
L
∇f(yk)

tk+1 = (1 +
√

4t2
k

+ 1)/2
yk+1 = xk+1 + (tk−1)

tk+1
(xk+1 − xk)

Accelerated Gradient algorithm for L-smooth
and µ-strongly convex (AGD-µL)

1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − 1
L
∇f(yk)

yk+1 = xk+1 + α(xk+1 − xk)
where α =

√
L−√µ√
L+√µ

.

Remark: ◦ AGD is not monotone, but the cost-per-iteration is essentially the same as GD.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 6/ 85

Global convergence of AGD [20]

Theorem (f is convex with Lipschitz gradient)
If f is L-smooth or L-smooth and µ-strongly convex, the sequence {xk}k≥0 generated by AGD-L satisfies

f(xk)− f? ≤
4L

(k + 2)2 ‖x
0 − x?‖22, ∀k ≥ 0. (1)

AGD-L is optimal for L-smooth but NOT for L-smooth and µ-strongly convex!

Theorem (f is strongly convex with Lipschitz gradient)
If f is L-smooth and µ-strongly convex, the sequence {xk}k≥0 generated by AGD-µL satisfies

f(xk)− f? ≤ L
(

1−
√

µ

L

)k
‖x0 − x?‖22, ∀k ≥ 0 (2)

‖xk − x?‖2 ≤

√
2L
µ

(
1−

√
µ

L

) k
2
‖x0 − x?‖2, ∀k ≥ 0. (3)

Observations: ◦ AGD-L’s iterates are not guaranteed to converge.
◦ AGD-L does not have a linear convergence rate for L-smooth and µ-strongly convex.
◦ AGD-µL does, but needs to know µ.
◦ AGD achieves the iteration lowerbound within a constant!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 85

Global convergence of AGD [20]

Theorem (f is convex with Lipschitz gradient)
If f is L-smooth or L-smooth and µ-strongly convex, the sequence {xk}k≥0 generated by AGD-L satisfies

f(xk)− f? ≤
4L

(k + 2)2 ‖x
0 − x?‖22, ∀k ≥ 0. (1)

AGD-L is optimal for L-smooth but NOT for L-smooth and µ-strongly convex!

Theorem (f is strongly convex with Lipschitz gradient)
If f is L-smooth and µ-strongly convex, the sequence {xk}k≥0 generated by AGD-µL satisfies

f(xk)− f? ≤ L
(

1−
√

µ

L

)k
‖x0 − x?‖22, ∀k ≥ 0 (2)

‖xk − x?‖2 ≤

√
2L
µ

(
1−

√
µ

L

) k
2
‖x0 − x?‖2, ∀k ≥ 0. (3)

Observations: ◦ AGD-L’s iterates are not guaranteed to converge.
◦ AGD-L does not have a linear convergence rate for L-smooth and µ-strongly convex.
◦ AGD-µL does, but needs to know µ.
◦ AGD achieves the iteration lowerbound within a constant!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 85

Example: Ridge regression
Case 1: n = 500, p = 2000, ρ = 0

0 1000 2000 3000 4000 5000
10

−4

10
−2

10
0

10
2

10
4

10
6

10
8

Number of iterations

f
(x
)
−

f
⋆
in

lo
g-
sc
al
e

Theoretical bound AGD
GD
AGD

0 2 4 6 8 10 12 14
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Time (s)

f
(x
)
−

f
⋆
in

lo
g-
sc
al
e

GD
AGD

Case 2: n = 500, p = 2000, ρ = 0.01λp(ATA)

0 200 400 600 800 1000 1200 1400
10

−10

10
−5

10
0

10
5

Number of iterations

f
(x
)
−

f
⋆
in

lo
g-
sc
al
e

Theoretical bound AGD
Theoretical bound AGD-µL
GD
GD-µL
AGD
AGD-µL

0 0.5 1 1.5 2 2.5 3 3.5
10

−10

10
−5

10
0

10
5

Time (s)

f
(x
)
−

f
⋆
in

lo
g-
sc
al
e

GD
GD-µL
AGD
AGD-µL

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 8/ 85

Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates
Gradient descent:

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
2L
k + 4

‖x0 − x?‖22.

Accelerated Gradient Descent:

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
4L

(k + 2)2 ‖x
0 − x?‖22, ∀k ≥ 0.

Observations: ◦ We require αt to be a function of L.

◦ It may not be possible to know exactly the Lipschitz constant.

◦ Adaptation to local geometry → may lead to larger steps.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 85

Gradient descent vs. Accelerated gradient descent

Assumptions, step sizes and convergence rates
Gradient descent:

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
2L
k + 4

‖x0 − x?‖22.

Accelerated Gradient Descent:

f is L-smooth, α =
1
L

: f(xk)− f(x?) ≤
4L

(k + 2)2 ‖x
0 − x?‖22, ∀k ≥ 0.

Observations: ◦ We require αt to be a function of L.

◦ It may not be possible to know exactly the Lipschitz constant.

◦ Adaptation to local geometry → may lead to larger steps.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 9/ 85

Adaptive first-order methods and ?Newton method

Adaptive methods
Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.

?Newton method
Higher-order information, e.g., Hessian, gives a finer characterization of local behavior.

Newton method achieves asymptotically better local rates, but for additional cost.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 85

Adaptive first-order methods and ?Newton method

Adaptive methods
Adaptive methods converge with fast rates without knowing the smoothness constant.

They do so by making use of the information from gradients and their norms.

?Newton method
Higher-order information, e.g., Hessian, gives a finer characterization of local behavior.

Newton method achieves asymptotically better local rates, but for additional cost.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 10/ 85

How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 11/ 85

How can we better adapt to the local geometry?

�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
Lk

2
kx � xkk2

2

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 12/ 85

How can we better adapt to the local geometry?

�f(xk)

x1

x2
f(x)  f(xk) +rf(xk)T (x� x

k) +
L

2
kx� x

kk22

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

H�1
k

L is a global worst-case constant

krf(x)�rf(y)k  Lky � xk

f(x)

x

k+1 = argmin
x

⇢
f(xk) + hrf(xk),x� x

ki+ L

2
kx� x

kk22
�

f(xk)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 13/ 85

Variable metric gradient descent algorithm

Variable metric gradient descent algorithm
1. Choose x0 ∈ Rp as a starting point and H0 � 0.
2. For k = 0, 1, · · · , perform:{

dk := −H−1
k
∇f(xk),

xk+1 := xk + αkdk,

where αk ∈ (0, 1] is a given step size.
3. Update Hk+1 � 0 if necessary.

Common choices of the variable metric Hk

I Hk := λkI =⇒ gradient descent method.
I Hk := Dk (a positive diagonal matrix) =⇒ adaptive gradient methods.
I Hk := ∇2f(xk) =⇒ Newton method.
I Hk ≈ ∇2f(xk) =⇒ quasi-Newton method.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 85

Variable metric gradient descent algorithm

Variable metric gradient descent algorithm
1. Choose x0 ∈ Rp as a starting point and H0 � 0.
2. For k = 0, 1, · · · , perform:{

dk := −H−1
k
∇f(xk),

xk+1 := xk + αkdk,

where αk ∈ (0, 1] is a given step size.
3. Update Hk+1 � 0 if necessary.

Common choices of the variable metric Hk

I Hk := λkI =⇒ gradient descent method.
I Hk := Dk (a positive diagonal matrix) =⇒ adaptive gradient methods.
I Hk := ∇2f(xk) =⇒ Newton method.
I Hk ≈ ∇2f(xk) =⇒ quasi-Newton method.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 14/ 85

Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting Hk as a function of past gradient information.

◦ Roughly speaking, Hk = function(∇f(x1),∇f(x2), · · · ,∇f(xk))

◦ Some well-known examples:

AdaGrad [9]
Hk =

√∑k

t=1(∇f(xt)>∇f(xt))

?RmsProp [27]
Hk =

√
βHk−1 + (1− β)diag(∇f(xk))2

?ADAM [15]
Ĥk = βĤk−1 + (1− β)diag(∇f(xk))2

Hk =
√

Ĥk/(1− βk)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 85

Adaptive gradient methods

Intuition
Adaptive gradient methods adapt locally by setting Hk as a function of past gradient information.

◦ Roughly speaking, Hk = function(∇f(x1),∇f(x2), · · · ,∇f(xk))

◦ Some well-known examples:

AdaGrad [9]
Hk =

√∑k

t=1(∇f(xt)>∇f(xt))

?RmsProp [27]
Hk =

√
βHk−1 + (1− β)diag(∇f(xk))2

?ADAM [15]
Ĥk = βĤk−1 + (1− β)diag(∇f(xk))2

Hk =
√

Ĥk/(1− βk)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 15/ 85

AdaGrad - Adaptive gradient method with Hk = λkI
◦ If Hk = λkI, it becomes gradient descent method with adaptive step-size αk

λk
.

How step-size adapts?
If gradient ‖∇f(xk)‖ is large/small → AdaGrad adjusts step-size αk/λk smaller/larger

Adaptive gradient descent (AdaGrad with Hk = λkI) [16]
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{

Qk = Qk−1 + ‖∇f(xk)‖2

Hk =
√
QkI

xk+1 = xk − αkH−1
k
∇f(xk)

Adaptation through first-order information

I When Hk = λkI, AdaGrad estimates local geometry through gradient norms.
I Akin to estimating a local quadratic upper bound (majorization / minimization) using gradient history.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 85

AdaGrad - Adaptive gradient method with Hk = λkI
◦ If Hk = λkI, it becomes gradient descent method with adaptive step-size αk

λk
.

How step-size adapts?
If gradient ‖∇f(xk)‖ is large/small → AdaGrad adjusts step-size αk/λk smaller/larger

Adaptive gradient descent (AdaGrad with Hk = λkI) [16]
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{

Qk = Qk−1 + ‖∇f(xk)‖2

Hk =
√
QkI

xk+1 = xk − αkH−1
k
∇f(xk)

Adaptation through first-order information

I When Hk = λkI, AdaGrad estimates local geometry through gradient norms.
I Akin to estimating a local quadratic upper bound (majorization / minimization) using gradient history.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 16/ 85

AdaGrad - Adaptive gradient method with Hk = Dk

Adaptation strategy with a positive diagonal matrix Dk

Adaptive step-size + coordinate-wise extension = adaptive step-size for each coordinate

�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
1

2
kx � xkk2

D�1
k

<latexit sha1_base64="RcBFv+9WMTiD8KYpeDUFT84TVOE=">AAACfHicdVFdb9MwFHUyPkYZ0I1HHrhamdSqapVkbG3eJuCBx01aP6SmjRzX2aw6TrAdRGXyK/hnvPFTeEE4W5HKYFeydHzOPfL1uUnBmdKe98Nxdx48fPR490nj6d6z5y+a+wdjlZeS0BHJeS6nCVaUM0FHmmlOp4WkOEs4nSSr97U++UylYrm41OuCzjN8JVjKCNaWipvf0naUYX2dpOZL1YGI00+wTS1WHehCJHDC8V1hcbl1hx7840olJsavTFBB9BXu7bXiIojNh3i1MD2/quJmy+uHw5OT4yF4fc8Lg3BgQRiG/sAH3zJ1tdCmzuPm92iZkzKjQhOOlZr5XqHnBkvNCKdVIyoVLTBZ4Ss6s1DgjKq5uQmvgiPLLCHNpT1Cww277TA4U2qdJbaznlnd1Wryf9qs1OlwbpgoSk0FuX0oLTnoHOpNwJJJSjRfW4CJZHZWINfYRqbtvho2hD8/hfvBOOj7x/3g4m3r7N0mjl30Ch2iNvLRAJ2hj+gcjRBBP53XTtvpOL/cN27X7d22us7G8xL9Ve7pbzX3wOM=</latexit>

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 17/ 85

AdaGrad - Adaptive gradient method with Hk = Dk

◦ Suppose Hk is diagonal,

Hk :=

λk,1 0
. . .

0 λk,d

 ,
◦ For each coordinate i, we have different step-size αk

λk,i
is the step-size.

Adaptive gradient descent(AdaGrad with Hk = Dk)
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

Adaptation across each coordinate

I When Hk = Dk, we adapt across each coordinate individually.
I Essentially, we have a finer treatment of the function we want to optimize.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 85

AdaGrad - Adaptive gradient method with Hk = Dk

◦ Suppose Hk is diagonal,

Hk :=

λk,1 0
. . .

0 λk,d

 ,
◦ For each coordinate i, we have different step-size αk

λk,i
is the step-size.

Adaptive gradient descent(AdaGrad with Hk = Dk)
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

Adaptation across each coordinate

I When Hk = Dk, we adapt across each coordinate individually.
I Essentially, we have a finer treatment of the function we want to optimize.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 18/ 85

Convergence rate for AdaGrad

Original convergence for a different function class
Consider a proper, convex function f such that it is G-Lipschitz continuous (NOT L-smooth). Let
D = max

k
‖xk − x?‖2 and αk = D√

2
. Define x̄k = (

∑k

i=1 xi)/k. Then,

f(x̄k)− f(x?) ≤
1
k

√√√√2D2
k∑
i=1

‖∇f(xi)‖22 ≤
√

2DG
√
k

A more familiar convergence result [16]
Assume f is L-smooth, D = max

t
‖xk − x?‖2 and αk = D√

2
. Define x̄k = (

∑k

i=1 xi)/k. Then,

f(x̄k)− f(x?) ≤
1
k

√√√√2D2
k∑
i=1

‖∇f(xi)‖22 ≤
4D2L

k

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 19/ 85

AcceleGrad - Adaptive gradient + Accelerated gradient [17]

Motivation behind AcceleGrad
Is it possible to achieve acceleration for when f is L-smooth, without knowing the Lipschitz constant?

◦ The answer is yes! See advanced material (AcceleGrad) at the end.

◦ A rough comparison of the accelerated methods:

Accelerated Gradient algorithm

1. Choose x0 = y0 ∈ dom (f)
2. For k = 0, 1, . . ., iterate{

xk+1 = yk − α∇f(yk)
yk+1 = xk+1 + γk+1(xk+1 − xk)

for some proper choice of α and γk+1.

AcceleGrad (Accelerated Adaptive Gradient Method)

1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk
xk+1 = τkzk + (1− τk)yk
zk+1 = zk − αkηk∇f(xk)
yk+1 = xk+1 − ηk∇f(xk)

for αk = (k + 1)/4 and
ηk = 2D√

G2+
∑k

i=0
(αk)2‖∇f(xk)‖2

.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 20/ 85

Performance of optimization algorithms

Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

The speed of numerical solutions depends on two factors:
I Convergence rate determines the number of iterations needed to obtain an ε-optimal solution.
I Per-iteration time depends on the information oracles, implementation, and the computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 85

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

AdaGrad Sublinear (1/k) One gradient
L-smooth Accelerated GD Sublinear (1/k2) One gradient

AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Newton method Linear (e−k), Quadratic One gradient, one linear system

Gradient descent:

xk+1 = xk − α∇f(xk),

where the stepsize is chosen appropriately, α ∈ (0, 2
L

)

AdaGrad:

xk+1 = xk − αk∇f(xk),

where scalar version of the step size is
αk = D√∑k

i=1
‖∇f(xi)‖2

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 85

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

AdaGrad Sublinear (1/k) One gradient
L-smooth Accelerated GD Sublinear (1/k2) One gradient

AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Newton method Linear (e−k), Quadratic One gradient, one linear system

Accelerated gradient descent:

xk+1 = yk − α∇f(yk)

yk+1 = xk+1 + γk+1(xk+1 − xk).

for some proper choice of α and γk+1.

AcceleGrad:

xk+1 = τkzk + (1− τk)yk

zk+1 = zk − αkηk∇f(xk)

yk+1 = xk+1 − ηk∇f(xk).

for αk = (k + 1)/4, τk = 1/αk and
ηk = 2D√

G2+
∑k

i=0
(αk)2‖∇f(xk)‖2

.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 23/ 85

Performance of optimization algorithms (convex)

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

AdaGrad Sublinear (1/k) One gradient
L-smooth Accelerated GD Sublinear (1/k2) One gradient

AcceleGrad Sublinear (1/k2) One gradient
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Newton method Linear (e−k), Quadratic One gradient, one linear system

The main computation of the Newton method requires the solution of the linear system

∇2f(xk)pk = −∇f(xk) .

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 24/ 85

The gradient method for non-convex optimization

Remarks: ◦ Gradient descent does not match lower bounds in convex setting.

◦ How about non-convex problems?

Lower bounds for non-convex problems [5]
Assume f is L-gradient Lipschitz and non-convex. Then any first-order method must satisfy,

‖∇f(xk)‖2 = Ω
(1
k

)

Observations: ◦ Gradient descent is optimal for non-convex problems, up to some constant factor!

◦ Acceleration for non-convex, L-Lipschitz gradient functions is not as meaningful.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 25/ 85

Recall: Gradient descent

Problem (Unconstrained optimization problem)
Consider the following minimization problem:

f? = min
x∈Rp

f(x)

f(x) is proper and closed.

Gradient descent
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f(xk)

where αk is a step-size to be chosen so that xk converges to x?.

f is L-smooth & convex f is L-gradient Lipschitz & non-convex
GD O(1/k) (fast) O(1/k) (optimal)
AGD O(1/k2) (optimal) O(1/k) (optimal) [13]

Why should we study anything else?

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 85

Recall: Gradient descent

Problem (Unconstrained optimization problem)
Consider the following minimization problem:

f? = min
x∈Rp

f(x)

f(x) is proper and closed.

Gradient descent
Choose a starting point x0 and iterate

xk+1 = xk − αk∇f(xk)

where αk is a step-size to be chosen so that xk converges to x?.

f is L-smooth & convex f is L-gradient Lipschitz & non-convex
GD O(1/k) (fast) O(1/k) (optimal)
AGD O(1/k2) (optimal) O(1/k) (optimal) [13]

Why should we study anything else?

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 26/ 85

Statistical learning with streaming data
◦ Recall that statistical learning seeks to find a h? ∈ H that minimizes the expected risk,

h? ∈ arg min
h∈H

{
R(h) := E(a,b) [L(h(a), b)]

}
.

Abstract gradient method

hk+1 = hk − αk∇R(hk) = hk − αkE(a,b)[∇L(hk(a), b)].

This can not be implemented in practice as the distribution of (a, b) is unknown.

◦ In practice, data can arrive in a streaming way.

A parametric example: Markowitz portfolio optimization

x? := min
x∈X

{
E
[
|b− 〈x,a〉|2

]}
I hx(·) = 〈x, ·〉
I b ∈ R is the desired return & a ∈ Rp are the stock returns
I X is intersection of the standard simplex and the constraint: 〈x,E[a]〉 ≥ ρ.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 85

Statistical learning with streaming data
◦ Recall that statistical learning seeks to find a h? ∈ H that minimizes the expected risk,

h? ∈ arg min
h∈H

{
R(h) := E(a,b) [L(h(a), b)]

}
.

Abstract gradient method

hk+1 = hk − αk∇R(hk) = hk − αkE(a,b)[∇L(hk(a), b)].

This can not be implemented in practice as the distribution of (a, b) is unknown.

◦ In practice, data can arrive in a streaming way.

A parametric example: Markowitz portfolio optimization

x? := min
x∈X

{
E
[
|b− 〈x,a〉|2

]}
I hx(·) = 〈x, ·〉
I b ∈ R is the desired return & a ∈ Rp are the stock returns
I X is intersection of the standard simplex and the constraint: 〈x,E[a]〉 ≥ ρ.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 27/ 85

Stochastic programming

Problem (Mathematical formulation)
Consider the following convex minimization problem:

f? = min
x∈Rp

{
f(x) := E[f(x, θ)]

}
I θ is a random vector whose probability distribution is supported on set Θ.
I f(x) := E[f(x, θ)] is proper, closed, and convex.
I The solution set S? := {x? ∈ dom (f) : f(x?) = f?} is nonempty.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 28/ 85

Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x0 ∈ Rp and (αk)k∈N ∈]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

◦ G(xk, θk) is an unbiased estimate of the full gradient:

E[G(xk, θk)] = ∇f(xk).

Remarks: ◦ The cost of computing G(xk, θk) is n times cheaper than that of ∇f(xk).

◦ As G(xk, θk) is an unbiased estimate of the full gradient, SGD would perform well.

◦ We assume {θk} are jointly independent.

◦ SGD is not a monotonic descent method.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 85

Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD)

1. Choose x0 ∈ Rp and (αk)k∈N ∈]0,+∞[N.
2. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

◦ G(xk, θk) is an unbiased estimate of the full gradient:

E[G(xk, θk)] = ∇f(xk).

Remarks: ◦ The cost of computing G(xk, θk) is n times cheaper than that of ∇f(xk).

◦ As G(xk, θk) is an unbiased estimate of the full gradient, SGD would perform well.

◦ We assume {θk} are jointly independent.

◦ SGD is not a monotonic descent method.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 29/ 85

Example: Convex optimization with finite sums

Convex optimization with finite sums
The problem

arg min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)

}
,

can be rewritten as

arg min
x∈Rp

{f(x) := Ei[fi(x)]} , i is uniformly distributed over {1, 2, · · · , n}.

A stochastic gradient descent (SGD) variant for finite sums

xk+1 = xk − αk∇fi(xk) i is uniformly distributed over{1, ..., n}

Remarks: ◦ Note: Ei[∇fi(xk)] =
∑n

j=1∇fj(x
k)/n = ∇f(xk).

◦ The computational cost of SGD per iteration is p.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 30/ 85

Synthetic least-squares problem

min
x

{
f(x) :=

1
2n
‖Ax− b‖22 : x ∈ Rp

}
Setup

I A := randn(n, p) - standard Gaussian N (0, I), with n = 104, p = 102.
I x\ is 50 sparse with zero mean Gaussian i.i.d. entries, normalized to ‖x\‖2 = 1.
I b := Ax\ + w, where w is Gaussian white noise with variance 1.

0 0.5 1 1.5 2 2.5 3 3.5 4

epoch

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Gradient descent

Stochastic gradient

0 0.5 1 1.5 2 2.5 3 3.5 4

epoch

10
-3

10
-2

10
-1

10
0

10
1

10
2

◦ 1 epoch = 1 pass over the full gradient
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 31/ 85

Convergence of SGD when the objective is not strongly convex

Theorem (decaying step-size [25])
Assume
I E[‖xk − x?‖2] ≤ D2 for all k,
I E[‖G(xk, θk)‖2] ≤M2 (bounded gradient),
I αk = α0/

√
k.

Then

E[f(xk)− f(x?)] ≤
(
D2

α0
+ α0M

2
)

2 + log k
√
k

.

Observation: ◦ O(1/
√
k) rate is optimal for SGD if we do not consider the strong convexity.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 85

Convergence of SGD for strongly convex problems I

Theorem (strongly convex objective, fixed step-size [4])
Assume
I f is µ-strongly convex and L-smooth,
I E[‖G(xk, θk)‖2]2 ≤ σ2 +M‖∇f(xk)‖22 (bounded variance),
I αk = α ≤ 1

LM
.

Then
E[f(xk)− f(x?)] ≤

αLσ2

2µ
+ (1− µα)k−1

(
f(x1)− f?

)
.

Observations: ◦ Converge fast (linearly) to a neighborhood around x?

◦ Zero variance (σ = 0) =⇒ linear convergence

◦ Smaller step-sizes α =⇒ converge to a better point, but with a slower rate

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 33/ 85

Convergence of SGD for strongly convex problems II

Theorem (strongly convex objective, decaying step-size [4])
Assume
I f is µ-strongly convex and L-smooth,
I E[‖G(xk, θk)‖2]2 ≤ σ2 +M‖∇f(xk)‖22 (bounded variance),
I αk = c

k0+k with some appropriate constants c and k0.

Then
E[‖xk − x?‖2] ≤

C

k + 1
,

where C is a constant independent of k.

Observations: ◦ Using the smooth property,

E[f(xk)− f(x?)] ≤ LE[‖xk − x?‖2] ≤
C

k + 1
.

◦ The rate is optimal if σ2 > 0 with the assumption of strongly-convexity.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 34/ 85

Example: SGD with different step sizes

2 4 6 8 10

epoch

10
-3

10
-2

10
-1

10
0

0
 = 1/(3)

0
 = 1/(2)

0
 = 1/

0
 = 2/

2 4 6 8 10

epoch

10
-3

10
-2

10
-1

10
0

Setup
◦ Synthetic least-squares problem as before

◦ αk = α0/(k + k0).

Observation: ◦ α0 = 1/µ is the best choice.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 85

Example: SGD with different step sizes

10
-2

10
-1

10
0

10
1

epoch

10
-3

10
-2

10
-1

10
0

0
 = 1/(3)

0
 = 1/(2)

0
 = 1/

0
 = 2/

10
-2

10
-1

10
0

10
1

epoch

10
-3

10
-2

10
-1

10
0

Setup
◦ Synthetic least-squares problem as before

◦ αk = α0/(k + k0).

Observation: ◦ α0 = 1/µ is the best choice.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 35/ 85

Comparison with GD

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ f : µ-strongly convex with L-Lipschitz smooth.

rate iteration complexity cost per iteration total cost
GD ρk log(1/ε) n n log(1/ε)
SGD 1/k 1/ε 1 1/ε

Remark: ◦ SGD is more favorable when n is large — large-scale optimization problems

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 36/ 85

Motivation for SGD with Averaging

◦ SGD iterates tend to oscillate around global minimizers

◦ Averaging iterates can reduce the oscillation effect

◦ Two types of averaging:

x̄k =
1
k

k∑
j=1

αjxj (vanilla averaging)

x̄k =

∑k

j=1 αjx
j∑k

j=1 αj
(weighted averaging)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 37/ 85

Convergence for SGD-A I: non-strongly convex case
Stochastic gradient method with averaging (SGD-A)

1. Choose x0 ∈ Rp and (αk)k∈N ∈]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

2b. x̄k = (
∑k

j=0 αj)
−1
∑k

j=0 αjx
j .

Theorem (Convergence of SGD-A [19])
Let D = ‖x0 − x?‖ and E[‖G(xk, θk)‖2] ≤M2.
Then,

E[f(x̄k+1)− f(x?)] ≤
D2 +M2

∑k

j=0 α
2
j

2
∑k

j=0 αj
.

In addition, choosing αk = D/(M
√
k + 1), we get,

E[f(x̄k)− f(x?)] ≤
MD(2 + log k)

√
k

.

Observation: ◦ Same convergence rate with vanilla SGD.
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 38/ 85

Convergence for SGD-A II: strongly convex case
Stochastic gradient method with averaging (SGD-A)

1. Choose x0 ∈ Rp and (αk)k∈N ∈]0,+∞[N.
2a. For k = 0, 1, . . . perform:

xk+1 = xk − αkG(xk, θk).

2b. x̄k = 1
k

∑k

j=1 xj .

Theorem (Convergence of SGD-A [24])
Assume
I f is µ-strongly convex,
I E[‖G(xk, θk)‖2] ≤M2,
I αk = α0/k for some α0 ≥ 1/µ.

Then
E[f(x̄k)− f(x?)] ≤

α0M2(1 + log k)
2k

.

Observation: ◦ Same convergence rate with vanilla SGD.
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 39/ 85

Example: SGD-A method with different step sizes

min
x

{
f(x) :=

1
2n
‖Ax− b‖22 : x ∈ Rp

}

1 2 3 4 5 6 7 8 9 10

epoch

10
-3

10
-2

10
-1

10
0

0
 = 1/(3)

0
 = 1/(2)

0
 = 1/

0
 = 2/

1 2 3 4 5 6 7 8 9 10

epoch

10
-3

10
-2

10
-1

10
0

Setup
◦ Synthetic least-squares problem as before

◦ αk = α0/(k + k0).

Observations: ◦ SGD-A is more stable than SGD.

◦ α0 = 2/µ is the best choice.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 40/ 85

Example: SGD-A method with different step sizes

min
x

{
f(x) :=

1
2n
‖Ax− b‖22 : x ∈ Rp

}

10
-2

10
-1

10
0

10
1

epoch

10
-3

10
-2

10
-1

10
0

0
 = 1/(3)

0
 = 1/(2)

0
 = 1/

0
 = 2/

10
-2

10
-1

10
0

10
1

epoch

10
-3

10
-2

10
-1

10
0

Setup
◦ Synthetic least-squares problem as before

◦ αk = α0/(k + k0).

Observations: ◦ SGD-A is more stable than SGD.

◦ α0 = 2/µ is the best choice.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 40/ 85

Least mean squares algorithm

Least-square regression problem
Solve

x? ∈ arg min
x∈Rp

{
f(x) :=

1
2
E(a,b)(〈a,x〉 − b)2

}
,

given i.i.d. samples {(aj , bj)}nj=1 (particularly in a streaming way).

Stochastic gradient method with averaging

1. Choose x0 ∈ Rp and α > 0.
2a. For k = 1, . . . , n perform:

xk = xk−1 − α
(
〈ak,xk−1〉 − bk

)
ak.

2b. x̄k = 1
k+1

∑k

j=0 xj .

O(1/n) convergence rate, without strongly convexity [3]
Let ‖aj‖2 ≤ R and |〈aj ,x?〉 − bj | ≤ σ a.s.. Pick α = 1/(4R2). Then

Ef(x̄n−1)− f∗ ≤
2
n

(
σ
√
p+R‖x0 − x?‖2

)2
.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 41/ 85

Popular SGD Variants

◦ Mini-batch SGD: For each iteration,

xk+1 = xk − αk
1
b

∑
θ∈Γ

G(xk, θ).

I αk: step-size
I b : mini-batch size
I Γ : a set of random variables θ of size b

◦ Accelerated SGD (Nesterov accelerated technique)

◦ SGD with Momentum

◦ Adaptive stochastic methods: AdaGrad...

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 42/ 85

SGD - Non-convex stochastic optimization

◦ SGD is not as well-studied for non-convex problems as for convex problems.

◦ There is a gap between SGD’s practical performance and theoretical understanding.

◦ Recall SGD update rule:

xk+1 = xk − αkG(xk, θ)

Theorem (A well-known result for SGD & Non-convex problems [12])
Let f be a non-convex and L-smooth function. Set αk = min

{
1
L
, C

σ
√
T

}
, ∀k = 1, ..., T , where σ2 is the

variance of the gradients and C > 0 is constant. Then,

E[‖∇f(xR)‖2] = O

(
σ
√
T

)
,

where P(R = k) = 2αk−Lα2
k∑T

k=1
(2αk−Lα2

k
)
.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 43/ 85

Lower bounds in non-convex optimization

Assumptions on f Additional assumptions Sample complexity

L-smooth Deterministic Oracle
f(x0)− infx f(x) ≤ ∆ Ω(∆Lε−2)[6]

L1-smooth
L2-Lipschitz Hessian

Deterministic Oracle
f(x0)− infx f(x) ≤ ∆ Ω(∆L3/7

1 L
2/7
2 ε−12/7)[6]

L-smooth
E[G(x, θ)] = ∇f(x)

E[‖G(x, θ)−∇f(x)‖2] ≤ σ2

f(x0)− infx f(x) ≤ ∆
Ω(∆Lσ2ε−4)[2]

G(x, θ) has averaged L-Lipschitz gradient
=⇒ L-smooth

E[G(x, θ)] = ∇f(x)
E[‖G(x, θ)−∇f(x)‖2] ≤ σ2

f(x0)− infx f(x) ≤ ∆
Ω(∆Lσε−3 + σ2ε−2)[2]

f(x) := 1
n

∑n

i=1
fi(x)

fi(x) has averaged L-Lipschitz gradient
=⇒ L-smooth

Access to ∇fi(x)
f(x0)− infx f(x) ≤ ∆

n ≤ O(ε−4)1
Ω(∆L

√
nε−2)[10]

◦ Measure of stationarity: ‖∇f(x)‖ ≤ ε or E[‖∇f(x)‖ ≤ ε

◦ Sample complexity: # of total oracle calls (deterministic or stochastic gradients)

◦ Averaged L-Lipschitz gradient: E
[
‖∇fi(x)−∇fi(y)‖2

]
≤ L2‖x− y‖2

◦ G(x, θ) denotes a stochastic gradient estimate for f at x with randomness governed by θ.

1We have n ≤ O(ε−4) in order to match the respective upper bound of O(n +
√
nε−2) achieved by [10]

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 44/ 85

Wrap up!

◦ The remaining slides in this lecture are advanced material.

◦ Lecture on Monday!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 45/ 85

?Enhancements

Two enhancements
1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?
We can use a line-search procedure for both GD and AGD when
I L is known but it is expensive to evaluate;
I The global constant L usually does not capture the local behavior of f or it is unknown.

Line-search
At each iteration, we try to find a constant Lk that satisfies:

f(xk+1) ≤ QLk
(xk+1,yk) := f(yk) + 〈∇f(yk),xk+1 − yk〉+

Lk

2
‖xk+1 − yk‖22.

Here: L0 > 0 is given (e.g., L0 := c
‖∇f(x1)−∇f(x0)‖2

‖x1−x0‖2
) for c ∈ (0, 1].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 46/ 85

?Enhancements

Two enhancements
1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?
We can use a line-search procedure for both GD and AGD when
I L is known but it is expensive to evaluate;
I The global constant L usually does not capture the local behavior of f or it is unknown.

Line-search
At each iteration, we try to find a constant Lk that satisfies:

f(xk+1) ≤ QLk
(xk+1,yk) := f(yk) + 〈∇f(yk),xk+1 − yk〉+

Lk

2
‖xk+1 − yk‖22.

Here: L0 > 0 is given (e.g., L0 := c
‖∇f(x1)−∇f(x0)‖2

‖x1−x0‖2
) for c ∈ (0, 1].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 46/ 85

?Enhancements

Two enhancements
1. Line-search for estimating L for both GD and AGD.
2. Restart strategies for AGD.

When do we need a line-search procedure?
We can use a line-search procedure for both GD and AGD when
I L is known but it is expensive to evaluate;
I The global constant L usually does not capture the local behavior of f or it is unknown.

Line-search
At each iteration, we try to find a constant Lk that satisfies:

f(xk+1) ≤ QLk
(xk+1,yk) := f(yk) + 〈∇f(yk),xk+1 − yk〉+

Lk

2
‖xk+1 − yk‖22.

Here: L0 > 0 is given (e.g., L0 := c
‖∇f(x1)−∇f(x0)‖2

‖x1−x0‖2
) for c ∈ (0, 1].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 46/ 85

?How can we better adapt to the local geometry?

�f(xk)

x1

x2 f(x)  f(xk) + rf(xk)T (x � xk) +
L

2
kx � xkk2

2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

L

2
kx � xkk2

2

�

f(xk)

QL(x,xk)

Global quadratic upper bound

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 47/ 85

?How can we better adapt to the local geometry?

�f(xk)

x1

x2

L is a global worst-case constant

krf(x) �rf(y)k  Lky � xk

f(x)

xk+1 = arg min
x

⇢
f(xk) + hrf(xk),x � xki +

Lk

2
kx � xkk2

2

�

f(xk)

QLk
(x,xk)

Local quadratic upper bound

applies only locally

f(x)  f(xk) + rf(xk)T (x � xk) +
Lk

2
kx � xkk2

2

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 48/ 85

?Enhancements

Why do we need a restart strategy?

I AGD-µL requires knowledge of µ and AGD-L does not have optimal convergence for strongly convex f .
I AGD is non-monotonic (i.e., f(xk+1) ≤ f(xk) is not always satisfied).
I AGD has a periodic behavior, where the momentum depends on the local condition number κ = L/µ.
I A restart strategy tries to reset this momentum whenever we observe high periodic behavior. We often use

function values but other strategies are possible.

Restart strategies

1. O’Donoghue - Candes’s strategy [22]: There are at least three options: Restart with fixed number of
iterations, restart based on objective values, and restart based on a gradient condition.

2. Giselsson-Boyd’s strategy [14]: Do not require tk = 1 and do not necessary require function evaluations.
3. Fercoq-Qu’s strategy [11]: Unconditional periodic restart for strongly convex functions. Do not require

the strong convexity parameter.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 49/ 85

?Example: Ridge regression
Case 1: n = 500, p = 2000, ρ = 0

0 1000 2000 3000 4000 5000
10

−10

10
−5

10
0

10
5

10
10

Number of iterations

f
(x
)
−

f
⋆
in

lo
g-
sc
al
e

GD
AGD
AGD-R
LS-GD
LS-AGD
LS-AGD-R

0 2 4 6 8 10 12
10

−10

10
−5

10
0

10
5

Time (s)

f
(x
)
−

f
⋆
in

lo
g-
sc
al
e

GD
AGD
AGD-R
LS-GD
LS-AGD
LS-AGD-R

Case 2: n = 500, p = 2000, ρ = 0.01λp(ATA)

0 200 400 600 800 1000 1200 1400
10

−10

10
−5

10
0

10
5

10
10

Number of iterations

f
(x
)
−

f
⋆
in

lo
g-
sc
al
e

GD
GD-µL
AGD
AGD-µL
AGD-R
LS-GD
LS-AGD
LS-AGD-R

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−10

10
−5

10
0

10
5

Time (s)

f
(x
)
−

f
⋆
in

lo
g-
sc
al
e

GD
GD-µL
AGD
AGD-µL
AGD-R
LS-GD
LS-AGD
LS-AGD-R

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 50/ 85

?AcceleGrad - Adaptive gradient + Accelerated gradient [17]

Motivation behind AcceleGrad
Is it possible to achieve acceleration when f is L-smooth, without knowing the Lipschitz constant?

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : x0 ∈ K, diameter D, weights {αk}k∈N, learning
rate {ηk}k∈N
1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk
xk+1 = τkzk + (1− τk)yk, define gk := ∇f(xk+1)
zk+1 = ΠK(zk − αkηkgk)
yk+1 = xk+1 − ηkgk

Output : yk ∝
∑k−1

i=0 αiy
i+1

where ΠK(y) = arg minx∈K 〈x− y,x− y〉 (projection onto K).

Remark: ◦ This is essentially the MD + GD scheme [1], with an adaptive step size!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 51/ 85

?AcceleGrad - Properties and convergence

Learning rate and weight computation
Assume that function f has uniformly bounded gradient norms ‖∇f(xk)‖2 ≤ G2, i.e., f is G-Lipschitz
continuous. AcceleGrad uses the following weights and learning rate:

αk =
k + 1

4
, ηk =

2D√
G2 +

∑k

τ=0 α
2
τ‖∇f(xτ+1)‖2

◦ Similar to RmsProp, AcceleGrad assignes greater weights to recent gradients.

Convergence rate of AcceleGrad
Assume that f is convex and L-smooth. Let K be a convex set with bounded diameter D, and assume x? ∈ K.
Define ȳk = (

∑k−1
i=0 αiy

i+1)/(
∑k−1

i=0 αi). Then,

f(yk)− min
x∈Rd

f(x) ≤ O
(
DG+ LD2 log(LD/G)

k2

)
If f is only convex and G-Lipschitz, then

f(yk)− min
x∈Rd

f(x) ≤ O
(
GD
√

log k/
√
k

)
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 52/ 85

?Example: Logistic regression

Problem (Logistic regression)
Given A ∈ {0, 1}n×p and b ∈ {−1,+1}n, solve:

f? := min
x,β

{
f(x) :=

1
n

n∑
j=1

log
(
1 + exp

(
−bj(aTj x + β)

))}
.

Real data
I Real data: a4a with A ∈ Rn×d, where n = 4781 data points, d = 122 features
I All methods are run for T = 10000 iterations

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 53/ 85

?RMSProp - Adaptive gradient method with Hk = Dk

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum → slow convergence at flat region.

AdaGrad with Hk = Dk

1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

RMSProp
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = βQk−1 + (1− β)diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

◦ RMSProp uses weighted averaging with constant β

◦ Recent gradients have greater importance

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 54/ 85

?RMSProp - Adaptive gradient method with Hk = Dk

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum → slow convergence at flat region.

AdaGrad with Hk = Dk

1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

RMSProp
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = βQk−1 + (1− β)diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

◦ RMSProp uses weighted averaging with constant β

◦ Recent gradients have greater importance

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 54/ 85

?RMSProp - Adaptive gradient method with Hk = Dk

What could be improved over AdaGrad?
1. Gradients have equal weights in step size.

2. Consider a steep function, flat around minimum → slow convergence at flat region.

AdaGrad with Hk = Dk

1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = Qk−1 + diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

RMSProp
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{ Qk = βQk−1 + (1− β)diag(∇f(xk))2

Hk =
√

Qk

xk+1 = xk − αkH−1
k
∇f(xk)

◦ RMSProp uses weighted averaging with constant β

◦ Recent gradients have greater importance

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 54/ 85

?ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM
Input. Step size α, exponential decay rates β1, β2 ∈ [0, 1)
1. Set m0,v0 = 0
2. For k = 0, 1, . . ., iterate

gk = ∇f(xk−1)
mk = β1mk−1 + (1− β1)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g2

k ← 2nd order estimate
m̂k = mk/(1− βk1) ← Bias correction
v̂k = vk/(1− βk2) ← Bias correction
Hk =

√
v̂k + ε

xk+1 = xk − αm̂k/Hk

Output : xk

(Every vector operation is an element-wise operation)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 55/ 85

?ADAM - Adaptive moment estimation

Over-simplified idea of ADAM
RMSProp + 2nd order moment estimation = ADAM

ADAM
Input. Step size α, exponential decay rates β1, β2 ∈ [0, 1)
1. Set m0,v0 = 0
2. For k = 0, 1, . . ., iterate

gk = ∇f(xk−1)
mk = β1mk−1 + (1− β1)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g2

k ← 2nd order estimate
m̂k = mk/(1− βk1) ← Bias correction
v̂k = vk/(1− βk2) ← Bias correction
Hk =

√
v̂k + ε

xk+1 = xk − αm̂k/Hk

Output : xk

(Every vector operation is an element-wise operation)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 55/ 85

?Non-convergence of ADAM and a new method: AmsGrad
◦ It has been shown that ADAM may not converge for some objective functions [23].

◦ An ADAM alternative is proposed that is proved to be convergent [23].

AmsGrad
Input. Step size {αk}k∈N, exponential decay rates {β1,k}k∈N, β2 ∈ [0, 1)
1. Set m0 = 0,v0 = 0 and v̂0 = 0
2. For k = 1, 2, . . ., iterate

gk = G(xk, θ)
mk = β1,kmk−1 + (1− β1,k)gk ← 1st order estimate
vk = β2vk−1 + (1− β2)g2

k ← 2nd order estimate
v̂k = max{v̂k−1,vk} and V̂k = diag(v̂k)
Hk =

√
v̂k

xk+1 = Π
√

V̂k
X (xk − αkm̂k/Hk)

Output : xk

where ΠA
K (y) = arg minx∈K 〈(x− y),A(x− y)〉 (weighted projection onto K).

(Every vector operation is an element-wise operation)

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 56/ 85

?AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [28])
Assume f is non-convex and L-smooth, such that ‖∇f(x)‖2 ≤ G2 and f? = infx f(x) >∞. Also consider
bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then with probability

1− δ,

min
i∈{1,..,k−1}

‖∇f(xi)‖2 = Õ

(
σ

δ3/2
√
k

)
◦ Note: As 1− δ → 1, the rate deteriorates by a factor of δ−3/2.

Theorem (AmsGrad convergence rate 1: stochastic, non-convex [7])
Let gk = G(xk, θ). Assume |g1,i| > c > 0, ∀i ∈ [d] and ‖gk‖ ≤ G. Consider a non-increasing sequence β1,k
and β1,k ≤ β1 ∈ [0, 1). Set αk = 1/

√
k. Then,

min
i∈{1,..,k−1}

E
[
‖∇f(xi)‖2

]
= O

(log k
√
k

)
.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 57/ 85

?AdaGrad & AmsGrad for non-convex optimization

Theorem (AdaGrad convergence rate: stochastic, non-convex [28])
Assume f is non-convex and L-smooth, such that ‖∇f(x)‖2 ≤ G2 and f? = infx f(x) >∞. Also consider
bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then with probability

1− δ,

min
i∈{1,..,k−1}

‖∇f(xi)‖2 = Õ

(
σ

δ3/2
√
k

)
◦ Note: As 1− δ → 1, the rate deteriorates by a factor of δ−3/2.

Theorem (AmsGrad convergence rate 2: stochastic, non-convex [29])
Consider f : Rd → R to be non-convex ans L-smooth. Assume ‖G(x, θ)‖∞ ≤ G∞ and set αk = 1/

√
dT . Also

define xout = xk, for k = 1, . . . , T with probability αk/
∑T

i=1 αi. Then,

E
[
‖∇f(xout)‖2

]
= O

(√
d

T

)
.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 57/ 85

?Example: Logistic regression with non-convex regularizer
◦ Synthetic data: A ∈ Rn×d, n = 2000, d = 200.

◦ Batch size: 20 samples.

◦ Algorithms: SGD, AdaGrad, AmsGrad.

0 0.5 1 1.5 2
10

1

10
2

10
3

10
4

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 58/ 85

?Adaptive methods for stochastic optimization

Remark
I Adaptive methods have extensive applications in stochastic optimization.

I We will see another nature of adaptive methods in this lecture.

I Mild additional assumption: bounded variance of gradient estimates.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 59/ 85

?AdaGrad for stochastic optimization
◦ Only modification: ∇f(x)⇒ G(x, θ)

AdaGrad with Hk = λkI [16]
1. Set Q0 =0.
2. For k = 0, 1, . . ., iterate{

Qk = Qk−1 + ‖G(xk, θ)‖2

Hk =
√
QkI

xk+1 = xt − αkH−1
k
G(xk, θ)

Theorem (Convergence rate: stochastic, convex optimization [16])
Assume f is convex and L-smooth, such that minimizer of f lies in a convex, compact set K with diameter D.
Also consider bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then,

E[f(xk)]− min
x∈Rd

f(x) = O

(
σD
√
k

)

◦ AdaGrad is adaptive also in the sense that it adapts to nature of the oracle.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 60/ 85

?AcceleGrad for stochastic optimization
◦ Similar to AdaGrad, replace ∇f(x)⇒ G(x, θ)

AcceleGrad (Accelerated Adaptive Gradient Method)
Input : x0 ∈ K, diameter D, weights {αk}k∈N, learning
rate {ηk}k∈N
1. Set y0 = z0 = x0

2. For k = 0, 1, . . ., iterate
τk := 1/αk
xk+1 = τtzk + (1− τk)yk, define gk := ∇f(xk+1)
zk+1 = ΠK(zk − αkηkgk)
yk+1 = xk+1 − ηkgk

Output : yk ∝
∑k−1

i=0 αiy
i+1

Theorem (Convergence rate [17])
Assume f is convex and G-Lipschitz and that minimizer of f lies in a convex, compact set K with diameter D.
Also consider bounded variance for unbiased gradient estimates, i.e., E

[
‖G(x, θ)−∇f(x)‖2|x

]
≤ σ2. Then,

E[f(yk)]−min
x
f(x) = O

(
GD
√

log k
√
k

)
.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 61/ 85

?Example: Synthetic least squares
◦ A ∈ Rn×d, where n = 200 and d = 50.
◦ Number of epochs: 20.
◦ Algorithms: SGD, AdaGrad & AcceleGrad.

0 5 10 15 20
10

-3

10
-2

10
-1

10
0

10
1

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 62/ 85

?Newton method
• Fast (local) convergence but expensive per iteration cost

• Useful when warm-started near a solution

Local quadratic approximation using the Hessian

I Obtain a local quadratic approximation using the second-order Taylor series approximation to f(xk + p):

f(xk + p) ≈ f(xk) + 〈p,∇f(xk)〉+
1
2
〈p,∇2f(xk)p〉

I The Newton direction is the vector pk that minimizes f(xk + p); assuming the Hessian ∇2fk to be
positive definite:

∇2f(xk)pk = −∇f(xk) ⇔ pk = −
(
∇2f(xk)

)−1
∇f(xk)

I A unit step-size αk = 1 can be chosen near convergence:

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk) .

Remark
I For f ∈ F2,1

L but f < F2,1
L,µ, the Hessian may not always be positive definite.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 63/ 85

?Newton method
• Fast (local) convergence but expensive per iteration cost

• Useful when warm-started near a solution

Local quadratic approximation using the Hessian

I Obtain a local quadratic approximation using the second-order Taylor series approximation to f(xk + p):

f(xk + p) ≈ f(xk) + 〈p,∇f(xk)〉+
1
2
〈p,∇2f(xk)p〉

I The Newton direction is the vector pk that minimizes f(xk + p); assuming the Hessian ∇2fk to be
positive definite:

∇2f(xk)pk = −∇f(xk) ⇔ pk = −
(
∇2f(xk)

)−1
∇f(xk)

I A unit step-size αk = 1 can be chosen near convergence:

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk) .

Remark
I For f ∈ F2,1

L but f < F2,1
L,µ, the Hessian may not always be positive definite.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 63/ 85

?Newton method
• Fast (local) convergence but expensive per iteration cost

• Useful when warm-started near a solution

Local quadratic approximation using the Hessian

I Obtain a local quadratic approximation using the second-order Taylor series approximation to f(xk + p):

f(xk + p) ≈ f(xk) + 〈p,∇f(xk)〉+
1
2
〈p,∇2f(xk)p〉

I The Newton direction is the vector pk that minimizes f(xk + p); assuming the Hessian ∇2fk to be
positive definite:

∇2f(xk)pk = −∇f(xk) ⇔ pk = −
(
∇2f(xk)

)−1
∇f(xk)

I A unit step-size αk = 1 can be chosen near convergence:

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk) .

Remark
I For f ∈ F2,1

L but f < F2,1
L,µ, the Hessian may not always be positive definite.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 63/ 85

?Newton method
• Fast (local) convergence but expensive per iteration cost

• Useful when warm-started near a solution

Local quadratic approximation using the Hessian

I Obtain a local quadratic approximation using the second-order Taylor series approximation to f(xk + p):

f(xk + p) ≈ f(xk) + 〈p,∇f(xk)〉+
1
2
〈p,∇2f(xk)p〉

I The Newton direction is the vector pk that minimizes f(xk + p); assuming the Hessian ∇2fk to be
positive definite:

∇2f(xk)pk = −∇f(xk) ⇔ pk = −
(
∇2f(xk)

)−1
∇f(xk)

I A unit step-size αk = 1 can be chosen near convergence:

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk) .

Remark
I For f ∈ F2,1

L but f < F2,1
L,µ, the Hessian may not always be positive definite.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 63/ 85

?Newton method
• Fast (local) convergence but expensive per iteration cost

• Useful when warm-started near a solution

Local quadratic approximation using the Hessian

I Obtain a local quadratic approximation using the second-order Taylor series approximation to f(xk + p):

f(xk + p) ≈ f(xk) + 〈p,∇f(xk)〉+
1
2
〈p,∇2f(xk)p〉

I The Newton direction is the vector pk that minimizes f(xk + p); assuming the Hessian ∇2fk to be
positive definite:

∇2f(xk)pk = −∇f(xk) ⇔ pk = −
(
∇2f(xk)

)−1
∇f(xk)

I A unit step-size αk = 1 can be chosen near convergence:

xk+1 = xk −
(
∇2f(xk)

)−1
∇f(xk) .

Remark
I For f ∈ F2,1

L but f < F2,1
L,µ, the Hessian may not always be positive definite.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 63/ 85

?(Local) Convergence of Newton method

Lemma
Assume f is a twice differentiable convex function with minimum at x? such that:
I ∇2f(x?) � µI for some µ > 0,
I ‖∇2f(x)−∇2f(y)‖2→2 ≤M‖x− y‖2 for some constant M > 0 and all x,y ∈ dom(f).

Moreover, assume the starting point x0 ∈ dom(f) is such that ‖x0 − x?‖2 < 2µ
3M .

Then, the Newton method iterates converge quadratically:

‖xk+1 − x?‖ ≤
M‖xk − x?‖22

2
(
µ−M‖xk − x?‖2

) .
Remark
This is the fastest convergence rate we have seen so far, but it requires to solve a p× p linear system at each
iteration, ∇2f(xk)pk = −∇f(xk)!

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 64/ 85

?Locally quadratic convergence of the Newton method–I

Newton’s method local quadratic convergence - Proof [21]
Since ∇f(x?) = 0 we have

xk+1 − x? = xk − x? − (∇2f(xk))−1∇f(xk)

= (∇2f(xk))−1
(
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

)
By Taylor’s theorem, we also have

∇f(xk)−∇f(x?) =
∫ 1

0
∇2f(xk + t(x? − xk))(xk − x?)dt

Combining the two above, we obtain
‖∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))‖

=

∥∥∥∥∫ 1

0

(
∇2f(xk)−∇2f(xk + t(x? − xk))

)
(xk − x?)dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2f(xk)−∇2f(xk + t(x? − xk))
∥∥ ‖xk − x?‖dt

≤M‖xk − x?‖2
∫ 1

0
tdt =

1
2
M‖xk − x?‖2

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 65/ 85

?Locally quadratic convergence of the Newton method–II

Newton’s method local quadratic convergence - Proof [21].
I Recall

xk+1 − x? = (∇2f(xk))−1
(
∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))

)
‖∇2f(xk)(xk − x?)− (∇f(xk)−∇f(x?))‖ ≤

1
2
M‖xk − x?‖2

I Since ∇2f(x?) is nonsingular, there must exist a radius r such that ‖(∇2f(xk))−1‖ ≤ 2‖(∇2f(x?))−1‖
for all xk with ‖xk − x∗‖ ≤ r.

I Substituting, we obtain

‖xk+1 − x?‖ ≤M‖(∇2f(x?))−1‖‖xk − x?‖2 = M̃‖xk − x?‖2,

where M̃ = M‖(∇2f(x?))−1‖.
I If we choose ‖x0 − x?‖ ≤ min(r, 1/(2M̃)), we obtain by induction that the iterates xk converge

quadratically to x?.

�

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 66/ 85

?Example: Logistic regression - GD, AGD, AcceleGrad + NM

10
0

10
1

10
2

10
3

10
4

10
-6

10
-4

10
-2

10
0

10
2

10
-2

10
-1

10
0

10
1

10
-6

10
-4

10
-2

10
0

10
2

Parameters
I Newton’s method: maximum number of iterations 30, tolerance 10−6.
I For GD, AGD & AcceleGrad: maximum number of iterations 10000, tolerance 10−6.
I Ground truth: Get a high accuracy approximation of x? and f? by applying Newton’s method for 200

iterations.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 67/ 85

?Approximating Hessian: Quasi-Newton methods
Quasi-Newton methods use an approximate Hessian oracle and can be more scalable.

• Useful for f(x) :=
∑n

i=1 fi(x) with n� p.

Main ingredients
Quasi-Newton direction:

pk = −H−1
k
∇f(xk) = −Bk∇f(xk).

I Matrix Hk, or its inverse Bk, undergoes low-rank updates:
I Rank 1 or 2 updates: famous Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
I Limited memory BFGS (L-BFGS).

I Line-search: The step-size αk is chosen to satisfy the Wolfe conditions:

f(xk + αkpk) ≤ f(xk) + c1αk〈∇f(xk),pk〉 (sufficient decrease)

〈∇f(xk + αkpk),pk〉 ≥ c2〈∇f(xk),pk〉 (curvature condition)

with 0 < c1 < c2 < 1. For quasi-Newton methods, we usually use c1 = 0.1.
I Convergence is guaranteed under the Dennis & Moré condition [8].
I For more details on quasi-Newton methods, see Nocedal&Wright’s book [21].

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 68/ 85

?Quasi-Newton methods

How do we update Bk+1?
Suppose we have (note the coordinate change from p to p̄)

mk+1(p̄) := f(xk+1) + 〈∇f(xk+1), p̄− xk+1〉+
1
2
〈

Bk+1(p̄− xk+1), (p̄− xk+1))
〉
.

We require the gradient of mk+1 to match the gradient of f at xk and xk+1.
I ∇mk+1(xk+1) = ∇f(xk+1) as desired;
I For xk, we have

∇mk+1(xk) = ∇f(xk+1) + Bk+1(xk − xk+1)

which must be equal to ∇f(xk).
I Rearranging, we have that Bk+1 must satisfy the secant equation

Bk+1sk = yk

where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk).
I The secant equation can be satisfied with a positive definite matrix Bk+1 only if 〈sk,yk〉 > 0, which is

guaranteed to hold if the step-size αk satisfies the Wolfe conditions.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 69/ 85

?Quasi-Newton methods

BFGS method [21] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k
. The update on the inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (4)

The solution is a rank-2 update of the matrix Hk:

Hk+1 = VT
k HkVk + ηksk(sk)T ,

where Vk = I− ηkyk(sk)T .
I Initialization of H0 is an art. We can choose to set it to be an approximation of ∇2f(x0) obtained by

finite differences or just a multiple of the identity matrix.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 70/ 85

?Quasi-Newton methods

BFGS method [21] (from Broyden, Fletcher, Goldfarb & Shanno)
The BFGS method arises from directly updating Hk = B−1

k
. The update on the inverse B is found by solving

min
H
‖H−Hk‖W subject to H = HT and Hyk = sk (4)

The solution is a rank-2 update of the matrix Hk:

Hk+1 = VT
k HkVk + ηksk(sk)T ,

where Vk = I− ηkyk(sk)T .

Theorem (Convergence of BFGS)
Let f ∈ C2. Assume that the BFGS sequence {xk} converges to a point x? and

∑∞
k=1 ‖x

k − x?‖ ≤ ∞.
Assume also that ∇2f(x) is Lipschitz continuous at x?. Then xk converges to x? at a superlinear rate.

Remarks
The proof shows that given the assumptions, the BFGS updates for Bk satisfy the Dennis & Moré condition,
which in turn implies superlinear convergence.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 70/ 85

?L-BFGS
Challenges for BFGS

I BFGS approach stores and applies a dense p× p matrix Hk.
I When p is very large, Hk can prohibitively expensive to store and apply.

L(imited memory)-BFGS

I Do not store Hk, but keep only the m most recent pairs {(si,yi)}.
I Compute Hk∇f(xk) by performing a sequence of operations with si and yi:

I Choose a temporary initial approximation H0
k.

I Recursively apply Hk+1 = VT
k HkVk + ηksk(sk)T , m times starting from H0

k:

Hk =
(

VT
k−1 · · ·V

T
k−m

)
H0

k (Vk−m · · ·Vk−1)

+ ηk−m

(
VT

k−1 · · ·V
T
k−m+1

)
sk−m(sk−m)T (Vk−m+1 · · ·Vk−1)

+ · · ·

+ ηk−1sk−1(sk−1)T

I From the previous expression, we can compute Hk∇f(xk) recursively.
I Replace the oldest element in {si,yi} with (sk,yk).
I From practical experience, m ∈ (3, 50) does the trick.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 71/ 85

?L-BFGS: A quasi-Newton method
Procedure for computing Hk∇f(xk)

0. Recall ηk = 1/〈yk, sk〉.
1. q = ∇f(xk).
2. For i = k − 1, . . . , k −m

αi = ηi〈si,q〉
q = q − αiyi.

3. r = H0
kq.

4. For i = k −m, . . . , k − 1
β = ηi〈yi, r〉
r = r + (αi − β)si.

5. Hk∇f(xk) = r.

Remarks
I Apart from the step r = H0

kq, the algorithm requires only 4mp multiplications.
I If H0

k is chosen to be diagonal, another p multiplications are needed.
I An effective initial choice is H0

k = γkI, where

γk =
〈sk−1,yk−1〉
〈yk−1,yk−1〉

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 72/ 85

?L-BFGS: A quasi-Newton method

L-BFGS

1. Choose starting point x0 and m > 0.
2. For k = 0, 1, . . .

2.a Choose H0
k.

2.b Compute pk = −Hk∇f(xk) using the previous algorithm.
2.c Set xk+1 = xk + αkpk, where αk satisfies the Wolfe conditions.

if k > m, discard the pair {sk−m,pk−m} from storage.
2.d Compute and store sk = xk+1−xk, yk = ∇f(xk+1)−∇f(xk).

Warning
L-BFGS updates does not guarantee positive semidefiniteness of the variable metric Hk in contrast to BFGS.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 73/ 85

?Example: Logistic regression - numerical results

Number of iterations
10

0
10

1
10

2
10

3
10

4

(f
(x

k
)
−
f
⋆
)/
f
⋆
in

lo
g
sc
al
e

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Newton
Quasi-Newton with BFGS
Quasi-Newton with L-BFGS
Accelerated gradient method
Line Search AGD with adaptive restart

Time (s)
10

-2
10

-1
10

0
10

1
10

2

(f
(x

k
)
−
f
⋆
)/
f
⋆
in

lo
g
sc
a
le

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Newton
Quasi-Newton with BFGS
Quasi-Newton with L-BFGS
Accelerated gradient method
Line Search AGD with adaptive restart

Parameters
I For BFGS, L-BFGS and Newton’s method: maximum number of iterations 200, tolerance 10−6. L-BFGS

memory m = 50.
I For accelerated gradient method: maximum number of iterations 20000, tolerance 10−6.
I Ground truth: Get a high accuracy approximation of x? and f? by applying Newton’s method for 200

iterations.
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 74/ 85

?Performance of optimization algorithms

Time-to-reach ε
time-to-reach ε = number of iterations to reach ε × per iteration time

The speed of numerical solutions depends on two factors:
I Convergence rate determines the number of iterations needed to obtain an ε-optimal solution.
I Per-iteration time depends on the information oracles, implementation, and the computational platform.

In general, convergence rate and per-iteration time are inversely proportional.
Finding the fastest algorithm is tricky! A non-exhaustive illustration:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

L-smooth Accelerated GD Sublinear (1/k2) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e−k), Quadratic One gradient, one linear system

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 75/ 85

?Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

L-smooth Accelerated GD Sublinear (1/k2) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e−k), Quadratic One gradient, one linear system

Accelerated gradient descent:

xk+1 = yk − α∇f(yk)

yk+1 = xk+1 + αk+1(xk+1 − xk).

for some proper choice of α and αk+1.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 76/ 85

?Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

L-smooth Accelerated GD Sublinear (1/k2) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update

Newton method Linear (e−k), Quadratic One gradient, one linear system

Main computations of the Quasi-Newton method is given by

pk = −B−1
k
∇f(xk) ,

where B−1
k

is updated at each iteration by adding a rank-2 matrix.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 77/ 85

?Performance of optimization algorithms

A non-exhaustive comparison:

Assumptions on f Algorithm Convergence rate Iteration complexity
Gradient descent Sublinear (1/k) One gradient

L-smooth Accelerated GD Sublinear (1/k2) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Sublinear (1/k), Quadratic One gradient, one linear system
Gradient descent Linear (e−k) One gradient

L-smooth and µ-strongly convex Accelerated GD Linear (e−k) One gradient
Quasi-Newton Superlinear One gradient, rank-2 update
Newton method Linear (e−k), Quadratic One gradient, one linear system

The main computation of the Newton method requires the solution of the linear system

∇2f(xk)pk = −∇f(xk) .

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 78/ 85

?Randomized Kaczmarz algorithm

Problem
Given a full-column-rank matrix A ∈ Rn×p and b ∈ Rn, solve the linear system

Ax = b.

Notations: b := (b1, . . . , bn)T and aTj is the j-th row of A.

Randomized Kaczmarz algorithm (RKA)

1. Choose x0 ∈ Rp .
2. For k = 0, 1, . . . perform:
2a. Pick jk ∈ {1, · · · , n} randomly with Pr(jk = i) = ‖ai‖22/‖A‖2F
2b. xk+1 = xk −

(
〈ajk

,xk〉 − bjk

)
ajk

/‖ajk
‖22.

Linear convergence [26]
Let x? be the solution of Ax = b and κ = ‖A‖F ‖A−1‖. Then

E‖xk − x?‖22 ≤ (1− κ−2)k‖x0 − x∗‖22

• RKA can be seen as a particular case of SGD [18].
Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 79/ 85

References I

[1] Zeyuan Allen-Zhu and Lorenzo Orecchia.
Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent.
In Proceedings of the 8th Innovations in Theoretical Computer Science, ITCS ’17, 2017.
Full version available at http://arxiv.org/abs/1407.1537.

[2] Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake E. Woodworth.
Lower bounds for non-convex stochastic optimization.
ArXiv, abs/1912.02365, 2019.

[3] Francis Bach and Eric Moulines.
Non-strongly-convex smooth stochastic approximation with convergence rate o(1/n).
In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1,
NIPS’13, pages 773–781, USA, 2013. Curran Associates Inc.

[4] Léon Bottou, Frank E. Curtis, and Jorge Nocedal.
Optimization methods for large-scale machine learning, 2016.
quantization overview.

[5] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford.
Lower bounds for finding stationary points of non-convex , smooth high-dimensional functions.
2017.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 80/ 85

http://arxiv.org/abs/1407.1537

References II

[6] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford.
Lower bounds for finding stationary points II: first-order methods.
Math. Program., 185(1-2):315–355, 2021.

[7] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong.
On the convergence of a class of adam-type algorithms for non-convex optimization.
In International Conference on Learning Representations, 2019.

[8] JE Dennis and Jorge J Moré.
A characterization of superlinear convergence and its application to quasi-newton methods.
Mathematics of Computation, 28(126):549–560, 1974.

[9] John Duchi, Elad Hazan, and Yoram Singer.
Adaptive subgradient methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[10] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang.
SPIDER: near-optimal non-convex optimization via stochastic path-integrated differential estimator.
In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
687–697, 2018.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 81/ 85

References III

[11] Olivier Fercoq and Zheng Qu.
Restarting accelerated gradient methods with a rough strong convexity estimate.
2016.
arXiv:16009.07358v1.

[12] Saeed Ghadimi and Guanghui Lan.
Stochastic first-and zeroth-order methods for nonconvex stochastic programming.
SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[13] Saeed Ghadimi and Guanghui Lan.
Accelerated gradient methods for nonconvex nonlinear and stochastic programming.
Math. Program., 156(1-2):59–99, 2016.

[14] Pontus Giselsson and Stephen Boyd.
Monotonicity and restart in fast gradient methods.
In IEEE 53rd Ann. Conf. Decision and Control, pages 5058–5063, 2014.

[15] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 82/ 85

References IV

[16] Kfir Levy.
Online to offline conversions, universality and adaptive minibatch sizes.
In Advances in Neural Information Processing Systems, pages 1613–1622, 2017.

[17] Kfir Levy, Alp Yurtsever, and Volkan Cevher.
Online adaptive methods, universality and acceleration.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018.

[18] Deanna Needell, Rachel Ward, and Nati Srebro.
Stochastic gradient descent, weighted sampling, and the randomized kaczmarz algorithm.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 1017–1025. Curran Associates, Inc., 2014.

[19] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro.
Robust stochastic approximation approach to stochastic programming.
SIAM J. on Optimization, 19(4):1574–1609, January 2009.

[20] Yu. Nesterov.
Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer, Boston, MA, 2004.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 83/ 85

References V

[21] J. Nocedal and S.J. Wright.
Numerical Optimization.
Springer, 2006.

[22] Brendan O’Donoghue and Emmanuel Candes.
Adaptive restart for accelerated gradient schemes.
Found. Comput. Math., 15(3):715–732, 2015.

[23] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar.
On the convergence of adam and beyond.
In International Conference on Learning Representations, 2018.

[24] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter.
Pegasos: primal estimated sub-gradient solver for svm.
Mathematical Programming, 127(1):3–30, Mar 2011.

[25] Ohad Shamir and Tong Zhang.
Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging
schemes.
In International Conference on Machine Learning, pages 71–79, 2013.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 84/ 85

References VI

[26] Thomas Strohmer and Roman Vershynin.
A randomized kaczmarz algorithm with exponential convergence.
Journal of Fourier Analysis and Applications, 15(2):262, Apr 2008.

[27] Tijmen Tieleman and Geoffrey Hinton.
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

[28] Rachel Ward, Xiaoxia Wu, and Leon Bottou.
AdaGrad stepsizes: Sharp convergence over nonconvex landscapes.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 6677–6686, Long
Beach, California, USA, 09–15 Jun 2019. PMLR.

[29] Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu.
On the convergence of adaptive gradient methods for nonconvex optimization.
ArXiv, abs/1808.05671, 2018.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 85/ 85

	SGD material
	Appendix

