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Logistics

I Credits: 6

I Lectures: Monday 9:00-12:00 (MAB 111)

I Exercise hours: Friday 16:00-19:00 (BC 07-08)

I Prerequisites: Previous coursework in calculus, linear algebra, and probability is required. Familiarity with
optimization is useful.

I Grading: Homework exercises & exam (cf., syllabus)
I Moodle: My courses > Genie electrique et electronique (EL) > Master > EE-556

syllabus & course outline & HW exercises
I TA’s: Fabian Latorre (head TA), Ali Kavis (head TA), Maria Vladarean, Thomas Sanchez, Thomas

Pethick, Igor Krawczuk, Leello Dadi, Pedro Abranches.
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Logistics for online teaching

I Zoom link for video lectures and exercise hours:

https://go.epfl.ch/mod2021-zoom

Passcode: 994779
I Switchtube channel for recorded videos:

https://tube.switch.ch/channels/90d486a0
I Moodle:

https://moodle.epfl.ch/course/view.php?id=14220
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Outline

I Overview of Mathematics of Data
I Empirical Risk Minimization
I Statistical Learning with Maximum Likelihood Estimators
I Decomposition of error
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Recommended preliminary material

◦ Supplementary slides on

1. Linear Algebra
2. Basic Probability
3. Complexity
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Overview of Mathematics of Data

Towards Learning Machines
The course presents data models, optimization formulations, numerical algorithms, and the associated analysis
techniques with the goal of extracting information &knowledge from data while understanding the trade-offs.

Data Loss Function Model

Algorithm
Time

Computation

Bias

Ethics

Convergence Generalization

RobustnessInterpretabilityFairness
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An overview of statistical learning by Vapnik

A basic statistical learning framework [8]
A statistical learning problem usually consists of three elements.
1. A generator that produces samples ai ∈ Rp of a random

variable a with an unknown probability distribution Pa.
2. A supervisor that for each ai ∈ Rp, generates a sample bi of a

random variable B with an unknown conditional probability
distribution PB|a .

3. A learning machine that can respond as any function
h(ai) ∈ H◦ of ai in some fixed function space H◦.

◦ Via this framework, we will study classification, regression, and density estimation problems
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A classification example: Cancer prediction

b1 = 1

b2 = 1

bn = �1

(disease)

(disease)

(not disease)

a1

a2

an

◦ Goal: Assist doctors in diagnosis

◦ Generator Pa

I Genome data at: http://genome.ucsc.edu

◦ Supervisor PB|a
I Health bt = 1 or −1: Cancer or not

◦ Learning Machine h(ai)
I Data scientist: Mathematics of Data
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A regression example: House pricing

(source: https://www.homegate.ch)

ai = [ location, size, orientation, view, distance to public transport, ... ]

bi = [ price ]

◦ Goal: Assist pricing decisions

◦ Generator Pa

I Owners, architects, municipality, constructors

◦ Supervisor PB|a
I House data (homegate, comparis, immobilier...)

◦ Learning Machine h(ai)
I Data scientist: Mathematics of Data
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A density estimation example: Image generation

(source: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)

ai = [ ...images...]
bi = [ ...probability... ]

◦ Goal: Games, denoising, image recovery...

◦ Generator Pa

I Nature

◦ Supervisor PB|a
I Frequency data

◦ Learning Machine h(ai)
I Data scientist: Mathematics of Data
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Loss function

Definition (Loss function)
A loss function L : B × B → R on a set is a function that satisfies some or all properties of a metric. We use
loss functions in statistical learning to measure the data fidelity L(h(a), b).

Definition (Metric)
Let B be a set. A function d(·, ·) : B×B → R is a metric if ∀b1,2,3 ∈ B :
(a) d(b1, b2) ≥ 0 for all b1 and b2 (nonnegativity)
(b) d(b1, b2) = 0 if and only if b1 = b2 (definiteness)
(c) d(b1, b2) = d(b2, b1) (symmetry)
(d) d(b1, b2) ≤ d(b1, b3) + d(b3, b2) (triangle inequality)

Remarks: ◦ A pseudo-metric satisfies (a), (c) and (d) but not necessarily (b).
◦ Norms induce metrics while pseudo-norms induce pseudo-metrics.
◦ A divergence satisfies (a) and (b) but not necessarily (c) or (d)
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Loss function examples

2 1 0 1 2
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0-1 loss
Hinge loss

Definition (Hinge loss)
For a binary classification problem, the hinge loss for a score value b1 ∈ R
and class label b2 ∈ ±1 is given by L(b1, b2) = max(0, 1− b1 × b2).

2 0 2 4
b

0.0

0.1

0.2

0.3

0.4

 

L1 Loss
L2 Loss

Definition (`q-losses)
For all b1,b2 ∈ Rn × Rn, we can use Lq(b1,b2) = ‖b1 − b2‖qq , where

`q-norm: ‖b‖qq :=
∑n

i=1 |bi|
q for b ∈ Rn and q ∈ [1,∞)

Definition (1-Wasserstein distance)
Let µ and ν be two probability measures on Rd an define their couplings
as Γ(µ, ν) := {π probability measure on Rd × Rd with marginals µ, ν}.

W1(µ, ν) := inf
π∈Γ(µ,ν)

E(x,y)∼π ‖x− y‖
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A risky, non-parametric reformulation of basic statistical learning

Statistical Learning Model [8]
A statistical learning model consists of the following three elements.

1. A sample of i.i.d. random variables (ai, bi) ∈ A× B, i = 1, . . . , n,
following an unknown probability distribution P.

2. A class (set) H◦ of functions h : A → B.
3. A loss function L : B × B → R, measuring data fidelity.

Definition (Risk)
Let (a, b) follow the probability distribution P and be independent of (a1, b1), . . . , (an, bn). Then, the risk
corresponding to any h ∈ H◦ is its expected loss for a chosen loss function L:

R(h) := E(a,b) [L(h(a), b)] .

Statistical learning seeks to find a h◦ ∈ H◦ that minimizes the population risk, i.e., it solves

h◦ ∈ arg min
h
{R(h) : h ∈ H◦} .

Observations: ◦ Since P is unknown, the optimization problem above is intractable.
◦ Since H◦ is often unknown, we might have a mismatched function class in constraints.
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Empirical risk minimization (ERM)

Empirical risk minimization (ERM) [8]
We approximate h◦ by minimizing the empirical average of the loss instead of the risk. That is, we consider

h? ∈ arg min
h

{
1
n

n∑
i=1

L(h(ai), bi) : h ∈ H

}
,

where H is our best estimate of the function class H◦. Ideally, H ≡ H◦.

Rationale: By the law of large numbers, we can expect that for each h ∈ H,

R(h) := E(a,b) [L(h(a), b)] ≈
1
n

n∑
i=1

L(h(ai), bi)

when n is large enough, with high probability.

Theorem (Strong Law of Large Numbers)
Let X be a real-valued random variable with the finite first moment E[X], and let X1, X2, ..., Xn be an infinite
sequence of independent and identically distributed copies of X. Then, the empirical average of this sequence
X̄n :=

1
n

(X1 + ...+Xn) converges almost surely to E[X]: i.e., P
(
limn→∞X̄n = E[X]

)
= 1.
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An ERM example

Statistical learning with empirical risk minimization (ERM) [8]
We approximate h◦ by minimizing the empirical average of the loss instead of the risk. That is, we consider

h? ∈ arg min
h∈H

{
Rn(h) :=

1
n

n∑
i=1

L(h(ai), bi)

}
.

Observations: ◦ The search space H is possibly infinite dimensional. It is still not solvable!
I H is a non-empty set with a corresponding reproducing kernel Hilbert space.
◦ We can find numerical solutions as if the problem is parameterized.

Statistical learning with empirical risk minimization (ERM) [8]
In contrast, when the function h has a parametric form hx(·), we can instead solve

x? ∈ arg min
x∈X

{
Rn(hx) =

1
n

n∑
i=1

L(hx(ai), bi)

}
.
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Basic statistics: Model

Parametric estimation model
A parametric estimation model consists of the following four elements:
1. A parameter space, which is a subset X of Rp

2. A parameter x\, which is an element of the parameter space
3. A class of probability distributions PX := {Px : x ∈ X}
4. A sample (ai, bi), which follows the distribution bi ∼ Px\,ai

∈ PX

Example: Gaussian linear model
Let x\ ∈ Rp. Let bi =

〈
ai,x\

〉
+ wi for i = 1, . . . , n, where wi ∈ R is a

Gaussian random variable with zero mean and variance σ2 (i.e.,
wi ∼ N (0, σ2)).

◦ Linear model is super general (see Recitation 1).

◦ Models are often wrong! Robustness vs Performance.

◦ Statistical estimation seeks to approximate x\, given X , PX , and b.
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Basic statistics: Estimator

Definition (Estimator)
An estimator x? is a mapping that takes X , PX , (ai, bi)i=1,...,n as inputs, and outputs a value in X .

Observations: ◦ The output of an estimator depends on the sample, and hence, is random.

◦ The output of an estimator is not necessarily equal to x\.

Example: The least-squares estimator (LS)
The least-squares estimator is given by

x?LS ∈ arg min

{
1
n

n∑
i=1

(bi − 〈ai,x〉)2 : x ∈ Rp
}
.
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Basic statistics: Loss function

Example: The least-squares estimator (LS)
The least-squares estimator is given by

x?LS ∈ arg min
x∈Rp

{ 1
n
‖b−Ax‖22 : x ∈ Rp

}
= arg min

{
1
n

n∑
i=1

(bi − 〈ai,x〉)2 : x ∈ Rp
}
,

where we define b := (b1, . . . , bn) and ai to be the i-th row of A.

A statistical learning view of least squares
The LS estimator corresponds to a statistical learning model, for which
I the sample is given by (ai, bi) ∈ Rp × R, i = 1, . . . , n,
I the function class H is given by H := {hx(·) := 〈·,x〉 : x ∈ Rp},

and
I the loss function is given by L(hx(a), b) := (b− hx(a))2.

Observation: ◦ Given the estimator x?LS, the learning machine outputs hx?
LS

(a) :=
〈

a,x?LS
〉
.
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One way to choose the loss function

Recall the general setting.

Parametric estimation model
A parametric estimation model consists of the following four elements:
1. A parameter space, which is a subset X of Rp

2. A parameter x\, which is an element of the parameter space
3. A class of probability distributions PX := {Px : x ∈ X}
4. A sample (ai, bi), which follows the distribution bi ∼ Px\,ai

∈ PX

Definition (Maximum-likelihood estimator)
The maximum-likelihood (ML) estimator is given by

x?ML ∈ arg min
x∈X
{L(hx(a),b) := − log px(b)} ,

where px(·) denotes the probability density function or probability mass function of Px, for x ∈ X .
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The least squares estimator: An intuitive derivation

Gaussian linear model
Let x\ ∈ Rp. Let b := Ax\ + w ∈ Rn for some matrix A ∈ Rn×p, where w is a Gaussian vector with zero
mean and covariance matrix σ2I.

The derivation: The probability density function px(·) is given by

px(b) =
( 1
√

2πσ2

)n
exp
(
−

1
2σ2 ‖b−Ax‖22

)
.

Therefore, the maximum likelihood (ML) estimator is defined as

x?ML ∈ arg min
x

{
− log px(b) = −

n

2
log(2πσ2) +

1
2σ2 ‖b−Ax‖22 : x ∈ Rp

}
,

which is equivalent to

x?ML ∈ arg min
x

{ 1
n
‖b−Ax‖22 : x ∈ Rp

}
.

Observations: ◦ The LS estimator is the ML estimator for the Gaussian linear model.

◦ The loss function is the quadratic loss.
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Statistical learning with ML estimators

◦ A visual summary: From parametric models to learning machines

(ai, bi)ni=1
modeling−−−−−−−→

parameter x
P (bi|ai,x) independency−−−−−−−−→

identical dist.
px(b) :=

n∏
i=1

P (bi|ai,x)

↓ maximizing w.r.t x
a −→Learning Machine←− x?ML

prediction ↓
hx?

ML
(a)

Observations: ◦ Recall x?ML ∈ arg minx∈X {L(hx(a),b) := − log px(b)}.

◦ Maximizing px(b) gives the ML estimator.

◦ Maximizing px(b) and minimizing − log px(b) result in the same solution set.

◦ See Recitation 1 for more examples in classification, imaging, and quantum tomography
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Learning machines result in optimization problems

Definition (M -Estimator)
The learning machine typically has to solve an optimization problem of
the following form:

x?M ∈ arg min
x∈X
{F (x)}

for some function F depending on the sample space X , class of
probability distributions PX , and sample b. The term “M -estimator”
denotes “maximum-likelihood-type estimator” [2].

Example: The least-absolute deviation estimator (LAD)
The least-absolute deviation estimator is given by

x?LAD ∈ arg min

{
1
n

n∑
i=1

|bi − 〈ai,x〉| : x ∈ Rp
}
.

Remark: ◦ The LAD estimator is more robust to outliers than the LS estimator.
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Practical Issues

Given an estimator x? ∈ arg minx∈X {F (x)} of x\, we have two questions:

1. Is the formulation reasonable?
2. What is the role of the data size?
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Standard approach to checking the fidelity

Standard approach

1. Specify a performance criterion or a (pseudo)metric d(x?,x\) that should be small if x? = x\.
2. Show that d is actually small in some sense when some condition is satisfied.

Example
Take the `2-error d(x?,x\) :=

∥∥x? − x\
∥∥2

2
as an example. Then we may verify the fidelity via one of the

following ways, where ε denotes a small enough number:
1. E

[
d(x?,x\)

]
≤ ε (expected error),

2. P
(
d(x?,x\) > t

)
≤ ε for any t > 0 (consistency),

3.
√
n(x? − x\) converges in distribution to N (0, I) (asymptotic normality),

4.
√
n(x? − x\) converges in distribution to N (0, I) in a local neighborhood (local asymptotic normality).

if some condition is satisfied. Such conditions typically revolve around the data size.

◦ Recitation 1 explains these concepts in detail.
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Expected error

Gaussian linear model
Let x\ ∈ Rp and let A ∈ Rn×p. The samples are given by b = Ax\ + w, where w is a sample of a Gaussian
random vector w ∼ N (0, σ2I).

What is the performance of the ML estimator

x?ML ∈ arg min
x∈Rp

{ 1
n
‖b−Ax‖22

}
?

Theorem (Performance of the LS estimator [6])
If A is a matrix of independent and identically distributed (i.i.d.) standard Gaussian distributed entries, and if
n > p+ 1, then

E

[∥∥x?ML − x\
∥∥2

2

]
=

p

n− p− 1
σ2 → 0 as

n

p
→∞.
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Performance of the ML estimator
Problem
Let x\ ∈ Rp be unknown and b1, ..., bn be i.i.d. samples of a random variable B with p.d.f.
px\ (b) ∈ P := {px(b) : x ∈ Rp}. Estimate x\ from b1, . . . , bn.

Optimization formulation (ML estimator)

x?ML := arg min
x∈Rp

{
−

1
n

n∑
i=1

log [px(bi)]

}
= arg min

x∈Rp
f(x)

Theorem (Performance of the ML estimator [4, 7])
Under some technical conditions, the random variable x?ML satisfies

lim
n→∞

√
nJ−1/2

(
x?ML − x\

) d= Z ∼ N (0, I), where J := −E
[
∇2

x log [px(B)]
]∣∣

x=x\

is the Fisher information matrix associated with one sample.

Roughly speaking,∥∥√nJ−1/2
(

x?ML − x\
)∥∥2

2
∼ Tr (I) = p ⇒

∥∥x?ML − x\
∥∥2

2
= O(p/n) .
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Performance of the ML estimator
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Example: ML estimation for quantum tomography

Problem (Quantum tomography)
A quantum system of q qubits can be characterized by a density operator, i.e., a Hermitian positive semidefinite
X\ ∈ Cp×p with p = 2q .
Let b1, . . . , bn be samples of independent random variables B1, . . . , Bn, with probability distribution

P ({bi = k}) = Tr
(

AkX\
)
, k = 1, . . . ,m,

where {A1, . . . ,Am} ⊆ Cp×p is a positive operator-valued measure, i.e., a set of Hermitian positive
semidefinite matrices summing to I.
How do we estimate X\ given {A1, . . . ,Am} and b1, . . . , bn?

The ML estimator

X?
ML ∈ arg min

X∈Cp×p

{
−

1
n

n∑
i=1

m∑
k=1

I{bi=k} ln [Tr (AkX)] : X = XH ,X � 0

}
.
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Example: ML estimation for quantum tomography

101 102 103

10−1

100

n (numb er of sample s)

‖X̂
M

L
−

X
\ ‖

F

Performance of ML estimator for quantum tomography with 3 qubits

 

 

Numerical re sult

4.5/
√
n
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Caveat Emptor: The ML estimator does not always yield the optimal performance!

Problem
Let x\ ∈ Rp. Let bi =

〈
ai,x\

〉
+wi for i = 1, . . . , n, where wi ∼ N (0, 1).

Let ai = [ 0︸︷︷︸
1

. . . 0︸︷︷︸
i−1

1︸︷︷︸
i

0︸︷︷︸
i+1

. . . 0︸︷︷︸
p

]T be the unit coordinate vector

at the ith coordinate. How do we estimate x\ given b?

The ML solution
Since b ∼ N (x\, I), the ML estimator is given by x?ML := b.

James-Stein estimator [3]
For all p ≥ 3, the James-Stein
estimator is given by

x?JS :=
(

1−
p− 2
‖b‖22

)
+

b,

where (a)+ = max(a, 0).

Theorem (Performance comparison: ML vs. James-Stein [3])
For all x\ ∈ Rp with p ≥ 3, we have

E

[∥∥x?JS − x\
∥∥2

2

]
< E

[∥∥x?ML − x\
∥∥2

2

]
.

In expectation, the performance of the ML estimator is uniformly
dominated by the performance of the James-Stein estimator!
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Elephant in the room: What happens when n < p?

The linear model and the LS estimator when n < p

Let x\ ∈ Rp and A ∈ Rn×p. The samples are given by
b = Ax\ + w, where w denotes the unknown noise.
The LS estimator for x\ given A and b is defined as

x?LS ∈ arg min
x∈Rp

{
‖b−Ax‖22

}
.

The estimation error
∥∥x?LS − x\

∥∥
2
can be arbitrarily large!

x?candidate = A†b

x\ + h, h 2 null(A)

x̂candidate

x\

Proposition (The amount of overfitting [1])
Suppose that A ∈ Rn×p is a matrix of i.i.d. standard Gaussian random variables, and w = 0. We have

(1− ε)
(

1−
n

p

)∥∥x\
∥∥2

2
≤
∥∥x?candidate − x\

∥∥2
2
≤ (1− ε)−1

(
1−

n

p

)∥∥x\
∥∥2

2

with probability at least 1− 2 exp
[
−(1/4)(p− n)ε2

]
− 2 exp

[
−(1/4)pε2

]
, for all ε > 0 and x\ ∈ Rp.
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Role of computation

Observations: ◦ The estimator x?’s performance, e.g.,
∥∥x? − x\

∥∥2
2
, depends on the data size n.

◦ Evaluating
∥∥x? − x\

∥∥2
2
is not enough for evaluating the performance of a Learning Machine

I We can only numerically approximate the solution of

x? ∈ arg min
x∈Rp

{F (x)} .

◦ We use algorithms to numerically approximate x?.

Practical performance
Denote the numerical approximation by an algorithm at time t by xt.
The practical performance at time t using n data samples is determined by∥∥xt − x\

∥∥
2︸           ︷︷           ︸

ε̄(t,n)

≤
∣∣∣∣xt − x?

∣∣∣∣
2︸           ︷︷           ︸

ε(t)

+
∥∥x? − x\

∥∥
2︸            ︷︷            ︸

ε(n)

,

where ε(n) denotes the statistical error, ε(t) is the numerical error, and ε̄(t, n)
denotes the total error of the Learning Machine.

x\

x?

xtxt−1xt−2

ε(t, n)

ε(
n)

ε(t)
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Peeling the onion

Models
Let d(·, ·) : H◦ ×H◦ → R+ be a metric in an extended function space
H◦ that includes H; i.e., H ⊆ H◦. Let
1. h◦ ∈ H◦ be the true, expected risk minimizing model
2. h\ ∈ H be the solution under the assumed function class H ⊆ H◦

3. h? ∈ H be the estimator solution
4. ht ∈ H be the numerical approximation of the algorithm at time t

Practical performance

d(ht, h◦)︸       ︷︷       ︸
ε̄(t,n)

≤ d(ht, h?)︸       ︷︷       ︸
optimization error

+ d(h?, h\)︸       ︷︷       ︸
statistical error

+ d(h\, h◦)︸       ︷︷       ︸
model error

,

where ε̄(t, n) denotes the total error of the Learning Machine. We can try to
1. reduce the optimization error with computation
2. reduce the statistical error with more data samples, with better estimators, and with prior information
3. reduce the model error with flexible or universal representations

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 33/ 40



Estimation of parameters vs estimation of risk

Nomenclature
Rn(·) training error
R(·) test error

R(x\)−R(x◦) modeling error
R(x?)−R(x\) excess risk

supx∈X |R(x)−Rn(x)| generalization error
Rn(xt)−Rn(x?) optimization error

Recall the general setting
Let R(hx) = EL(hx(a), b) be the risk function and
Rn(hx) = 1

n

∑n

i=1 L(hx(ai), bi) be the empirical estimate.
Let X ⊆ X ◦ be parameter domains, where X is known. Define

1. x◦ ∈ arg minx∈X◦ R(hx): true minimum risk model
2. x\ ∈ arg minx∈X R(hx): assumed minimum risk model
3. x? ∈ arg minx∈X Rn(hx): ERM solution
4. xt: numerical approximation of x? at time t

X → X ◦ n ↑ p ↑
Training error ↘ ↗ ↘
Excess risk ↗ ↘ ↗
Generalization error ↗ ↘ ↗
Modeling error ↘ = !
Time ↗ ↗ ↗
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Peeling the onion (risk minimization setting)

Models
Let X ⊆ X ◦ be parameter domains, where X is known. Define
1. x◦ ∈ arg minx∈X◦ R(hx): true minimum risk model
2. x\ ∈ arg minx∈X R(hx): assumed minimum risk model
3. x? ∈ arg minx∈X Rn(hx): ERM solution
4. xt: numerical approximation of x? at time t

Practical performance

R(xt)−R(x◦)︸                 ︷︷                 ︸
ε̄(t,n)

≤ Rn(xt)−Rn(x?)︸                     ︷︷                     ︸
optimization error

+2 sup
x∈X
|R(x)−Rn(x)|︸                         ︷︷                         ︸

generalization error

+ R(x\)−R(x◦)︸                 ︷︷                 ︸
model error

where ε̄(t, n) denotes the total error of the Learning Machine. We can try to
1. reduce the optimization error with computation
2. reduce the generalization error with regularization or more data
3. reduce the model error with flexible or universal representations
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How does the generalization error depend on the data size and dimension?

Theorem ([5])
Let hx : Rp → R, hx(a) = xT a and let L(hx(a), b) = max(0, 1− b · xT a) be the hinge loss. Let
X := {x ∈ Rp : ‖x‖ ≤ λ}. Suppose that ‖a‖ ≤ √p almost surely (boundedness).

Roughly speaking, with some probability that we can control, the following holds:

sup
x∈X
|Rn(x)−R(x)| = O

(
λ

√
p

n

)
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Wrap up!

I Lecture on Monday 9:00 - 11:00
I Questions/Self study on Monday 11:00 - 12:00
I Exercise session on Friday 16:00 - 18:00
I Unsupervised work on Friday 18:00 - 19:00
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?Peeling the onion (risk minimization setting) - Decomposition details

R(xt)−R(x\) = R(xt)−Rn(xt) +Rn(xt)−Rn(x?)+Rn(x?)−Rn(x\)︸                     ︷︷                     ︸
≤0

+Rn(x\)−R(x\)

≤ Rn(xt)−Rn(x?) +R(xt)−Rn(xt) +Rn(x\)−R(x\)︸                                                 ︷︷                                                 ︸
2 supx∈X |Rn(x)−R(x)|

R(xt)−R(x◦) = R(xt)−R(x\) +R(x\)−R(x◦)

≤ Rn(xt)−Rn(x?) + 2 sup
x∈X
|Rn(x)−R(x)|+R(x\)−R(x◦)
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5

https://go.epfl.ch/safespaceSafe Space
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