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Outline

> This lecture

1. Principles of iterative descent methods
2. Gradient descent for smooth convex problems
3. Gradient descent for smooth non-convex problems
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Recall: Learning machines result in optimization problems

deli
(a0, bi)iy —E s P(byfag, %) Y, (b) 1= H Pbilai, x)
parameter x identical dist. !
Definition (Maximum-likelihood estimator)
The maximum-likelihood (ML) estimator is given by
XKAL € arg min {L(hx(a)7 b) = lOg px(b)} ’
xeX

where p, (-) denotes the probability density function or probability mass function of Px, for x € X.

M-Estimators
Roughly speaking, estimators can be formulated as optimization problems of the following form:
x* € arg min {F(x)},
xXEX

with some constraints X C RP. The term “M-estimator” denotes “maximum-likelihood-type estimator” [2].
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Unconstrained minimization

Problem (Mathematical formulation)

How can we find an optimal solution to the following optimization problem?

F* = min {F(x) = f(x)}

Note that (1) is unconstrained.

Definition (Optimal solutions and solution set)

> x* € RP is a solution to (1) if m

> ‘8* = {x* €RP : F(x*)=F"} ‘ is the solution set of (1).

> (1) has solution if S* is non-empty.

ICLGHEII{]  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 62

1)



Approximate vs. exact optimality

Is it possible to solve an optimization problem?

"In general, optimization problems are unsolvable” - Y. Nesterov [4]

Observations: o Even when a closed-form solution exists, numerical accuracy may still be an issue.
o We must be content with approximately optimal solutions.

Definition

We say that x7 is e-optimal in objective value if

f(x5) —f <e.

Definition
We say that x} is e-optimal in sequence if, for some norm || - ||,

l[x¢ —x*|| <e,

o The latter approximation guarantee is considered stronger.
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A basic iterative strategy

General idea of an optimization algorithm

Guess a solution, and then refine it based on oracle information.

Repeat the procedure until the result is good enough.
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Basic principles of descent methods

Template for iterative descent methods

1. Let x° € dom(f) be a starting point.

2. Generate a sequence of vectors x!,x?, .- € dom(f) so that we have descent:
FFTY < f(xF), forallk=0,1,...
until x* is e-optimal.

Such a sequence {xk}k>0 can be generated as:

k+1

x =xP —&—oz;cp’C

where pF is a descent direction and oy, > 0 a step-size.

Remarks: o lterative algorithms can use various oracle information in the optimization problem
o The type of oracle information used becomes a defining characteristic of the algorithm
o Example oracles: Objective value, gradient, and Hessian result in 0-th, 1-st, 2-nd order methods

o The oracle choices determine oy, and p* as well as the overall convergence rate and complexity
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Basic principles of descent methods

A condition for local descent directions

The iterates are given as:

k1 — k4o, p

x
For a differentiable f, we have by Taylor's theorem

FEFY) = F(x*) + ar(VF(xF), PF) +O(F |Ipll3)-
For aj, small enough, the term a;(Vf(x*), p*) dominates O(a3) for a fixed p".

Therefore, in order to have f(xFt1) < f(x*), we require

(Vf(x"), p*) <0
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Basic principles of descent methods

Local steepest descent direction
k
Si Vf(x")
ince k

(VF(x*), p*) = V) Ip* ] cos b,

k k
where @ is the angle between V f(x*) and p”*, we have #" +D(f,2%)

pF = —Vf(x")

as the local steepest descent direction. level gete

Figure: Descent directions in 2D should be an
element of the cone of descent directions D(f, ).
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A simple iterative algorithm: Gradient descent

><— best direction

0

» Choose initial point: z".
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A simple iterative algorithm: Gradient descent

*,r.,:VJ‘”(XU)

> Choose initial point: z9.

> Take a step in the negative gradient direction with a step size a > 0: x*T1 = x* — oV f(xF).
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A simple iterative algorithm: Gradient descent

R VI

> Choose initial point: z9.

> Take a step in the negative gradient direction with a step size a > 0: x*T1 = x* — oV f(xF).

> Repeat this procedure until z* is accurate enough.
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Recall the statistical estimation context

Observations: o Denote x! is the unknown true parameter
o The estimator x*'s performance, e.g., || x* — x7||2 depends on the data size n.

o Evaluating || x* — xf |2 is not enough for evaluating the performance of a Learning Machine

> We can only numerically approximate the solution of
x* € arg min {F(x)}.
xXERP
o We use algorithms to numerically approximate x*.

Practical performance

Denote the numerical approximation by an algorithm at time ¢ by xt.

The practical performance at time t using n data samples is determined by ’ /?‘
" = flo < st — 5| + [l " = x* [,
~—————— 2 x!
&(t,n) e(t) e(n)

where £(n) denotes the statistical error, €(t) is the numerical error, and &(t,n)
denotes the total error of the Learning Machine.
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Challenges for an iterative optimization algorithm

Problem

Find the minimum x* of f(x), given starting point x° based on only local information.

> Fog of war
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Challenges for an iterative optimization algorithm

Problem

Find the minimum x* of f(z), given starting point x° based on only local information.

> Fog of war, non-differentiability, discontinuities, local minima, stationary points...

f()
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A notion of convergence: Stationarity
o Let f: RP — R be twice-differentiable and x* = minxcrr f(x)

Gradient method

Choose a starting point x° and iterate
xFH = xk _ oV f(xF)

where o > 0 is a step-size to be chosen so that x* converges to x*.

Definition (First order stationary point (FOSP))

A point X is a first order stationary point of a twice differentiable function f if

V(%) =0.
Fixed-point characterization
Multiply by -1 and add x to both sides to obtain the fixed point condition:

x =% —aVf(x) for all o € R.
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Geometric interpretation of stationarity

f(=)

Observation: o Neither x, nor X is necessarily equal to x* !!

Proposition (*Local minima, maxima, and saddle points)

Let x be a stationary point of a twice differentiable function f.
> If V2 f(X) = 0, then the point X is called a local minimum or a second order stationary point (SOSP).
> If V2 f(xX) <0, then the point X is called a local maximum.

> If VQf(i) = 0, then the point X can be a saddle point, a local minimum, or a local maximum.
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Local minima

min{z* — 32° + 2° + 32}

rzER 1
a :4:1:3—99024—2:174—§
dx 2 x
—1 \ 0 1 2
local minimum —1

v,

global minimum

Choose z° =0 and o = ¢
xlzxo—al‘j—f =0-
T

2 _ _ 5
5= "16

ol
|

=
=

|z:m0
z¥ converges to a local minimum!
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From local to global optimality
Definition (Local minimum)
Given f: RP — RU {400}, a vector x* € RP is called a local minimum of f if there exists ¢ > 0 s.t.

f(x*) < f(x) Vx€ERP with [x—x*||<e.

Theorem

If Q C RP is a convex set and f: RP — (—oo, +00] is a proper convex function, then a local minimum of f over
Q is also a global minimum of f over Q.

Proof.

Suppose x* is a local minimum but not global, i.e. there exist x € RP s.t. f(x) < f(x*). By convexity,
Flax* + (1 - a)x) < af(x*) + (1 — a)f(x) < f(x*),Ya € [0,1]

which contradicts the local minimality of x*. m]

Theorem

Let f: RP — R be a convex differentiable function. Then any stationary point of f is a global minimum.
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Effect of very small step-size «...

s T 2)2
i PR

df

dx
N T
ol 1 2 3 4 6
ChoosexO—Sandazﬁ
xlzmo—admlxxo—5—i2:48
$2=$1—adx’wx1_48 1.8 =4.62

x" converges very slowly.
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Effect of very large step-size a...

1
. - 732
min 5 (z — 3)

5 g

df

dx
X
-
0 1 2 3 4 5 6
2
5[71 .’L“O T
Choose z =5 and o =
1_ .0 _ —5_3%9 —
== adI’x _po=0—32=0
2 _ .1 —0—32(_3) = 15
=T adac’w =zl =0 2( 3)_2
z* diverges.
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Discontinuities

In many practical problems,
we need to minimize the cost under some constraints.

= Jnin {f(X) ix € X}
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Nonsmooth functions

F(x) + (vi,y =x)

s Sy X [y “ermiewow X

Definition (Subdifferential)

The subdifferential of f at x, denoted df(z), is the set of all vectors v satisfying
fy) 2 f@)+@wy—x)+o(ly—zl) asy—=

If the function f is differentiable, then its subdifferential contains only the gradient.

Subgradient method

Choose a starting point x°, receive a subgradient from the (set of) subdifferential, and iterate
XL = xF _ 085 (xF)

where aj, > 0 is a step-size procedure to be chosen so that x* converges to a stationary point.
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Subdifferentials and (sub)gradients

Subgradient method

Choose a starting point x°, receive a subgradient from the (set of) subdifferential, and iterate
XL = xF _ 0 8f(xF)

where aj, > 0 is a step-size procedure to be chosen so that x* converges to a stationary point.

[_111]

Example Remark:
d|z| = {sgn(x)}, if x #£0, but [-1,1], if z =0. The step-size o, often needs to decrease with k.
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Is convexity of f enough for an iterative optimization algorithm?

y f(2)

Constraints
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Smooth unconstrained convex minimization

Problem (Mathematical formulation)
The unconstrained convex minimization problem is defined as:
f* = min f(x)
XERP

> f is a convex function that is

> proper : Vx € RP, —oo < f(x) and there exists x € RP such that f(x) < +oo.
> closed : The epigraph epif = {(x,t) € RPT!, f(x) < t} is closed.
> smooth : f is differentiable and its gradient V f is L-Lipschitz.

> The solution set S* := {x* € dom (f) : f(x*) = f*} is nonempty.
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Example: Maximum likelihood estimation and M-estimators

Problem

Let x! € RP be unknown and by, ..., by, be i.i.d. samples of a random variable B with p.d.f.
Pyt (b) € P := {px(b) : x € RP}. Goal: Estimate x7 from b1, ..., bn.

Optimization formulation (ML estimator)

n

1

x5 =a i —— 1 b; = a; i X

ML g = E 1 [p, (b;)] rgf;Rr;f( )
=1

Theorem (Performance of the ML estimator [3, 6])
The random variable X, satisfies

lim \/’71.]71/2 ()A(ML —Xh) 4 Z ~N(0,1),

n—o00

where J := —E [Vi In [px(B)]] |x is the Fisher information matrix associated with one sample. Roughly

speaking,

=xi

| VRITY2 (3o %) B~ T @ =p = | [[%m % [ = O/m) |
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Gradient descent methods

Definition
Gradient descent (GD) Starting from x° € dom(f), update {x*};>¢ as

xFHl = xk — oszf(xk) =xF + akpk.
Notice that p* := —V f(x") is the steepest descent (anti-gradient) search direction.

Key question: how to choose oy, to have descent/contraction?
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Gradient descent methods
Definition
Gradient descent (GD) Starting from x° € dom(f), update {x*};>¢ as
XL = xF — 0 VF(xP) = x* + app”.
Notice that p* := —V f(x*) is the steepest descent (anti-gradient) search direction.

Key question: how to choose aj to have descent/contraction?

Next few slides: structural assumptions

L — Lipschitz gradient

1 — strongly convex Self-concordant
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L-smooth, p-strongly convex functions

Definition (Recall Recitation 2)

Let f: QO — R, Q C RP be a continuously differentiable function. Then, f p-strongly convex if for any x,y € Q,
o
FO) = f6) + (VF),y = %) + S lly = 3.
The function f is L-smooth if for any x,y € Q,
L 2
F) < FG) +(VI(x),y —x) + Zlly — x]lz.

If f is twice differentiable, an equivalent characterization of f being L-smooth and p-strongly convex is

pl 2 V2 f(x) < L1
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L-smooth, p-strongly convex functions

Definition (Recall Recitation 2)

Let f: QO — R, Q C RP be a continuously differentiable function. Then, f p-strongly convex if for any x,y € Q,
o
F¥) 2 £+ (Vf(x),y = %) + S lly = x]3.
The function f is L-smooth if for any x,y € Q,
L 2
F) < FG) +(VI(x),y —x) + Zlly — x]lz.

If f is twice differentiable, an equivalent characterization of f being L-smooth and p-strongly convex is

pl 2 V2 f(x) < L1

Observations: o Both p and L show up in convergence rate characterization of algorithms
o Unfortunately, p, L are usually not known a priori...

o When they are known, they can help significantly (even in stopping algorithms)
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Example: Least-squares estimation

Problem
Let x4 € RP and A € R™*P (full column rank). Goal: estimate x!, given A and

b:Axh+w,

where w denotes unknown noise.

Optimization formulation (Least-squares estimator)
1 )
min —||b— Ax]||5 .
xERP 2
e

f)

Structural properties

> Vf(x) = AT(Ax —b), and V2 f(x) = ATA.
> A\pI X V2f(x) < M1, where Ay > X2 > ... > ), are the eigenvalues of ATA.

> It follows that L = A1 and pn = Ap,. If Ap > 0, then f is L-smooth and p-strongly convex, otherwise f is
just L-smooth.

> Since rank(AT A) < min{n, p}, if n < p, then A\, = 0.
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Back to gradient descent methods

Gradient descent (GD) algorithm

Starting from x° € dom(f), produce the sequence x!,...,x*, ... according to
xFHl = x*F — 0, V(xF) = x*F + ayp”.

Notice that p* := —V f(x*) is the steepest descent (anti-gradient) direction.
Key question: how do we choose o, to have descent/contraction?
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Back to gradient descent methods

Gradient descent (GD) algorithm

Starting from x° € dom(f), produce the sequence x!,...,x*, ... according to
xFHl = x*F — 0, V(xF) = x*F + ayp”.

Notice that p* := —V f(x*) is the steepest descent (anti-gradient) direction.
Key question: how do we choose o, to have descent/contraction?

Step-size selection
Case 1: If f is L-smooth, then:
> We can choose 0 < aj < % The optimal choice is oy, := %
> «y can be determined by a line-search procedure:
1. Exact line search: o) := arg min f(x’C - onf(xk)).

a>0
2. Back-tracking line search with Armijo-Goldstein's condition:

Fx" —aVf(x")) < f(x") = cal VF)I?, e € (0,1/2].

Case 2: If in addition to being L-smooth, f is u-strongly convex, then:

> D) ] B 3
We can choose 0 < ay, < T The optimal choice is oy, = T
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Towards a geometric interpretation |

Recall:
> Let f be L-smooth with gradient V f(x) and Hessian V2 f(x).
> First-order Taylor approximation of f at y:

f(x) > fy)+(Vfly),x—y)

f)

>

y ) H (VY)Y - %) X

> Convex functions: 15t-order Taylor approximation is a global lower surrogate.
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An equivalent characterization of smoothness

Lemma

Let f be a continuously differentiable convex function :

L
f is L-Lipschitz gradient — f(y) < f(x) + (Vf(x),y — x) + §||y —x||3

Proof: o By Taylor's theorem:

1
f(y):f(X)+<Vf(X),y—X>+/ (Vi(x+7(y —%) = Vi(x),y — x)dr.
0

Therefore,
1
f(y)—f(X)—<Vf(X)7y—X>S/ IVf(x+7(y —x)) = V)" - ly — x[ldr
0

! L
< Luy—xué/ rdr = Zlly - I3
0
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Gradient descent methods:

geometrical

intuition
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Gradient descent methods: geometrical intuition

Structure in optimization: * k

(1) F0) 2 f(x) + (V) x —xF)
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Gradient descent methods: geometrical intuition

Majorize:
FO6) < FO) (70,3 x¥) + £ = x4 = Qo)
Minimize:

xF = argmin Qp (x, x*)
x

1 2 f(x)
_ ; C(k_E k
= argmin (|x <x LVf(x )> ‘
:xk_lvf(xk) b
L P
Structure in optimization: <* k1 gk

(1) F0) = fx) +(VF(x),x - %) .
(2)  fO) < FOP) (V) x = x) + Sl = xF 3
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Gradient descent methods: geometrical intuition

Majorize:

L'>L (2)

F) < F) + (V") % = x5) + %HX* x* 3 = Que(x, %)

Minimize:

xF*1 = arg min Qr (%, xk)
x

f(x)
= arg min
x

k 1 (K :
x—(x —?Vf(x ))H
=x* - T},v,f(x’“)

slower

Structure in optimization: * 3. k
(1) 00 = fF(x") + (V") x = xb) I xFH1
2 fx)< f(xk)+<Vf(xk),x—xk>+§Hx—xk||§
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Convergence rate of gradient descent

Theorem

Let f be a twice-differentiable convex function, if

1 2L
is L-smooth, a=—: xF) — f(x* S Q— x9 — x*||2
fis L-sm g f6) -6 = l 2
2 L—p\F
f is L-smooth and -strongly convex, o = CxE = x*f2 < ( r (%0 — x*||2
L+p L+p
k
1 L— 2
f is L-smooth and pu-strongly convex, a==: |x¥—x*|2 < (7“) ’ [Ix° — x*||2
L L+p

L—p _ k—1 ._ L : Ang 2
Note that Ton = nil where k (= i the condition number of V= f.
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Convergence rate of gradient descent

Theorem

Let f be a twice-differentiable convex function, if

2L

is L-smooth, a=—: xF) — f(x* S Q— x9 — x*||2
/ Do i) S e X3
2 L—
f is L-smooth and -strongly convex, o = CxE = x*f2 < ( r (%0 — x*||2
L+p L+p
&
1 L— 2
f is L-smooth and pu-strongly convex, a==: |x¥—x*|2 < (7“ Ix0 — x*||2
L L+p

L—p _ k—1 ._ L : Ang 2
Note that Ton = nil where k (= i the condition number of V= f.

Remarks

> Assumption: Lipschitz gradient. Result: convergence rate in objective values.

> Assumption: Strong convexity. Result: convergence rate in sequence of the iterates and in objective
values.

> Note that the suboptimal step-size choice a = % adapts to the strongly convex case (i.e., it features a
linear rate vs. the standard sublinear rate).
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Example: Ridge regression
Optimization formulation

> Let A € R**P and b € R” given by b = Ax? + w, where w € R™ is some noise.

> A classical estimator of x!, known as ridge regression, is
min f(x) = 2| b — Ax 3 + 2|1x|3
xERP 2 2

where p > 0 is a regularization parameter

Remarks

> fis L-smooth and p-strongly convex with:
> L=X(ATA) +p;
> 1= A (ATA) +p;
> where \; > ... > X, are the eigenvalues of ATA.
> The ratio Kk = % decreases as p increases, leading to faster linear convergence.

> Note that if n < p and p = 0, we have u = 0, hence f is only L-smooth and we can expect only O(1/k)
convergence from the gradient descent method.
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Example: Ridge regression

Case 1: n = 500,p = 2000, p =0

10
10°
0 1000 2000 3000 4000 5000
Number of iterations
10°

2
10 o 0.5 1 15 2 25 3 35

Time (s)
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Example: Ridge regression
Case 1: n = 500,p = 2000, p = 0 Case 2: n = 500, p = 2000, p = 0.01\,(ATA)

10° 10"
Theoretical bound GD|
10° + GD -1
10° R S Ty
8 =
N 2 10
"""" - B
|10
2
o[- = Theoretical bound GD
o 10 Theoretical bound GD-pL
+ @b
GD-uL
10% 107 X o
o 1000 2000 3000 4000 5000 ] 200 400 600 800 1000 1200
Number of iterations Number of iterations
10° 10"
10°
= 10°
.
| 10
®10°
=
10710
2 15
1% 05 1 15 2 25 3 35 1075

01 02 03 04 05 06 07 08

Time (s) Time (s)
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Smooth unconstrained non-convex minimization

Problem (Mathematical formulation)

Let us consider the following problem formulation:

min f(x)

xXERP

> f is a smooth and possibly non-convex function.

> Recall that finding the global minimizer, i.e., f* := minxerp f(x), is NP-hard
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Example: Image classification using neural networks
Neural network formulation

> (aj, b;): sample points, o(:): non-linear activation function

> the function class H is given by H := {hx(a)7 X € ]Rd}, where

x:(Wl’l"'17w27ﬂ27'~'7wk7ll'k)7 WieRdiXdi_l, uiGRdi,
hx(a) = 0 (Wio (---0 (Wao (Wia +py) + p) ) + py)

> the loss function is given by L(hx(a),b) := (b — hx(a))?.

Example: Image classification

V gl
E - M

Imagenet: 1000 object classes.
1.2M/100K train/test images
Below human level error rates!
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Example: Phase retrieval for fourier ptychography

Definition (Phase retrieval)

Given a set of measurements of the amplitude of a signal, phase retrieval is the task of finding the phase for the
original signal that satisfies certain constraints/properties.

Definition (Fourier ptychography)

Fourier ptychography is the task of reconstructing high-resolution images from low resolution samples, based on
optical microscopy. It is a special case of phase retrieval problem.
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Example: Phase retrieval for fourier ptychography

Definition (Phase retrieval)

Given a set of measurements of the amplitude of a signal, phase retrieval is the task of finding the phase for the
original signal that satisfies certain constraints/properties.

Definition (Fourier ptychography)

Fourier ptychography is the task of reconstructing high-resolution images from low resolution samples, based on
optical microscopy. It is a special case of phase retrieval problem.

Lens Aperture

0\ Specimen

26— - -~

Sources of tilted I

illumination Diffraction pattern Detector in
moves as illumination image plane
is tilted
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The necessity of non-convex optimization

Why non-convex?

> Inherent properties of optimization problem, e.g., phase retrieval

> Robustness or better estimation, e.g., binary classification with non-convex losses

Optimization Formulation: Phase Retrieval

: 2 2
min || Ax|? — b3

where x € CP is a complex signal and |Ax| is the component-wise magnitude of the measurement Ax.

Optimization Formulation: Binary Classification

n
. 1 2
min ¢ — E (bi — g(ai,x))
@ n
i=1
where g(-, -) is non-linear, and hence, the loss function is non-convex.
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Notion of convergence: Stationarity

o Let f:R% — R be twice-differentiable and x* € argmin,cpa f(x)

Definition (Recall - First order stationary point)

A point X is a first order stationary point of a twice differentiable function f(x) if

V(%) =0.

Definition (Recall - Second order stationary point)

A point X is a second order stationary point of a twice differentiable function f(x) if

Vf(®) =0 and V2f(x) > 0.
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Geometric interpretation of stationarity

f(@)

o Note that neither %, nor x is not necessarily equal to x* !!
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Assumptions and the gradient method

Assumption: Smoothness

Let f be a twice differentiable function that is L-Lipschitz gradient with respect to ¢2-norm, such that,

[[Vf(x) = V)2 < Lllx = yll2

Gradient descent

Let a < % be the constant step size and x° € dom(f) be the initial point. Then, gradient method produces
iterates using the following iterative update,

xFTl = xk — onf(xk)
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Convergence rate and iteration complexity

Theorem

Let f be a twice differentiable L-Lipschitz gradient function, and o < % Then, gradient method converges to
the FOSP with the following properties:

Convergence rate to an e-FOSP:
1
VxR =0 (—)
IV T

Iteration complexity to reach an e-FOSP:
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Example: Malaria infection detection

iter: 1 iter: 40

A

iter: 120
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Wrap up!

> Questions/Self study on Monday 11:00 - 12:00
> Lecture on Friday 16:00 - 18:00
> Unsupervised work on Friday 18:00 - 19:00
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Wrap up!

Next lecture: Recitation 1 in BC 01 on Friday, October 1st.
> Recitation from 16:00 to 18:00
> Unsupervised work from 18:00 to 19:00
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*Proof of convergence rates of gradient descent in the convex case
> We first need to prove a basic result about convex L-Lipschitz gradient functions.

Lemma
Let f be a convex differentiable L-Lipschitz gradient function. Then it holds that

%IIVf(X)*Vf(y)H2 S(VIx) - Vi), x—y) ()

Proof.

First, recall the following result about convex Lipschitz gradient functions h
L
h(x) < h(y) + (Vh(y),x —y) + S lx = yl; ¥xy € domh (3)
To prove the result, take ¢ to be the convex function ¢(y) := f(y) — (Vf(x),y), with Voé(y) = Vf(y) — Vf(x). Using

the first order characterization of convexity of f, we can show that for all y, ¢(y) — ¢(z) > 0. Therefore ¢ attains its
minimum value at y* = x. By applying (3) with h = ¢ and x =y — + V(y), we get

1 1
¢(x) < ¢ (v~ $V0(¥) ) < 8(v) = 5= IVeW)ll-
L 2L
Plugging the definition of ¢ back in the left and right hand sides gives

F60 + (VIG),y = %) + 52 IVF () = VIGIE < £() @

By adding two copies of (4) with each other x and y swapped, we obtain (2).
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*The proof of convergence rates in the convex case- part |

Theorem

If f is twice differentiable, convex, L-Lipschitz gradient, with the choice @ = % the iterates of GD satisfy

I — =3 (5)

By _ piat 2L
f(x¥) = f(x¥) < "

k+4

Proof

> Consider the constant step-size iteration x* T = x* — aV f(x").

> Let rp = ||xF — x*.
= [ =M = X - x = V)

= [Ix" — x*|I® — 2a(VF(x") — VF(x"), x* —x*) + ® | V("))
<rp—a2/L - a)|VFEDI? (by (2))

<7, Va<2/L.

Hence, the gradient iterations are contractive when ov < 2/L for all & > 0.

> An auxiliary result: Let A := f(x") — f*. Show | A; < ’r'oHVf(xk)H .

A € (VF(x),x" = x) < [VFE)lIx" = x| = rl| VS| < roll VA
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*The proof of convergence rates in the convex case- part Il

Proof (continued)

> We can establish convergence along with the auxiliary result above:
L .
FOEF) < FOM) + (VAR X —xk) 4 ST -

< FO®) = willVEM)?, wr = a(l — La/2).

Subtract f* from both sides and apply the last equation of the previous slide to get | Ap 1 < Ay — (wk/rg)Ai . Thus,
dividing by Ap41 Ay

AL 2 AT+ (W /T) A/ A1 2> AL+ (wi /7).

By induction, we have A;il > Ao_l + (wi/r2)(k + 1). Then, taking (-)~* of both sides (and hence replacing > by <)
and substituting all of the definitions gives

2(f(x0) — f(x*))lIx0 — x* |3

—x* |5 + ka(2 — aL)(f(xo0) — f*)’

k
fx) = f(x*) <
2“){0
> In order to choose the optimal step-size, we maximize the function ¢(a) = a(2 — aL).
Hence, the optimal step size for the gradient method for f L-Lispchitz gradient is given by a@ = %

> Finally, since f(x0) < f* + V£(x*)T (x0 — x*) + (L/2)||x0 — x*||3 = f* + (L/2)r3, we obtain (5).
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*The proof of convergence rates in the convex case- part Ill

Theorem
If fis twice—differentiable u-strongly convex and L-smooth,
> with a = L+[J. the iterates of GD satisfy
I — k
k (%
It =l < (752 ) 10 =l ©)
> with o = % the iterates of GD satisfy
k
. L—p\2
I =l < (52 ) 10 =1 ™

Before proving the convergence rate, we first need a result about p-strongly convex and L-smooth functions.

Theorem

If f is p-strongly convex and L-smooth, then for any x and y, we have

nL 1
(Vi) = Vfly),x-y) = Pt L lIx -yl + mle(X) - Vi)l (8)
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*The proof of convergence rates in the convex case - part Il

Proof of (6) and (7)

> Let rp = ||x* — x*||. Then, using (8) and the fact that Vf(z*) = 0, we have
Tep1 = [Xk41 —x* —aV (M)

=i = 2a(Vf(x*),x" —x*) + 2|V f(x")|?

2oL 2
< (1 _ 2o ) 2 ta (a - —) IV £ ()12
w4+ L w+ L
> Since p < L, we have a < WLL in both the cases o = % or a = WLL So the last term in the previous

inequality is less than 0, and hence

2apL\*
2 2
Tht1 S (1 T L) T

> Plugging o = % and o = we obtain the rates as advertised.

2
TES A

> For f € fi’h, the optimal step-size is given by a = (i.e., it optimizes the worst case bound).

2
it+L
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*From gradient descent to mirror descent
Gradient descent as a majorization-minimization scheme
> Majorize f at x* by using L-Lipschitz gradient continuity
F60) < O + (9 £6E),x = x8) + 2l = %3 1= QG x¥)
> Minimize Q(x,x") to obtain the next iterate x**1
xF ! = argmin Q(x, x*) = Vf(x*) + L(x*¥Tt —xF) =0
x

1
xFHl = xk ZVf(xk)

Other majorizers

We can re-write the majorization step as

F(x) < FxF) +(VF(xF), x = x*) + ad(x, x*)

where d(x,xF) = %HX — x¥||2 is the Euclidean distance and o = L.

B GRnwsvseoa.diffsrsnk.funstion,dix,xe).Ehat is bettgr syjtgd to minimizing f7
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*Bregman divergences

Definition (Bregman divergence)

Let ¢ : S — R be a continuously-differentiable and strictly convex function defined on a closed convex set S.
The Bregman divergence (d,;) associated with 1) for points x and y is:

dy (%,y) = P(x) —P(y) — (VY(y),x —y)

> 4)(-) is referred to as the Bregman or proximity function.

> The Bregman divergence satisfies the following properties:
(a) dy(x,y) > 0 for all x and y with equality if and only if x =y
(b) Define gq(x) := dy (x,y) for a fixed y, then Vq(x) = Vi)(x) — Vi(y)
(c) Forallx,y,z €S, dy(x,y) = dy(x,2) + dy(z,y) + ((x — 2), VY(y) — Vi(2))
(d) Forallx,y € S, dy(x,y) + dy(y,x) = ((x —¥), VY (x) — Vi(y))

> The Bregman divergence becomes a Bregman distance when it is symmetric (i.e. dy(x,y) = dy(y,x)) and
satisfies the triangle inequality.

> “All Bregman distances are Bregman divergences but the reverse is not true!”
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*Bregman divergences

> The Bregman divergence is the vertical distance at x between 1) and the tangent of v at y, see figure below

&

y X

> The Bregman divergence measures the strictness of convexity of ¥(+).
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*Bregman divergences

Table: Bregman functions v (x) & corresponding Bregman divergences/distances d., (x,y)“.

Name (or Loss) [ Domain? [ P (x) [ dy (x,y)
Squared loss R z2 (x — y)2
x x
Itakura-Saito divergence Ryt — log x — —log | — —1
Y Y
Squared Euclidean distance RrP HXHE l[x — Y\\g
Squared Mahalanobis distance | RP (x, Ax) ((x —y),A(x —yN°

Entropy distance p»simplexd E z; logx; E z; log
i
P Zi
Generalized |-divergence R z; log z; log | = | — (TI - 'qL)
+ Yi

i 7

von Neumann divergence SiXP XlogX — X tr (X (logX — logY) — X 4+ Y)€
logdet divergence SI_:_X P — log det X tr (XY_ 1) — log det <XY_ 1) —p

T,y €ER, x,y € RP and X, Y € RPXP,
b Ry and R4 denote non-negative and positive real numbers respectively.
Ac Sﬁxp, the set of symmetric positive semidefinite matrix.
p-simplex= {x € RP : Zle z;=1,2; >0,i=1,...,p}
€ tr(A) is the trace of A.
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*Mirror descent [1]

What happens if we use a Bregman distance d,, in gradient descent?

Let ¢ : RP — R be a u-strongly convex and continuously differentiable function and let the associated Bregman

distance be dy (x,y) = ¥(x) — ¥(y) — (x — ¥, Vi (y))-
Assume that the inverse mapping ¢* of ¢ is easily computable (i.e., its convex conjugate).

> Majorize: Find aj such that
£00) < FOH) + (7 0e4), 3= ) + -y 3, 8) = Qe x0)
» Minimize
X = arg min Q) (x,x") = V() + — (V) = V() = 0
Vip(xF 1) = Vi (x¥) — a, V f(x)

XM = vyt (Vy(xF) — o VF(xF)  (Vy() ™" = Ve ()[5].

> Mirror descent is a generalization of gradient descent for functions that are Lipschitz-gradient in norms
other than the Euclidean.
> MD allows to deal with some constraints via a proper choice of .
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*What to keep in mind about mirror descent?

e Approximates the optimum by lower bounding the function via hyperplanes at x;

f(z)

/T/ @

e The smaller the gradients, the better the approximation!
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*Mirror descent example

How can we minimize a convex function over the unit simplex?

i (),

where
» A:={x€RP : Z;.’:l x; = 1,x > 0} is the unit simplex;

> fis convex L-Lipschitz continuous with respect to some norm || - ||. (not necessarily L-Lipschitz gradient)

Entropy function

> Define the entropy function

P
Pe(x) = E zjlnz; if x € A, +oo otherwise.
j=1
> 1) is 1-strongly convex over intA with respect to || - ||1.

> *(z) = In Z;’Zl €% and ||Vtpe(x)|| — 0o as x — % € A.
> Let x = p~ 11, then dy(x,x°) < Inp for all x € A.
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*Entropic descent algorithm [1]

Entropic descent algorithm (EDA)

Let x9 = p—11 and generate the following sequence

ko, —tef5(xF)

pir 2 TR
— 7 kN’ )
J Z§:1 z;?e e S (xF) Ly Vk

where f'(x) = (f1(x)/, ..., fp(x)")T € 8f(x), which is the subdifferential of f at x.
> This is an example of non-smooth and constrained optimization;

> The updates are multiplicative.
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*Convergence of mirror descent

Problem

min f(x)

xeEX
where
> X is a closed convex subset of RP;

> f is convex Lg-Lipschitz continuous with respect to some norm || - ||.

Theorem ([1])

Let {xk} be the sequence generated by mirror descent with x° € intX.
If the step-sizes are chosen as
2pdy (x*,x0) 1
o = —— ——

Ly vk
the following convergence rate holds
2dy (x*,x9) 1

2 Sy _ fr < T, e i S A
oin, fO) = 7 < Ly . NG

> This convergence rate is optimal for solving (9) with a first-order method.

ILIHGEDIE  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 60/ 62

(9)



References |

[1] Amir Beck and Marc Teboulle.
Mirror descent and nonlinear projected subgradient methods for convex optimization.
Operations Research Letters, 31(3):167-175, 2003.

[2] Peter J. Huber and Elvezio M. Ronchetti.
Robust Statistics.

John Wiley & Sons, Hoboken, NJ, 2009.

[3] Lucien Le Cam.
Asymptotic methods in Statistical Decision Theory.
Springer-Verl., New York, NY, 1986.

[4] Yu. Nesterov.
Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer, Boston, MA, 2004.

[5] R.T. Rockafellar.
Convex analysis.
Princeton University Press (Princeton, NJ), 1970.

IHEETNl  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 61/ 62 EPFL



References ||

[6] A. W. van der Vaart.
Asymptotic Statistics.
Cambridge Univ. Press, Cambridge, UK, 1998.

IHEETNl  Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 62/ 62 EPFL



	Lecture 2 material

