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Outline

This lecture :
I The classical trade-off between model complexity and risk
I The generalization mystery in Deep Learning
I Implicit regularization of optimization algorithms
I Double Descent curves
I Generalization bounds based on Algorithmic Stability

Next lecture :
I Optimization in Deep Learning
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Understanding the trade-off between model complexity and expected risk

Models
Let [Xi : i = 1, . . .] be a nested sequence of parameter domain, i.e.,
Xi ⊆ Xi+1. For example, let Xi = neural networks with i neurons.
1. Rn(x?i ) = minx∈Xi

Rn(x): ERM solution over Xi
2. R(x?i ): True risk of the ERM solution over Xi
3. supx∈Xi

|R(x)−Rn(x)|: Worst-case Generalization error of Xi

Practical performance of the ERM estimator

R(x?i ) ≤ min
x∈Xi

Rn(x) + sup
x∈Xi

|R(x)−Rn(x)| (1)

As we increase the index i→ i+ 1 of the parameter domain, i.e., we choose a larger (more complex) model
1. The minimum empirical risk decreases minx∈Xi

Rn(x) ≥ minx∈Xi+1 Rn(x).
2. The generalization error increases. supx∈Xi

|R(x)−Rn(x)| ≤ supx∈Xi+1 |R(x)−Rn(x)|.

3. What happens with the true risk R(x?i )?
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The classical trade-off between model complexity and risk

Occam’s Razor: Simple is better than complex.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 5/ 40



The dangers of complex function classes: severe overfitting

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Degree 20 polynomial fit

ground-truth
model
samples

Figure: Training over a complex function class can lead to overfitting.
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The Complexity vs Risk trade-off in practice (I)
“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??
• There exist global mins with large #hidden units have test error = 1.

– But among the global minima, SGD is somehow converging to “good” ones.
https://www.neyshabur.net/papers/inductive_bias_poster.pdf

Figure: Training (empirical) and test (true) error for one-hidden-layer networks of increasing width, trained with SGD.

Empirical error becomes zero for a wide enough network. What should happen for even wider networks?

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 7/ 40



The Complexity vs Risk trade-off in practice (II)
“Hidden” Regularization in Neural Networks

• Fitting single-layer neural network with SGD and no regularization:

• Test error continues to go down!?! Where is fundamental trade-off??
• There exist global mins with large #hidden units have test error = 1.

– But among the global minima, SGD is somehow converging to “good” ones.
https://www.neyshabur.net/papers/inductive_bias_poster.pdf

Figure: Training (empirical) and test (true) error for one-hidden-layer networks of increasing width, trained with SGD.

Test error continues to go down even if we keep incresing the complexity of the model!
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The Generalization Mystery in Deep Learning

A gap between theory and practice
◦ In practice, simple algorithms like SGD can
train neural networks to zero error and
achieve low test error.
◦ This happens even for large and complex
neural network architectures.
◦ Complexity measures like the Rademacher
complexity suggest the opposite behaviour
(overfitting)
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Multiple global minimizers of the empirical risk

◦ There is a unique global minimum Rn(x?)

, but many parameters can attain such value.
◦ Each minimizer of the empirical risk might have a different true risk.
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Not all global minimizers are the same

• Consider a simple 2D classification task, and train a neural network with fixed step-size SGD.
• The plots below correspond to two different global minimizers:
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SGD never lands on the global minimum on the right! Why?
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Understanding the Implicit bias of optimization algorithms

◦ SGD seems to be biased towards good global minimizers (low true risk).
◦ Some optimization algorithms have an implicit bias towards certain kinds of global minimizers.
◦ Can we characterize this implicit bias?

Definition (Algorithm)
We will refer to a function (deterministic or randomized) A : Z → X , mapping Z 7→ AZ as an algorithm with
input Z ∈ Z and output AZ ∈ X .

Example: Gradient Descent Algorithm
We denote GD(T,α,x0,∇f) := T -steps of GD with stepsize α, starting from x0, using gradient ∇f .
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What is Implicit Regularization?

Definition (Implicit Regularization of a Deterministic Algorithm)
Consider a minimization problem

F ? = min
x∈X

F (x)

and let A be a deterministic algorithm with input Z ∈ Z and output AZ ∈ X .

We say that A solves problem (2) and has implicit regularization H : X × Z → R if

AZ ∈ arg min
F (x)=F?

H(x, Z).

Given the input Z ∈ Z, the algorithm outputs a global minimizer of F that, additionaly, minimizes H(·, Z).
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Implicit bias of Gradient Descent for Linear Regression

◦ Consider for example an underdetermined linear system

Ax = b, with A ∈ Rn×p, n < p

◦ If a solution exists (i.e., b ∈ colspan(A)), then there is an infinite number of solutions to this system.

Finding a solution
To find a valid x, we could apply one of the optimization algorithms seen in class to the convex problem

arg min
x∈Rp

1
2
‖Ax− b‖22

Among all the possible solutions, which one will the algorithm converge to ?
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Different algorithms, different solutions

Initialization

Gradient 
Descent

AdaGrad

Ax = b

Euclidean norm 
ball

Consider the following simple 2D example :[
1 2

] [x1
x2

]
= 5

Different Solutions
Gradient Descent and AdaGrad converge to different
points on the line.
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Implicit bias of gradient descent for linear regression

◦ Gradient descent seems to converge to the closest one in terms of `2-norm.

Theorem (Formal Statement)
For the minimization problem

F ? = min
x∈X

F (x) =
1
2
‖Ax− b‖22

the gradient descent algorithm GD(T,α,x0,∇F ), for T =∞ and for any x0 ∈ Rp, and valid step-size α, has
implicit bias H(x) = ‖x− x0‖2, i.e.,

GD(T=∞,α,x0,∇F ) = arg min
F (x)=F?

‖x− x0‖2.

Remark: ◦ The theorem also holds for stochastic gradient descent, see [1].
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Different algorithms, different solutions

Initialization

Gradient 
Descent

AdaGrad

Ax = b

Euclidean norm 
ball

Proof : For simplicity, take x0 = 0.
I The gradient of F is AT (Ax− b).
I This implies that ∀x, ∇f(x) ∈ colspan(AT ).

GD iterates stay in the rowspan
Gradient Descent is therefore constrained to the space

colspan(AT ) = rowspan(A)

So its limit point at T =∞ is in rowspan(A).

I Note that because of the preconditionning,
AdaGrad can get out of the rowspan(A).
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Different algorithms, different solutions

x\ + h, h 2 null(A)

x̂candidate

x\

Proof (continued):
I The minimum norm solution

x̂candidate = arg min
x:Ax=b

‖x‖22

is also in rowspan(A).
I So both x̂candidate and the limit point of GD are
solutions of Ax = b that are in the rowspan(A)

I Since nullA∩ rowspan(A) = {0}, there can only
be one solution in the rowspan(A), so

x?GD = x̂candidate
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Implicit Bias for linear models

◦ We can extend this analysis to linear models:

arg min
x∈Rp

F (x) :=
n∑
i=1

L(〈x,ai〉, bi).

◦ If the observations are realizable and there are many global minima Glob = {x : F (x) = 0}, then

Theorem (Implicit Bias of Gradient Descent [2])
If the loss L is convex and has a unique (attained) minimum, then the iterates xt of Gradient Descent converge
to the global minimum that is closest to initialization w0 in `2-distance :

xt −−−−→
t→∞

arg min
x∈Glob

‖x− x0‖2

Proof : (Sketch) The assumption on L implies the problem reduces to a linear system: If x is a global
minimum, we must have 〈x,ai〉 = bi for all i ∈ {1, .., n}. We can recycle the results we have just seen.
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Implicit Bias for linearly separable datasets

◦ For linearly separable datasets, we know of an algorithm capable of finding a separating hyperplane.

◦ It maximizes the margin (i.e., distance between the boundary and the nearest training-data point).

Hard-margin Support Vector Machines
The hard margin Support Vector Machine solves the
following optimization problem :

arg min
x∈Rp

‖x‖2 subject to yi〈x,ai〉 ≥ 1.

It finds a hyperplane that maximizes the margin. It
does so by design.
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Implicit Bias for linearly separable datasets

◦ What happens if we do not explicitly enforce margin maximization ?

Theorem (Implicit Bias of Gradient Descent on Separable Data [8, 2])
For the logistic loss (and some other strictly monotonically decreasing losses) and for linearly separable datasets,
the direction of the iterates xt of Gradient Descent for any initialization converges to the hard-margin SVM
direction :

xt

‖xt‖2
−−−−→
t→∞

x?SVM
‖x?SVM‖2

where x?SVM =
{

arg min
x∈Rp

‖x‖2 subject to yi〈x,ai〉 ≥ 1
}

Remarks: ◦ Here, without explicit instructions, gradient descent maximizes the margin.

◦ The rate of this convergence is O
(

1
log t

)
.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 21/ 40



Implicit Bias for linearly separable datasets

◦ A similar result can be established for stochastic gradient descent for the logistic loss on separable datasets.

Theorem (Implicit Bias of Stochastic Gradient Descent on Separable Data [5])
The direction of the iterates xt of Stochastic Gradient Descent for any initialization and for a small enough
fixed step-size, converges almost surely to the hard-margin SVM direction :∥∥∥∥ xt

‖xt‖2
−

x?SVM
‖x?SVM‖2

∥∥∥∥
2

= O

( 1
log t

)
Remarks: ◦ This result is particularly interesting as it establishes convergence of fixed stepsize SGD.

◦ Both SGD and GD have the same implicit bias towards maximizing margins.

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 22/ 40



Implicit bias for non-convex objectives

◦ Characterizing implicit bias of stochastic gradient descent for non-convex objectives is an active research area.

◦ Some papers study deep matrix factorization as a first step towards getting results for neural networks.

Deep Matrix Factorization
Deep matrix factorization consists of parametrizing a matrix M as a product of N matrices :

M = XNXN−1 . . .X1

which can be understood as parametrizing M by a depth N “linear neural network,” i.e., a neural network with
no activations and with weight matrices X.
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Implicit bias for deep matrix completion

◦ The matrix completion problem consists of filling the missing entries of a partially observed matrix.

◦ The deep matrix factorization approach consists of solving the following problem with gradient descent:

arg min
XN ,XN−1...,X1

∑
(i,j)∈Ω

([XNXN−1 . . .X1]i,j − bi,j)2.

◦ It was conjectured in 2017 [3] that gradient descent was biased towards solutions with small nuclear norm.

Theorem (Implicit Regularization May Not Be Explainable by Norms (2020) [7])
For deep matrix completion the implicit bias can not be expressed as a function of a norm or semi-norm.
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Double Descent curve in the Practical Performance of SGD (I)
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Double Descent curve in the Practical Performance of SGD (II)

DEEP DOUBLE DESCENT:
WHERE BIGGER MODELS AND MORE DATA HURT

Preetum Nakkiran⇤

Harvard University
Gal Kaplun†

Harvard University
Yamini Bansal†
Harvard University

Tristan Yang
Harvard University

Boaz Barak
Harvard University

Ilya Sutskever
OpenAI

ABSTRACT

We show that a variety of modern deep learning tasks exhibit a “double-descent”
phenomenon where, as we increase model size, performance first gets worse and
then gets better. Moreover, we show that double descent occurs not just as a
function of model size, but also as a function of the number of training epochs.
We unify the above phenomena by defining a new complexity measure we call
the effective model complexity and conjecture a generalized double descent with
respect to this measure. Furthermore, our notion of model complexity allows us to
identify certain regimes where increasing (even quadrupling) the number of train
samples actually hurts test performance.

1 INTRODUCTION

Figure 1: Left: Train and test error as a function of model size, for ResNet18s of varying width
on CIFAR-10 with 15% label noise. Right: Test error, shown for varying train epochs. All models
trained using Adam for 4K epochs. The largest model (width 64) corresponds to standard ResNet18.

The bias-variance trade-off is a fundamental concept in classical statistical learning theory (e.g.,
Hastie et al. (2005)). The idea is that models of higher complexity have lower bias but higher vari-
ance. According to this theory, once model complexity passes a certain threshold, models “overfit”
with the variance term dominating the test error, and hence from this point onward, increasing model
complexity will only decrease performance (i.e., increase test error). Hence conventional wisdom
in classical statistics is that, once we pass a certain threshold, “larger models are worse.”

However, modern neural networks exhibit no such phenomenon. Such networks have millions of
parameters, more than enough to fit even random labels (Zhang et al. (2016)), and yet they perform
much better on many tasks than smaller models. Indeed, conventional wisdom among practitioners
is that “larger models are better’’ (Krizhevsky et al. (2012), Huang et al. (2018), Szegedy et al.

⇤Work performed in part while Preetum Nakkiran was interning at OpenAI, with Ilya Sutskever. We espe-
cially thank Mikhail Belkin and Christopher Olah for helpful discussions throughout this work. Correspondence
Email: preetum@cs.harvard.edu

†Equal contribution
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Figure: Left: Train and test error as a function of model size, for ResNet18s of varying width on CIFAR-10 with 15% label noise.
Right: Test error, shown for varying train epochs. source: [6].
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Underpametrized Regime

Figure: Low generalization but high empirical error Figure: Sweet spot for the model complexity
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Interpolation threshold

Figure: The unique degree 19 polynomial that can fit 20 samples.

Deep Double Descent [6]
"The intuition is that for model-sizes at the interpolation threshold, there is effectively only one model that fits
the train data and this interpolating model is very sensitive to noise. Forcing it to fit noise destroys its global
structure."
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Harmless Interpolation in the overparametrized regime

Figure: A degree 200 polynomial that can harmlessly fits noisy 20 points.

Deep Double Descent [6]
"For over-parameterized models, there are many interpolating models that fit the train set, and SGD is able to
find one that “memorizes” (or “absorbs”) the noise while still performing well on the distribution."
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Alternatives to complexity-based generalization bounds

◦ So far we have seen that complexity based generalization bounds:
I characterize worst-case scenario

I not tight in practice

I disregard the effect of the optimization algorithm

Can we understand generalization as a property of an optimization algorithm?

YES!
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Formal definition of Stability (I)

Definition (Uniform Stability [4])
Let A : Z → H be a randomized algorithm with input a finite sample S, and output a function AS ∈ H.

The algorithm A has uniform stability (βn)n≥1 with respect to the loss function L if for all subsets
S, S′ ⊆ A× B such that |S| = |S′| = n and S and S′ differ in at most one sample:

sup
(a,b)∈A×B

E|L(AS(a), b)− L(AS′ (a), b)| ≤ βn

The expectation is taken with respect to the randomness in the algorithm A .

Misnomer: Lower stability (small values of βn) means the difference in the output of the algorithm is smaller.
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Formal definition of Stability (II)

Figure: Algorithm B is less stable than algorithm A .

Mathematics of Data | Prof. Volkan Cevher, volkan.cevher@epfl.ch Slide 32/ 40



Generalization bounds based on Uniform Stability - definitions

Definition (Empirical Risk on a set)
Let S := [(a1, b1), . . . , (an, bn)] be an i.i.d. sample drawn from a distribution on A× B. Let L : B × B → R be
a loss function and H be a class of functions h : A → B. The empirical risk of h ∈ H on the set S is defined as:

RS(h) :=
1
n

n∑
i=1

L(h(ai), bi)

(Almost) same definition as before. Makes explicit the dependence on the set S.

Definition (Expected Generalization Error)
Let A : Z → H be a randomized algorithm that takes as input a finite sample S of arbitrary size, and outputs a
function AS ∈ H. Suppose that S = [(a1, b1), . . . , (an, bn)] is an i.i.d. sample form probability distribution on
A× B. The expected generalization error on a sample of size n is the value

E[RS(AS)−R(AS))]

the expectation is taken with respect to the draw of the sample S and the randomness of A .
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Generalization bounds based on Uniform Stability - Fundamental Theorem (I)

Theorem (Hardt et al. 2016 [4])
Let A be uniformly stable with stability (βn)n≥1, then for a random i.i.d. sample S of size n, the expected
generalization error is bounded as:

E[|RS(AS)−R(AS))|] ≤ βn

Proof.
Let S = [(a1, b1), . . . , (an, bn)] and S′ = [(a′1, b′1), . . . , (a′n, bn)] be two i.i.d. samples of size n. Denote

S(i) := [(a1, b1), . . . , (ai−1, bi−1), (a′i, b
′
i), (ai+1, bi+1), . . . , (an, bn)]

the sample that results from replacing (ai, bi) by (a′i, b
′
i) in S.

E[RS(AS)] = E

[
1
n

n∑
i=1

L(AS(ai), bi)

]
= E

[
1
n

n∑
i=1

L(AS(i) (a′i), b
′
i)

]

= E

[
1
n

n∑
i=1

L(AS(i) (a′i), b
′
i)−

1
n

n∑
i=1

L(AS(a′i), b
′
i)

]
+ E

[
1
n

n∑
i=1

L(AS(a′i), b
′
i)

]
�
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Generalization bounds based on Uniform Stability - Fundamental Theorem (II)

Proof. (continued).
We have

E[RS(AS)] = E

[
1
n

n∑
i=1

L(AS(i) (a′i), b
′
i)−

1
n

n∑
i=1

L(AS(a′i), b
′
i)

]
+ E

[
1
n

n∑
i=1

L(AS(a′i), b
′
i)

]
Note that S and S(i) only differ in one sample: uniform stability allows bounding the first term as:

= E

[
1
n

n∑
i=1

L(AS(i) (a′i), b
′
i)−

1
n

n∑
i=1

L(AS(a′i), b
′
i)

]
=

1
n

n∑
i=1

E
[
L(AS(i) (a′i), b

′
i)− L(AS(a′i), b

′
i)
]
≤ βn

Finally note that because the samples (ai, bi) are independent of S we have:

E

[
1
n

n∑
i=1

L(AS(a′i), b
′
i)

]
= R(AS)

analogously we can show E [R(AS)−RS(AS)] ≤ βn. �
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The Stability of SGD
◦ Let hx ∈ HX be an element of a parametric function class. Consider the ERM optimization objective:

f(x) :=
1
n

n∑
i=1

fi(x), fi(x) := L(hx(ai), bi).

◦ The SGD iterates for t = 0, . . . , T are xt+1 = xt − αt∇xfi(xt), for i ∼ Unif[n].

Algorithm Assumptions on fi Stability

SGD convex, L-smooth, β-Lipschitz, αt ≤ 2/L
β2

n

∑T

t=0 αt

SGD µ-str convex, L-smooth, β-Lipschitz, αt ≤ 2/L
β2

nµ

SGD µ-str convex, L-smooth, β-Lipschitz, αt =
1
µt

β2 + Lρ

nµ

SGD avg. iterate convex, L-smooth, β-Lipschitz
β2T

nL

SGD non-convex, L-smooth, β-Lipschitz, αt = 1/t
1 + 1/β

n
β

2
L+1 T

L
L+1

Table: Summary of Stability upper bounds for different assumptions on the objective function [4]
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Effect of the number of iterations on the Stability of SGD and the Generalization error

Figure 3: Normalized euclidean distance between parameters of two models trained under on
di↵erent random substitution on Cifar 10. Here we show the di↵erences between individual
model layers.

Figure 4: Parameter distance versus generalization error on Cifar10.

22

Figure: Normalized parameter distance between two networks trained on two datasets S, S′ differing only in one sample,
training error, test error and generalization error (0-1 loss) on CIFAR10 [4].

◦ Parameter distance is a stronger notion than stability.
◦ More iterations ⇒ Parameter distance increases (we expect stability to increase).
◦ Generalization error follows the same behavior as the parameter distance (proxy for stability).
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Wrap up!

◦ Continuing homework 1 on Friday
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